Poly(methyl methacrylate) Nanocomposite Foams Reinforced with Carbon and Inorganic Nanoparticles—State-of-the-Art
Abstract
:1. Introduction
2. Poly(methyl methacrylate)
3. Poly(methyl methacrylate) Foam
4. Poly(methyl methacrylate) Nanocomposite Foam
4.1. Poly(methyl methacrylate)/Nanocarbon Nanocomposite Foam
4.2. Poly(methyl methacrylate)/Inorganic Nanoparticle Nanocomposite Foam
5. Potential of Poly(methyl methacrylate) Nanocomposite Foam
5.1. Electromagnetic Interference Shielding
5.2. Sensor
5.3. Supercapacitor
6. Challenges and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, H.; Thakur, A. Applications of poly (methyl methacrylate) polymer in dentistry: A review. Mater. Today Proceed. 2021, 50, 1619–1625. [Google Scholar] [CrossRef]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Meng, S.; Lin, H.; Correll, M.; Tong, Z. Nanocomposite of Graphene Oxide Encapsulated in Polymethylmethacrylate (PMMA): Pre-Modification, Synthesis, and Latex Stability. J. Compos Sci. 2020, 4, 118. [Google Scholar] [CrossRef]
- Forest, C.; Chaumont, P.; Cassagnau, P.; Swoboda, B.; Sonntag, P. Nanofoaming of PMMA using a batch CO2 process: Influence of the PMMA viscoelastic behaviour. Polymer 2015, 77, 1–9. [Google Scholar] [CrossRef]
- Kocacinar, E.; Baydogan, N. Synthesis of Poly(Methyl Methacrylate) Reinforced by Graphene Nanoplates. Key Eng. Mater. 2021, 897, 63–70. [Google Scholar] [CrossRef]
- Bhinder, J.; Agnihotri, P.K. Effect of carbon nanotube doping on the energy dissipation and rate dependent deformation behavior of polyurethane foams. J. Cell. Plast. 2021, 57, 287–311. [Google Scholar] [CrossRef]
- Saha, D.; Majumdar, M.K.; Das, A.K.; Chowdhury, A.S. Ashaduzzaman Structural Nanocomposite Fabrication from Self-Assembled Choline Chloride Modified Kaolinite into Poly(Methylmethacrylate). J. Compos. Sci. 2019, 3, 83. [Google Scholar] [CrossRef] [Green Version]
- Rathi, A.; Kundalwal, S. Micromechanical analysis of effective mechanical properties of graphene/ZrO2-hybrid poly(methylmethacrylate) nanocomposites. J. Micromanufactur. 2021, 25165984211038861. [Google Scholar]
- Li, Y.; Chen, Z.; Zeng, C. Poly(methyl methacrylate)(PMMA) nanocomposite foams. In Polymer Nanocomposite Foams; Chapter 1; CRC Press: Boca Raton, FL, USA, 2013; pp. 1–33. [Google Scholar]
- Manninen, A.R.; Naguib, H.E.; Nawaby, A.V.; Liao, X.; Day, M. The effect of clay content on PMMA-clay nanocomposite foams. Cell. Polym. 2005, 24, 49–70. [Google Scholar] [CrossRef]
- Yeh, S.K.; Huang, C.H.; Su, C.C.; Cheng, K.C.; Chuang, T.H.; Guo, W.J.; Wang, S.F. Effect of dispersion method and process variables on the properties of supercritical CO2 foamed polystyrene/graphite nanocomposite foam. Polym. Eng. Sci. 2013, 53, 2061–2072. [Google Scholar] [CrossRef]
- Zafar, M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Antl, L.; Goodwin, J.; Hill, R.; Ottewill, R.H.; Owens, S.; Papworth, S.; Waters, J.A. The preparation of poly(methyl methacrylate) latices in non-aqueous media. Colloids Surf. 1986, 17, 67–78. [Google Scholar] [CrossRef]
- Barker, L.M.; Hollenbach, R. Shock-wave studies of PMMA, fused silica, and sapphire. J. Appl. Phys. 1970, 41, 4208–4226. [Google Scholar] [CrossRef]
- Olson, J.R.; Day, D.E.; Stoffer, J.O. Fabrication and mechanical properties of an optically transparent glass fiber/polymer matrix composite. J. Compos. Mater. 1992, 26, 1181–1192. [Google Scholar] [CrossRef]
