Solar-Light-Driven Ag9(SiO4)2NO3 for Efficient Photocatalytic Bactericidal Performance
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis
2.2. Characterization
2.3. Photocatalytic Inactivation Performance
2.4. Photocatalyst Mechanism
2.5. Calculation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 25 May 2020).
- Ding, W.; Jin, W.; Cao, S.; Zhou, X.; Wang, C.; Jiang, Q.; Huang, H.; Tu, R.; Han, S.-F.; Wang, Q. Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Res. 2019, 160, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zeng, S.; Gu, A.Z.; He, M.; Shi, H. Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant. J. Environ. Sci. 2013, 25, 1319–1325. [Google Scholar] [CrossRef]
- Al-Keisy, A.; Mahdi, R.; Ahmed, D.; Al-Attafi, K.; Abd. Majid, W.H. Enhanced Photoreduction Activity in BiOI1-xFx Nanosheet for Efficient Removal of Pollutants from Aqueous Solution. ChemistrySelect 2020, 5, 9758–9764. [Google Scholar] [CrossRef]
- Mahdi, R.; Alsultan, M.; Al-Keisy, A.; Swiegers, G.F. Photocatalytic Hydrogen Generation from pH-Neutral Water by a Flexible Tri-Component Composite. Catal. Lett. 2020, 151, 1700–1706. [Google Scholar] [CrossRef]
- Kong, X.; Liu, X.; Zheng, Y.; Chu, P.K.; Zhang, Y.; Wu, S. Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Mater. Sci. Eng. R Rep. 2021, 145, 100610. [Google Scholar] [CrossRef]
- Christy, A.J.; Suresh, S.; Nehru, L.C. Enhanced antibacterial and photocatalytic activities of nickel oxide nanostructures. Optik 2021, 237, 166731. [Google Scholar] [CrossRef]
- Zheng, A.L.T.; Sabidi, S.; Ohno, T.; Maeda, T.; Andou, Y. Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. Chemosphere 2022, 286, 131731. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Han, X.; Mu, L.; Zhang, J.; Shi, H. TiO2 nanospheres/AgVO3 quantum dots composite with enhanced visible light photocatalytic antibacterial activity. Mater. Lett. 2019, 253, 148–151. [Google Scholar] [CrossRef]
- Liu, B.; Mu, L.; Han, B.; Zhang, J.; Shi, H. Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation. Appl. Surf. Sci. 2017, 396, 1596–1603. [Google Scholar] [CrossRef]
- Qin, Y.; Guo, Y.; Liang, Z.; Xue, Y.; Zhang, X.; Yang, L.; Tian, J. Au nanorods decorated TiO2 nanobelts with enhanced full solar spectrum photocatalytic antibacterial activity and the sterilization file cabinet application. Chin. Chem. Lett. 2021, 32, 1523–1526. [Google Scholar] [CrossRef]
- Kavinkumar, V.; Verma, A.; Uma, K.; Moscow, S.; Jothivenkatachalam, K.; Fu, Y.-P. Plasmonic metallic silver induced Bi2WO6/TiO2 ternary junction towards the photocatalytic, electrochemical OER/HER, antibacterial and sensing applications. Appl. Surf. Sci. 2021, 569, 150918. [Google Scholar] [CrossRef]
- Ibrahem, M.A.; Rasheed, B.G.; Mahdi, R.I.; Khazal, T.M.; Omar, M.M.; O’Neill, M. Plasmonic-enhanced photocatalysis reactions using gold nanostructured films. RSC Adv. 2020, 10, 22324–22330. [Google Scholar] [CrossRef]
- Mahdi, R.; Mohammed, E.H.; Al-Keisy, A.; Alsultan, M.; Majid, W.H.A. Tailoring the morphology of BiNbO4 of polymorph in 2D nanosheets for enhancement of photocatalytic activity in the visible range. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 136, 115009. [Google Scholar] [CrossRef]
- Abid, H.N.; Al-keisy, A.; Ahmed, D.S.; Salih, A.T.; Khammas, A. pH dependent synthesis and characterization of bismuth molybdate nanostructure for photocatalysis degradation of organic pollutants. Environ. Sci. Pollut. Res. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ji, S.; Li, S.; Zhou, X.; Yin, J.; Liu, P.; Shi, W.; Wu, M.; Shen, L. Electrospinning visible light response Bi2MoO6/Ag3PO4 composite photocatalytic nanofibers with enhanced photocatalytic and antibacterial activity. Appl. Surf. Sci. 2021, 569, 150955. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, P.; Huang, B.; Ma, X.; Qin, X.; Zhang, X.; Dai, Y. Synthesis of novel visible light response Ag10Si4O13 photocatalyst. Appl. Catal. B Environ. 2016, 199, 315–322. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Jin, H.; Kang, W.; Kong, W.; Li, W. Fabrication and visible-light photocatalytic properties of nano-Ag10Si4O13. Ceram. Int. 2021, 47, 32460–32465. [Google Scholar] [CrossRef]
- Kim, T.-G.; Yeon, D.-H.; Kim, T.; Lee, J.; Im, S.-J. Silver silicates with three-dimensional d10-d10 interactions as visible light active photocatalysts for water oxidation. Appl. Phys. Lett. 2013, 103, 043904. [Google Scholar] [CrossRef]
