Evaluation of Mechanical and Wear Properties of Al 5059/B4C/Al2O3 Hybrid Metal Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Composite
2.2. Investigation on Mechanical Properties
2.3. Hardness Test
2.4. Tensile Test
2.5. Wear Test
3. Results and Discussion
3.1. Brinell Hardness Test Results
3.2. Tensile Test Results
4. Discussion
4.1. SEM of Fractured Specimens
4.2. Effect of Load on Specific Wear Rate (SWR)
4.3. Impact of Load on the Coefficient of Friction (CoF)
4.4. Optical Microscope
4.5. SEM of the Wear-Tested Specimens
5. Conclusions
- There is an increase in the wear resistance of the HMMC specimens with an increase in the wt% of ceramic particles.
- The SWR of the fabricated specimens decreased with an increase in the load on the specimens. The SWR of SP3 at 30 N load was observed to be 65 × 106 mm3/Nm.
- The CoF decreases with an increase in the wt% percentage of the ceramic particles in the fabricated specimens. The increase in the load also leads to a decrease in the CoF of the HMMC specimens. The CoF of SP3 was observed to be 0.27 at 30 N load and a speed of 700 rpm.
- A consistency in the distribution of the ceramic particles has been identified from the SEM images of the fractured specimens under tensile testing.
- A virtual decrease in the existence of voids and grooves has been determined from the SEM images.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vinod, B.; Ramanathan, S.; Anandajothi, M. Effect of Organic and Inorganic Reinforcement on Tribological Behaviour of Aluminium A356 Matrix Hybrid Composite. J. Bio- Tribo-Corros. 2018, 4, 45. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Alipour, S. Microstructure and tribological properties of nanostructured aluminum reinforced with SiC nanoparticles fabricated by powder metallurgy route. Trans. Indian Inst. Met. 2018, 71, 745–752. [Google Scholar] [CrossRef]
- Rathee, S.; Maheshwari, S.; Siddiquee, A.N. Issues and strategies in composite fabrication via friction stir processing: A review. Mater. Manuf. Process 2018, 33, 239–261. [Google Scholar] [CrossRef]
- Sahraeinejad, S.; Izadi, H.; Haghshenas, M.; Gerlich, A.P. Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters. Mater. Sci. Eng. A 2015, 626, 505–513. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Dixit, A.R.; Tiwari, S. A review on the intensification of metal matrix composites and its nonconventional machining. Sci. Eng. Compos. Mater. 2016, 25, 213–228. [Google Scholar] [CrossRef]
- Mistry, J.M.; Gohil, P.P. Research review of diversified reinforcement on aluminum metal matrix composites: Fabrication processes and mechanical characterization. Sci. Eng. Compos. Mater. 2018, 25, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Saba, F.; Haddad-Sabzevar, M.; Sajjadi, S.A.; Zhang, F. The effect of TiC:CNT mixing ratio and CNT content on the mechanical and tribological behaviors of TiC modified CNT-reinforced Al-matrix nanocomposites. Powder Technol. 2018, 331, 107–120. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, X.; Pan, D.; Pan, B.; Liu, L.; Chen, B.; Kondoh, K.; Li, S. Designable interfacial structure and its influence on interface reaction and performance of MWCNTs reinforced aluminum matrix composites. Mater. Sci. Eng. A 2020, 793, 139783. [Google Scholar] [CrossRef]
- Öksüz, K.E.; Şahin, Y. Microstructure and hardness characteristics of Al2O3-B4C particle-reinforced Cu matrix compo-sites. Acta Phys. Pol. A 2016, 129, 650–652. [Google Scholar] [CrossRef]