- Demir, M.M.; Koynov, K.; Akbey, Ü.; Bubeck, C.; Park, I.; Lieberwirth, I.; Wegner, G. Optical properties of composites of PMMA and surface-modified zincite nanoparticles. Macromolecules 2007, 40, 1089–1100. [Google Scholar] [CrossRef] [Green Version]
- Stefanov, I.L.; Stoyanov, H.Y.; Petrova, E.; Russev, S.C.; Tsutsumanova, G.G.; Hadjichristov, G.B. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions. In Proceedings of the 17th International School on Quantum Electronics: Laser Physics and Applications, Nessebar, Bulgaria, 24–28 September 2012; Volume 877, p. 87701N. [Google Scholar]
- Lecomte, P.; Drapier, I.; Dubois, P.; Teyssié, P.; Jérôme, R. Controlled Radical Polymerization of Methyl Methacrylate in the Presence of Palladium Acetate, Triphenylphosphine, and Carbon Tetrachloride. Macromolecules 1997, 30, 7631–7633. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, Z.; Ran, S.; Cao, Z.; Fang, Z. The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes. J. Therm. Anal. 2013, 115, 1235–1244. [Google Scholar] [CrossRef]
- Huang, X.; Brittain, W.J. Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules 2001, 34, 3255–3260. [Google Scholar] [CrossRef]
- Poddar, M.K.; Vishwakarma, K.; Moholkar, V.S. Rheological and mechanical properties of PMMA/organoclay nanocomposites prepared via ultrasound-assisted in-situ emulsion polymerization. Korean J. Chem. Eng. 2019, 36, 828–836. [Google Scholar] [CrossRef]
- Shen, D.; Huang, Y. The synthesis of CDA-g-PMMA copolymers through atom transfer radical polymerization. Polymer 2004, 45, 7091–7097. [Google Scholar] [CrossRef]
- Kubiak, J.M.; Yan, J.; Pietrasik, J.; Matyjaszewski, K. Toughening PMMA with fillers containing polymer brushes synthesized via atom transfer radical polymerization (ATRP). Polymer 2017, 117, 48–53. [Google Scholar] [CrossRef]
- Okolieocha, C.; Beckert, F.; Herling, M.; Breu, J.; Mülhaupt, R.; Altstädt, V. Preparation of microcellular low-density PMMA nanocomposite foams: Influence of different fillers on the mechanical, rheological and cell morphological properties. Compos. Sci. Technol. 2015, 118, 108–116. [Google Scholar] [CrossRef]
- Li, J.; Chen, D.; Chen, G. Low-Temperature Thermal Bonding of PMMA Microfluidic Chips. Anal. Lett. 2005, 38, 1127–1136. [Google Scholar] [CrossRef]
- Kausar, A. Poly(methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: A review. Polym.-Plast. Technol. Mater. 2018, 58, 821–842. [Google Scholar] [CrossRef]
- Lahelin, M.; Annala, M.; Nykänen, A.; Ruokolainen, J.; Seppälä, J. In situ polymerized nanocomposites: Polystyrene/CNT and Poly(methyl methacrylate)/CNT composites. Compos. Sci. Technol. 2011, 71, 900–907. [Google Scholar] [CrossRef]
- Chen, C.H.; Yen, W.H.; Kuan, H.C.; Kuan, C.F.; Chiang, C.L. Preparation, characterization, and thermal stability of novel PMMA/expandable graphite halogen-free flame retardant composites. Polym. Compos. 2010, 31, 18–24. [Google Scholar] [CrossRef]
- Pozdnyakov, A.; Handge, U.; Konchits, A.; Altstädt, V. Thermal decomposition study of poly (methyl methacrylate)/carbon nanofiller composites. Polym. Adv. Technol. 2011, 22, 84–89. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Z.-X.; Fu, S.; Wu, W.; Zhu, D. Polymers containing fullerene or carbon nanotube structures. Prog. Polym. Sci. 2004, 29, 1079–1141. [Google Scholar] [CrossRef]
- Dhibar, A.K.; Mallick, S.; Rath, T.; Khatua, B.B. Effect of clay platelet dispersion as affected by the manufacturing techniques on thermal and mechanical properties of PMMA-clay nanocomposites. J. Appl. Polym. Sci. 2009, 113, 3012–3018. [Google Scholar] [CrossRef]