- Du, J.; Ma, S.; Yan, Y.; Li, K.; Zhao, F.; Zhou, J. Corn-silk-templated synthesis of TiO2 nanotube arrays with Ag3PO4 nanoparticles for efficient oxidation of organic pollutants and pathogenic bacteria under solar light. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 237–249. [Google Scholar] [CrossRef]
- Ganguly, P.; Byrne, C.; Breen, A.; Pillai, S.C. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Appl. Catal. B Environ. 2018, 225, 51–75. [Google Scholar] [CrossRef]
- Karunakaran, C.; Vinayagamoorthy, P. Perforated ZnFe2O4/ZnO hybrid nanosheets: Enhanced charge-carrier lifetime, photocatalysis, and bacteria inactivation. Appl. Phys. A 2017, 123, 472. [Google Scholar] [CrossRef]
- Katsumata, H.; Taniguchi, M.; Kaneco, S.; Suzuki, T. Photocatalytic degradation of bisphenol A by Ag3PO4 under visible light. Catal. Commun. 2013, 34, 30–34. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Y.; Huang, B.; Li, H.; Qin, X.; Zhang, X.; Dai, Y. Preparation, characterization, and photocatalytic properties of silver carbonate. Appl. Surf. Sci. 2011, 257, 8732–8736. [Google Scholar] [CrossRef]
- Li, J.; Fang, W.; Yu, C.; Zhou, W.; Zhu, L.; Xie, Y. Ag-based semiconductor photocatalysts in environmental purification. Appl. Surf. Sci. 2015, 358, 46–56. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalueza, P.; Monzón, M.; Arruebo, M.; Santamaría, J. Bactericidal effects of different silver-containing materials. Mater. Res. Bull. 2011, 46, 2070–2076. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [Green Version]
- Al-keisy, A.; Ren, L.; Cui, D.; Xu, Z.; Xu, X.; Su, X.; Hao, W.; Dou, S.X.; Du, Y. A ferroelectric photocatalyst Ag10Si4O13 with visible-light photooxidation properties. J. Mater. Chem. A 2016, 4, 10992–10999. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Huang, B.; Wei, W.; Dai, Y.; Zhang, X.; Qin, X. Synthesis of Ag9(SiO4)2NO3 through a reactive flux method and its visible-light photocatalytic performances. APL Mater. 2015, 3, 104413. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Krist.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Dai, Z.; Liu, F.; Kim, H.; Tong, M.; Hou, Y. Bactericidal mechanisms of Ag2O/TNBs under both dark and light conditions. Water Res. 2013, 47, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhan, S.; Xia, Y.; Wang, P.; Hou, Q.; Zhou, Q. Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/g-C3N4 composite under visible light. Catal. Today 2019, 330, 179–188. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Yu, X.; Dawa, J.; Gui, D.; Tang, R. Biosynthesis of Ag deposited phosphorus and sulfur co-doped g-C3N4 with enhanced photocatalytic inactivation performance under visible light. Appl. Surf. Sci. 2020, 501, 144245. [Google Scholar] [CrossRef]
Photocatalyst | Intial Concentration (μg/mL) | Initial Cell Density (cfu/mL) | Final Cell Density (cfu/mL) | Light Source | Time Expose (min) | Ref. |
---|---|---|---|---|---|---|
Ag3PO4/TiO2 | 10 | 106.2 | 0 | Solar light | 120 | [20] |
Ag2O/TiO2 | 100 | 107 | 0 | 300 W Xenon arc lamp, cutoff UV | 360 | [32] |
Ag/ZnO/g-C3N4 | 50 | 107 | 0 | 300 W Xenon arc lamp, cutoff UV | 120 | [33] |
Ag deposited phosphorus and sulfur co-doped g-C3N4 | 200 | 107 | 0 | 300 W Xenon arc lamp, cutoff UV | 60 | [34] |
Ag9(SiO4)2NO3 | 2 | 105 | 0 | Solar light | 10 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taki, M.M.; Mahdi, R.I.; Al-Keisy, A.; Alsultan, M.; Al-Bahnam, N.J.; Majid, W.H.A.; Swiegers, G.F. Solar-Light-Driven Ag9(SiO4)2NO3 for Efficient Photocatalytic Bactericidal Performance. J. Compos. Sci. 2022, 6, 108. https://doi.org/10.3390/jcs6040108
Taki MM, Mahdi RI, Al-Keisy A, Alsultan M, Al-Bahnam NJ, Majid WHA, Swiegers GF. Solar-Light-Driven Ag9(SiO4)2NO3 for Efficient Photocatalytic Bactericidal Performance. Journal of Composites Science. 2022; 6(4):108. https://doi.org/10.3390/jcs6040108
Chicago/Turabian StyleTaki, Malaa M., Rahman I. Mahdi, Amar Al-Keisy, Mohammed Alsultan, Nabil Janan Al-Bahnam, Wan Haliza Abd. Majid, and Gerhard F. Swiegers. 2022. "Solar-Light-Driven Ag9(SiO4)2NO3 for Efficient Photocatalytic Bactericidal Performance" Journal of Composites Science 6, no. 4: 108. https://doi.org/10.3390/jcs6040108
APA StyleTaki, M. M., Mahdi, R. I., Al-Keisy, A., Alsultan, M., Al-Bahnam, N. J., Majid, W. H. A., & Swiegers, G. F. (2022). Solar-Light-Driven Ag9(SiO4)2NO3 for Efficient Photocatalytic Bactericidal Performance. Journal of Composites Science, 6(4), 108. https://doi.org/10.3390/jcs6040108