- Meena, K.L.; Manna, A.; Banwait, S.S. An analysis of mechanical properties of the developed Al/SiC-MMC’s. Am. J. Mech. Eng. 2013, 1, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Aborkin, A.; Babin, D.; Zalesnov, A.; Prusov, E.; Ob’Edkov, A.; Alymov, M. Effect of ceramic coating on carbon nanotubes interaction with matrix material and mechanical properties of aluminum matrix nanocomposite. Ceram. Int. 2020, 46, 19256–19263. [Google Scholar] [CrossRef]
- Bansal, S.; Saini, J.S. Mechanical and Wear Properties of SiC/Graphite Reinforced Al359 Alloy-based Metal Matrix Composite. Def. Sci. J. 2015, 65, 330–338. [Google Scholar] [CrossRef]
- Reddy, P.V.; Kumar, G.S.; Kumar, V.S.; Reddy, B.V. Effect of Substituting SiC in Varying Proportions for TiC in Al-5052/TiC/SiC Hybrid MMC. J. Bio- Tribo-Corros. 2020, 6, 25. [Google Scholar] [CrossRef]
- Reddy, P.V.; Prasad, P.R.; Krishnudu, D.M.; Goud, E.V. An Investigation on mechanical and wear characteristics of Al 6063/TiC Metal matrix composites using RSM. J. Bio- Tribo-Corros. 2019, 5, 90. [Google Scholar] [CrossRef]
- Daniel, A.A.; Murugesan, S.; Sukkasamy, S. Dry sliding wear behaviour of aluminium 5059/SiC/MoS2 hybrid metal matrix composites. Mater. Res. 2017, 20, 1697–1706. [Google Scholar] [CrossRef] [Green Version]
- Daniel, S.A.A.; Sakthivel, M.; Gopal, P.M.; Sudhagar, S. Study on tribological behaviour of Al/SiC/MoS 2 hybrid metal matrix composites in high temperature environmental condition. Silicon 2018, 10, 2129–2139. [Google Scholar] [CrossRef]
- Daniel, S.A.A.; Ananth, S.V.; Parthiban, A.; Sivaganesan, S. Optimization of machining parameters in electro chemical machining of Al5059/SiC/MoS2 composites using taguchi method. Mater. Today Proc. 2020, 21, 738–743. [Google Scholar] [CrossRef]
- Dixon, J.J.J.; Logasarathy, S.M.; Neveen, M.G.S. Fabrication of Al7075 metal matrix composite through stir casting method—A review. Int. J. Eng. Res. Technol. 2019, 7, 1–7. [Google Scholar]
- Lawate, D.N.; Shinde, S.S.; Jagtap, T.S. Study of Process Parameters In Stir Casting Method for Production of Particulate Composite Plate. Int. J. Innov. Eng. Res. Technol. 2016, 3, 1–5. [Google Scholar]
- Mohan, M.; Balamurugan, A.; Jagadeeshwar, V.; Ramkumar, M. Analysis of mechanical properties for Al6061 alloy metal matrix with Boron carbide & Graphite. Inter. J. Novel. Res. Develop. 2017, 2, 19–22. [Google Scholar]
- James, S.J.; Ganesan, M.; Santhamoorthy, P.; Kuppan, P. Development of hybrid aluminium metal matrix composite and study of property. Mater. Today Proc. 2018, 5, 13048–13054. [Google Scholar] [CrossRef]
- Daniel, S.A.A.; Pugazhenthi, R.; Kumar, R.; Vijayananth, S. Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi-grey relational analysis. Def. Technol. 2019, 15, 545–556. [Google Scholar] [CrossRef]
- Suraya, S.; Sulaiman, S.; Najmiyah, J.N.; Imrah, Y.N. Studies on Tensile Properties of Titanium Carbide (TiC) Particulates Composites. Adv. Mater. Res. 2014, 903, 151–156. [Google Scholar] [CrossRef]
- Venkateshwara reddy, P.; Suresh Kumar, G.; Mohana Krishnudu, D.; Raghavendra Rao, H. Mechanical and wear perfor-mances of Aluminium-Based metal matrix composites: A Review. J. Bio- Tribo-Corros. 2020, 6, 83. [Google Scholar] [CrossRef]
- Zherebtsov, S.; Ozerov, M.; Povolyaeva, E.; Sokolovsky, V.; Stepanov, N.; Moskovskikh, D.; Salishchev, G. Effect of Hot Rolling on the Microstructure and Mechanical Properties of a Ti-15Mo/TiB Metal-Matrix Composite. Metals 2020, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Koo, M.Y.; Park, J.S.; Park, M.K.; Kim, K.T.; Hong, S.H. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti–6Al–4V composites. Scr. Mater. 2012, 66, 487–490. [Google Scholar] [CrossRef]
- Chen, B.; Shen, J.; Ye, X.; Jia, L.; Li, S.; Umeda, J.; Takahashi, M.; Kondoh, K. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 2017, 140, 317–325. [Google Scholar] [CrossRef]