- Saladino, M.; Motaung, T.; Luyt, A.; Spinella, A.; Nasillo, G.; Caponetti, E. The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA. Polym. Degrad. Stab. 2012, 97, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Bautista, Y.; Gozalbo, A.; Mestre, S.; Sanz, V. Thermal degradation mechanism of a thermostable polyester stabilized with an open-cage oligomeric silsesquioxane. Materials 2018, 11, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laachachi, A.; Cochez, M.; Ferriol, M.; Lopez-Cuesta, J.; Leroy, E. Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA). Mater. Lett. 2005, 59, 36–39. [Google Scholar] [CrossRef]
- Demir, M.M.; Memesa, M.; Castignolles, P.; Wegner, G. PMMA/zinc oxide nanocomposites prepared by in-situ bulk polymerization. Macromol. Rapid Commun. 2006, 27, 763–770. [Google Scholar] [CrossRef] [Green Version]
- Hillmyer, M.A. Nanoporous materials from block copolymer precursors. Block Copolym. II 2005, 190, 137–181. [Google Scholar]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.D.; Cha, S.W. The relationship between gas absorption and the glass transition temperature in a batch microcellular foaming process. Polym. Test. 2002, 21, 269–275. [Google Scholar] [CrossRef]
- Alessi, P.; Cortesi, A.; Kikic, I.; Vecchione, F. Plasticization of polymers with supercritical carbon dioxide: Experimental determination of glass-transition temperatures. J. Appl. Phys. 2003, 88, 2189–2193. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Angelopoulou, A.G.; Panayiotou, C. Foaming of polymers with supercritical CO2: An experimental and theoretical study. Polymer 2007, 48, 5928–5939. [Google Scholar] [CrossRef]
- Nawaby, A.V.; Handa, Y.P.; Liao, X.; Yoshitaka, Y.; Tomohiro, M. Polymer-CO2 systems exhibiting retrograde behavior and formation of nanofoams. Polym. Int. 2007, 56, 67–73. [Google Scholar] [CrossRef]
- Krause, B.; van der Vegt, N.; Wessling, M. New ways to produce porous polymeric membranes by carbon dioxide foaming. Desalination 2002, 144, 5–7. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N. A Review of the Properties and Applications of Poly (Methyl Methacrylate)(PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Kinra, V.K.; Ker, E. Effective elastic moduli of a thin-walled glass microsphere/PMMA composite. J. Compos. Mater. 1982, 16, 117–138. [Google Scholar] [CrossRef]
- Ozkutlu, M.; Dilek, C.; Bayram, G. Effects of hollow glass microsphere density and surface modification on the mechanical and thermal properties of poly(methyl methacrylate) syntactic foams. Compos. Struct. 2018, 202, 545–550. [Google Scholar] [CrossRef]
- Pinto, J.; Reglero-Ruiz, J.A.; Dumon, M.; Rodriguez-Perez, M.A. Temperature influence and CO2 transport in foaming processes of poly(methyl methacrylate)-block copolymer nanocellular and microcellular foams. J. Supercrit. Fluids 2014, 94, 198–205. [Google Scholar] [CrossRef]
- Zhou, D.; Xiong, Y.; Yuan, H.; Luo, G.; Zhang, J.; Shen, Q.; Zhang, L. Synthesis and compressive behaviors of PMMA microporous foam with multi-layer cell structure. Compos. Part B Eng. 2019, 165, 272–278. [Google Scholar] [CrossRef]
- Soykeabkaew, N.; Thanomsilp, C.; Suwantong, O. A review: Starch-based composite foams. Compos. Part A Appl. Sci. Manuf. 2015, 78, 246–263. [Google Scholar] [CrossRef]
- Handa, Y.P.; Zhang, Z. A novel stress-induced nucleation and foaming process and its applications in making homogeneous foams, anisotropic foams, and multilayered foams. Cell. Polym. 2000, 19, 77–91. [Google Scholar]
