Ultrasonic Anisotropy in Composites: Effects and Applications
Abstract
:1. Introduction
2. Plate Wave Measurements: Genuine or Deceptive Anisotropy?
2.1. Frequency Dispersion of Plate Wave Anisotropy
2.2. Depth-Resolved Measurements of Anisotropy
2.3. Inversion of Plate Wave Velocity Data to Derive Material Stiffness Anisotropy
2.4. Anisotropy Effects in Plate Wave Propagation in Composites
3. Ultrasonic Birefringence: A Remedy to Unravel a Tangle of Fibers?
3.1. Theoretical Background and Various Operation Modes
- Transmission mode (arbitrary orientations of the transmitter and receiver).
- Crossed transmitter–receiver orientation.
- Transmission for .
- Reflection birefringence mode.
3.2. Partial Wave Approach: Sensitivity to Lay-Up Inconsistency
4. Birefringence Applications
4.1. Mapping of Fibre Fields in Composites
4.2. Monitoring Damage Development in Composites
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Composites Market by Fiber Type-Global Forecast to 2026. Available online: https://www.marketsandmarkets.com/Market-Reports/composite-market-200051282.html (accessed on 13 March 2022).
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auld, B.A. Acoustic Waves and Fields in Solids; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
- Solie, L.P.; Auld, B.A. Elastic waves in free anisotropic plates. J. Acoust. Soc. Am. 1972, 54, 50–65. [Google Scholar] [CrossRef]
- Habeger, C.C.; Mann, R.W.; Baum, G.M. Ultrasonic plate waves in paper. Ultrasonics 1979, 17, 57–62. [Google Scholar] [CrossRef]
- Mei, H.; James, R.; Giurgiutiu, V. Pure SH0 wave tomography for delamination detection in aerospace composites. Health Monit. Struct. Biol. Syst. XV 2021, 11593, 115930. [Google Scholar]
- Wang, K.; Liu, M.; Cao, W.; Yang, W.; Su, Z.; Cui, F. Detection and sizing of disbond in multilayer bonded structure using modally selective guided wave. Struct. Health Monit. 2021, 20, 904–916. [Google Scholar] [CrossRef]
- James, R.; Mei, H.; Giurgiutiu, V. SH-mode guided-wave impact damage detection in thick quasi-isotropic composites. Health Monit. Struct. Biol. Syst. XIV 2020, 11381, 113810. [Google Scholar]
- Chimenti, D.L. Guided waves in plates and their use in material characterization. Appl. Mech. Rev. 1997, 50, 247–284. [Google Scholar] [CrossRef]
- Thompson, R.B.; Lee, S.S.; Smith, J.F. Relative anisotropies of plane waves and guided modes in thin orthorhombic plates: Implication for texture characterization. Ultrasonics 1987, 25, 133–137. [Google Scholar] [CrossRef]
- Pavlakovic, B.N.; Lowe, M.J.S.; Alleyne, D.N.; Cawley, P. Disperse: A General Purpose Program for Creating Dispersion Curves; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1997; Volume 16, pp. 185–192. [Google Scholar]
- Lobkis, O.I.; Chimenti, D.E.; Zhang, H. In-plane elastic property characterization in composite plates. J. Acoust. Soc. Am. 2000, 107, 1852–1858. [Google Scholar] [CrossRef] [Green Version]
- Kudela, P.; Radzienski, M.; Fiborek, P.; Wandowski, T. Elastic constants identification of fibre-reinforced composites by using guided wave dispersion curves and genetic algorithm for improved simulations. Comp. Struct. 2021, 272, 114178. [Google Scholar] [CrossRef]
- Hosten, B.; Biateau, C. Finite element simulation of the generation and detection by air-coupled transducers of guided waves in viscoelastic and anisotropic materials. J. Acoust. Soc. Am. 2008, 123, 1963–1971. [Google Scholar] [CrossRef]
- Schmidt, D.; Hillger, W.; Szewieczek, A.; Sinapius, M. Structural health monitoring based on guided waves. In Adaptive, Tolerant and Efficient Composite Structures; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Solodov, I.; Pfleiderer, K.; Döring, D.; Busse, G. Nondestructive evaluation of anisotropy in composite materials via acoustic birefringence. Res. Nondestr. Eval. 2008, 19, 129–143. [Google Scholar] [CrossRef]
- Jansen, M.; Zuidema, J. An acoustoelastic determination of the stress tensor in textured metal sheets using the birefringency of ultrasonic shear waves. J. Nondestr. Eval. 1985, 5, 45–52. [Google Scholar] [CrossRef]
- Jansen, M. Evaluation of an applied plane-stress tensor using ultrasonic shear waves. Exp. Mech. 1988, 28, 226–321. [Google Scholar] [CrossRef]