- Ozerov, M.; Stepanov, N.; Kolesnikov, A.; Sokolovsky, V.; Zherebtsov, S. Brittle-to-ductile transition in a Ti–TiB metal-matrix composite. Mater. Lett. 2017, 187, 28–31. [Google Scholar] [CrossRef]
- Prakash, M.; Badhotiya, G.K.; Chauhan, A.S. A review on mechanical and wear characteristics of particulate reinforced Al-alloy based MMC. AIP Conf. Proc. 2019, 2148, 030021. [Google Scholar] [CrossRef]
- Ramnath, B.V.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Ghias, A.S.A. Evaluation of me-chanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mater. Des. 2014, 58, 332–338. [Google Scholar] [CrossRef]
- American Society of Testing Materials (ASTM). Standard Test Method for Brinell Hardness of Metallic Materials; ASTM E10-18; American Society of Testing Materials: West Conshohocken, PA, USA, 2018. [Google Scholar]
- American Society for Testing and Materials. Standard Test Methods for Tension Test of Metallic Materials; ASTM E8; ASM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- American Society for Testing and Materials. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus; ASTM G99; ASM International: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Elkady, O.A.; Abuoqail, A.; Ewais, E.; El-Sheikh, M. Physico-mechanical and tribological properties of Cu/h-BN nanocomposites synthesized by PM route. J. Alloys Compd. 2015, 625, 309–317. [Google Scholar] [CrossRef]
- Gangwar, S.; Patnaik, A.; Bhat, I.K. Tribological and Microstructure Behavior of Quicklime (CaO) Filled Silicon Bronze Alloy for Bearing Material. Silicon 2016, 8, 601–616. [Google Scholar] [CrossRef]
- Aborkin, A.; Elkin, A.I.; Sytschev, A.E.; Alymov, M.I. Wear under Conditions of Dry Friction of a Composite Material Based on an Aluminum Alloy Reinforced with Nanocrystalline Graphite. J. Frict. Wear 2020, 41, 236–241. [Google Scholar] [CrossRef]
- Dhanashekar, M.; Kumar, V.S. Squeeze Casting of Aluminium Metal Matrix Composites-An Overview. Procedia Eng. 2014, 97, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Prusov, E.S.; Deev, V.B.; Aborkin, A.V.; Ri, E.K.; Rakhuba, E.M. Structural and Morphological Characteristics of the Friction Surfaces of In-Situ Cast Aluminum Matrix Composites. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 15, 1332–1337. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mg | Ti | Mn | Cr | Al |
---|---|---|---|---|---|---|---|---|
Weight Percentage | ≤0.45 | ≤0.50 | ≤0.25 | 5–6 | ≤0.20 | 0.60–1.2 | ≤0.25 | 89.8–94 |
Specimen Designation | Al5059 (wt%) | B4C (wt%) | Al2O3 (wt%) |
---|---|---|---|
SP 1 | 95 | 2.5 | 2.5 |
SP 2 | 90 | 5 | 5 |
SP 3 | 85 | 7.5 | 7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pranavi, U.; Venkateshwar Reddy, P.; Venukumar, S.; Cheepu, M. Evaluation of Mechanical and Wear Properties of Al 5059/B4C/Al2O3 Hybrid Metal Matrix Composites. J. Compos. Sci. 2022, 6, 86. https://doi.org/10.3390/jcs6030086
Pranavi U, Venkateshwar Reddy P, Venukumar S, Cheepu M. Evaluation of Mechanical and Wear Properties of Al 5059/B4C/Al2O3 Hybrid Metal Matrix Composites. Journal of Composites Science. 2022; 6(3):86. https://doi.org/10.3390/jcs6030086
Chicago/Turabian StylePranavi, Uppu, Pathapalli Venkateshwar Reddy, Sarila Venukumar, and Muralimohan Cheepu. 2022. "Evaluation of Mechanical and Wear Properties of Al 5059/B4C/Al2O3 Hybrid Metal Matrix Composites" Journal of Composites Science 6, no. 3: 86. https://doi.org/10.3390/jcs6030086
APA StylePranavi, U., Venkateshwar Reddy, P., Venukumar, S., & Cheepu, M. (2022). Evaluation of Mechanical and Wear Properties of Al 5059/B4C/Al2O3 Hybrid Metal Matrix Composites. Journal of Composites Science, 6(3), 86. https://doi.org/10.3390/jcs6030086