- Baughman, R.H.; Zakhidov, A.A.; De Heer, W.A. Carbon nanotubes-the route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef]
- Chen, L.; Schadler, L.S.; Ozisik, R. An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposite foams. Polymer 2011, 52, 2899–2909. [Google Scholar] [CrossRef]
- Yuan, H.; Xiong, Y.; Shen, Q.; Luo, G.; Zhou, D.; Liu, L. Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in X-band. Compos. Part A Appl. Sci. Manuf. 2018, 107, 334–341. [Google Scholar] [CrossRef]
- Zeng, C.; Hossieny, N.; Zhang, C.; Wang, B.; Walsh, S.M. Morphology and tensile properties of PMMA carbon nanotubes nanocomposites and nanocomposites foams. Compos. Sci. Technol. 2013, 82, 29–37. [Google Scholar] [CrossRef]
- Yuan, H.; Xiong, Y.; Luo, G.; Li, M.; Shen, Q.; Zhang, L. Microstructure and electrical conductivity of CNTs/PMMA nanocomposite foams foaming by supercritical carbon dioxide. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2016, 31, 481–486. [Google Scholar] [CrossRef]
- Zeng, C.; Hossieny, N.; Zhang, C.; Wang, B. Synthesis and processing of PMMA carbon nanotube nanocomposite foams. Polymer 2010, 51, 655–664. [Google Scholar] [CrossRef]
- Zakiyan, S.E.; Azizi, H.; Ghasemi, I. Influence of chain mobility on rheological, dielectric and electromagnetic interference shielding properties of polymethyl-methacrylate composites filled with graphene and carbon nanotube. Compos. Sci. Technol. 2017, 142, 10–19. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Li, W.; Tang, X.-Z.; Zhang, H.-B.; Jiang, Z.-G.; Yu, Z.-Z.; Du, X.-S.; Mai, Y.-W. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 2011, 49, 4724–4730. [Google Scholar] [CrossRef]
- Zheng, D.; Tang, G.; Zhang, H.-B.; Yu, Z.-Z.; Yavari, F.; Koratkar, N.; Lim, S.-H.; Lee, M.-W. In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos. Sci. Technol. 2012, 72, 284–289. [Google Scholar] [CrossRef]
- Fan, Z.; Gong, F.; Nguyen, S.T.; Duong, H.M. Advanced multifunctional graphene aerogel–poly (methyl methacrylate) composites: Experiments and modeling. Carbon 2015, 81, 396–404. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Jiang, Z.-G.; Yu, Z.-Z. The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 2012, 50, 5117–5125. [Google Scholar] [CrossRef]
- Barin, G.B.; Song, Y.; de Fátima Gimenez, I.; Souza Filho, A.G.; Barreto, L.S.; Kong, J. Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon 2015, 84, 82–90. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, X.; Luo, Y.; Yang, Q.; Li, G. Influence of Surface-functionalized Graphene Oxide on the Cell Morphology of Poly(methyl methacrylate) Composite. J. Mater. Sci. Technol. 2015, 31, 463–466. [Google Scholar] [CrossRef]
- Jiang, J.; Mei, C.; Pan, M.; Cao, J. Improved mechanical properties and hydrophobicity on wood flour reinforced composites: Incorporation of silica/montmorillonite nanoparticles in polymers. Polym. Compos. 2019, 41, 1090–1099. [Google Scholar] [CrossRef]
- Lakshmi, M.S.; Narmadha, B.; Reddy, B. Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 2008, 93, 201–213. [Google Scholar] [CrossRef]
- Wu, S.; Chen, X.; Yi, M.; Ge, J.; Yin, G.; Li, X.; He, M. IImproving thermal, mechanical, and barrier properties of feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane nanocomposite films by incorporating sodium montmorillonite and TiO2. Nanomaterials 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Naguib, H.E. Effect of nanoclay on the mechanical properties of PMMA/clay nanocomposite foams. J. Cell. Plast. 2006, 42, 325–342. [Google Scholar] [CrossRef]