- Schneider, E. Ultrasonic birefringence effect-its application for materials characterisations. Opt. Lasers Eng. 1995, 22, 305–323. [Google Scholar] [CrossRef]
- Hirao, M.; Ogi, H.; Fukuoka, H. Advanced ultrasonic method for measuring rail axial stress with electromagnetic acoustic transducer. Res. Nondestr. Eval. 1994, 5, 211–223. [Google Scholar] [CrossRef]
- Sasaki, Y.; Hasegawa, M. Effect of anisotropy on acoustoelastic birefringence in wood. Ultrasonics 2007, 46, 184–190. [Google Scholar] [CrossRef]
- Dixon, S.; Fletcher, M.P.; Rowlands, G. The accuracy of acoustic birefringence shear wave measurements in sheet metal. J. Appl. Phys. 2008, 104, 114901. [Google Scholar] [CrossRef] [Green Version]
- Solodov, I.; Busse, G. Anisotropy of plate waves in composites: Effects and implications. Acta Acust. United Acust. 2011, 97, 678–685. [Google Scholar] [CrossRef]
- Solodov, I.; Döring, D.; Rheinfurth, M.; Busse, G. New opportunities in ultrasonic characterization of stiffness anisotropy in composite materials. In Nondestructive Testing of Materials and Structures; Series 6; Springer: Berlin/Heidelberg, Germany, 2013; pp. 599–604. [Google Scholar] [CrossRef]
- Solodov, I.; Döring, D.; Rheinfurth, M.; Busse, G. Ultrasonic NDT of in-plane stiffness anisotropy in metals and composites. In Proceedings of the 10th European Conference on Non-Destructive Testing, Moscow, Russia, 7–11 June 2010. [Google Scholar]
- Solodov, I.; Stoessel, R.; Busse, G. Material characterization and NDE using focused slanted transmission mode of air-coupled ultrasound. Res. Nondestr. Eval. 2004, 15, 65–85. [Google Scholar] [CrossRef]
- Dayal, V.; Kinra, V.K. Leaky Lamb waves in an anisotropic plate. II: Nondestructive evaluation of matrix cracks in fiber-reinforced composites. J. Acoust. Soc. Am. 1991, 89, 1590–1598. [Google Scholar]
- Solodov, I.; Pfleiderer, K.; Busse, G. Laser vibrometry of air-coupled Lamb waves: A novel methodology for non-contact material characterization. Materialprüfung 2005, 47, 3–7. [Google Scholar] [CrossRef]
- Wolfe, J.P. Imaging Phonons: Acoustic Wave Propagation in Solids; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Kolomenskii, A.A.; Maznev, A.A. Phonon focusing effect with laser-generated ultrasonic surface waves. Phys. Rev. B 1993, 48, 14502–14508. [Google Scholar] [CrossRef]
- Maznev, A.A.; Every, A.G. Focusing of acoustic modes in thin anisotropic plates. Acta Acust. 1995, 3, 387–391. [Google Scholar]
- Busse, G.; Solodov, I.; Stoessel, R.; Schutz, J. Acoustic anisotropy and birefringence in glass fibre-reinforced composites. Acoust. Phys. 2002, 48, 22–27. [Google Scholar] [CrossRef]
- Fey, P. Von der Ultraschalldoppelbrechung in der Zerstörungsfreien Prüfung Anisotroper Werkstoffe. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2017. [Google Scholar]
- Bernhardt, Y.; Littner, L.; Czichos, R.; Dittmann, J.; Middendorf, P.; Kreutzbruck, M. Validation of a model for propagation of ultrasonic shear waves through anisotropic layered material. Ultrasonics 2021, submitted.
- Papa, I.; Lopresto, V.; Langella, A. Ultrasonic inspection of composites materials: Application to detect impact damage. Int. J. Lightweight Mater. Manuf. 2021, 4, 37–42. [Google Scholar] [CrossRef]
- James, R.; Giurgiutiu, V.; Flores, M. Challenges of generating controlled one-inch impact damage in thick CFRP composites. In Proceedings of the AIAA Scitech 2020-0723 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solodov, I.; Bernhardt, Y.; Littner, L.; Kreutzbruck, M. Ultrasonic Anisotropy in Composites: Effects and Applications. J. Compos. Sci. 2022, 6, 93. https://doi.org/10.3390/jcs6030093
Solodov I, Bernhardt Y, Littner L, Kreutzbruck M. Ultrasonic Anisotropy in Composites: Effects and Applications. Journal of Composites Science. 2022; 6(3):93. https://doi.org/10.3390/jcs6030093
Chicago/Turabian StyleSolodov, Igor, Yannick Bernhardt, Linus Littner, and Marc Kreutzbruck. 2022. "Ultrasonic Anisotropy in Composites: Effects and Applications" Journal of Composites Science 6, no. 3: 93. https://doi.org/10.3390/jcs6030093
APA StyleSolodov, I., Bernhardt, Y., Littner, L., & Kreutzbruck, M. (2022). Ultrasonic Anisotropy in Composites: Effects and Applications. Journal of Composites Science, 6(3), 93. https://doi.org/10.3390/jcs6030093