- Realinho, V.; Antunes, M.; Martinez, A.B.; Velasco, J.I. Influence of nanoclay concentration on the CO2 diffusion and physical properties of PMMA montmorillonite microcellular foams. Ind. Eng. Chem. Res. 2011, 50, 13819–13824. [Google Scholar] [CrossRef]
- Ozdemir, E.; Hacaloglu, J. Poly(methyl methacrylate) organoclay composites; interactions of organic modifier with the polymer effecting thermal degradation behavior. Eur. Polym. J. 2017, 95, 474–481. [Google Scholar] [CrossRef]
- Han, X.; Shen, J.; Huang, H.; Tomasko, D.L.; Lee, L.J. CO2 foaming based on polystyrene/poly(methyl methacrylate) blend and nanoclay. Polym. Eng. Sci. 2007, 47, 103–111. [Google Scholar] [CrossRef]
- Moradi, G.; Monazzam, M.; Ershad-Langroudi, A.; Parsimehr, H.; Keshavarz, S.T. Organoclay nanoparticles interaction in PU:PMMA IPN foams: Relationship between the cellular structure and damping-acoustical properties. Appl. Acoust. 2020, 164, 107295. [Google Scholar] [CrossRef]
- Xu, H.; Tong, F.; Yu, J.; Wen, L.; Zhang, J.; He, J. Synergistic Effect of 1-Dodecyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid and Montmorillonite on Microcellular Foaming Behavior of Poly(methyl methacrylate) by Supercritical CO2. Ind. Eng. Chem. Res. 2013, 52, 11988–11995. [Google Scholar] [CrossRef]
- Park, H.-H. A Study on Physical Properties of EPDM/Polyhedral Oligomeric Silsesquioxane (POSS) Composites. Appl. Chem. Eng. 2021, 32, 472–477. [Google Scholar]
- Malakoutikhah, F.; Mirmohammadi, S.A.; Javad Mokhtari Aliabad, J.; Atai, M.; Sadjadi, S.; Bahri-Laleh, N. Synthesis and Formulation of Photocurable Resins Possessing Poly (ethylene glycol) and POSS, and Preparation of Their Related Nanocomposites. Iran J. Polym. Sci. 2021, 33, 445–458. [Google Scholar]
- Cao, X.; Huang, J.; He, Y.; Hu, C.; Zhang, Q.; Yin, X.; Wu, W.; Li, R.K. Biodegradable and renewable UV-shielding polylactide composites containing hierarchical structured POSS functionalized lignin. Int. J. Biol. Macromol. 2021, 188, 323–332. [Google Scholar] [CrossRef]
- Ozkutlu, M.; Dilek, C.; Bayram, G. Poly(methyl methacrylate) hybrid syntactic foams with hollow glass microspheres and polyhedral oligomeric silsesquioxanes. J. Appl. Polym. Sci. 2020, 137, 48368. [Google Scholar] [CrossRef]
- Luo, G.; Gu, X.; Zhang, J.; Zhang, R.; Shen, Q.; Li, M.; Zhang, L. Microstructural, mechanical, and thermal-insulation properties of poly (methyl methacrylate)/silica aerogel bimodal cellular foams. J. Appl. Polym. Sci. 2017, 134, 44434. [Google Scholar] [CrossRef]
- Rende, D.; Schadler, L.S.; Ozisik, R. Controlling Foam Morphology of Poly(methyl methacrylate) via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters. J. Chem. 2013, 2013, 864926. [Google Scholar] [CrossRef]
- Gu, X.; Luo, G.; Zhang, R.; Zhang, J.; Li, M.; Shen, Q.; Wang, J.; Zhang, L. Effects of silica aerogel content on microstructural and mechanical properties of poly(methyl methacrylate)/silica aerogel dual-scale cellular foams processed in supercritical carbon dioxide. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2016, 31, 750–756. [Google Scholar] [CrossRef]
- Sibeko, M.A.; Saladino, M.L.; Luyt, A.S.; Caponetti, E. Morphology and properties of poly(methyl methacrylate) (PMMA) filled with mesoporous silica (MCM-41) prepared by melt compounding. J. Mater. Sci. 2016, 51, 3957–3970. [Google Scholar] [CrossRef]
- Allé, P.H.; Garcia-Muñoz, P.; Adouby, K.; Keller, N.; Robert, D. Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO2/β-SiC alveolar foams. Environ. Chem. Lett. 2021, 19, 1803–1808. [Google Scholar] [CrossRef]
- Guo, J.; Wu, H.; Liao, X.; Shi, B. Facile Synthesis of Size-Controlled Silver Nanoparticles Using Plant Tannin Grafted Collagen Fiber As Reductant and Stabilizer for Microwave Absorption Application in the Whole Ku Band. J. Phys. Chem. C 2011, 115, 23688–23694. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Zhao, L.; Hu, Z.; Gu, Y. Research Progress on Nanostructured Radar Absorbing Materials. Energy Power Eng. 2011, 3, 580–584. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Song, J.; Deng, S.; Li, G. Synthesis and microwave absorbing characteristics of flake-like polypyrrole filled composites in X-band. Polym. Compos. 2016, 37, 532–538. [Google Scholar] [CrossRef]
- Ma, P.C.; Tang, B.Z.; Kim, J.-K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 2008, 46, 1497–1505. [Google Scholar] [CrossRef]
- Ameli, A.; Kazemi, Y.; Wang, S.; Park, C.; Pötschke, P. Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Compos. Part A Appl. Sci. Manuf. 2017, 96, 28–36. [Google Scholar] [CrossRef]
- Sethi, J.; Sarlin, E.; Meysami, S.S.; Suihkonen, R.; Kumar, A.R.S.S.; Honkanen, M.; Keinänen, P.; Grobert, N.; Vuorinen, J. The effect of multi-wall carbon nanotube morphology on electrical and mechanical properties of polyurethane nanocomposites. Compos. Part A Appl. Sci. Manuf. 2017, 102, 305–313. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.-B.; Wang, M.; Qian, X.; Dasari, A.; Yu, Z.-Z. Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances. Compos. Sci. Technol. 2017, 152, 254–262. [Google Scholar] [CrossRef]
- Barrau, S.; Demont, P.; Peigney, A.; Laurent, C.; Lacabanne, C. DC and AC Conductivity of Carbon Nanotubes−Polyepoxy Composites. Macromolecules 2003, 36, 5187–5194. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Shen, Y.; Song, Y.; Nan, C.-W.; Lin, Y.; Yang, X. Carbon Nanotube Array/Polymer Core/Shell Structured Composites with High Dielectric Permittivity, Low Dielectric Loss, and Large Energy Density. Adv. Mater. 2011, 23, 5104–5108. [Google Scholar] [CrossRef]
- Das, N.C.; Liu, Y.; Yang, K.; Peng, W.; Maiti, S.; Wang, H. Single-walled carbon nanotube/poly (methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 2009, 49, 1627–1634. [Google Scholar] [CrossRef]
- Wang, T.; Han, R.; Tan, G.; Wei, J.; Qiao, L.; Li, F. Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 2012, 112, 104903. [Google Scholar] [CrossRef]
- Pötschke, P.; Dudkin, S.M.; Alig, I. Dielectric spectroscopy on melt processed polycarbonate—Multiwalled carbon nanotube composites. Polymer 2003, 44, 5023–5030. [Google Scholar] [CrossRef]
- Zhou, D.; Yuan, H.; Xiong, Y.; Luo, G.; Shen, Q. Constructing highly directional multilayer cell structure(HDMCS) towards broadband electromagnetic absorbing performance for CNTs/PMMA nanocomposites foam. Compos. Sci. Technol. 2021, 203, 108614. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Yan, Q.; Zheng, W.-G.; He, Z.; Yu, Z.-Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. [Google Scholar] [CrossRef]
- Zito, D.; Pepe, D.; Neri, B.; Zito, F.; De Rossi, D.; Lanatà, A. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring. Int. J. Telemed. Appl. 2008, 2008, 328597. [Google Scholar] [CrossRef] [Green Version]
- Zosel, J.; Tuchtenhagen, D.; Ahlborn, K.; Güth, U. Mixed potential gas sensor with short response time. Sens. Actuators B Chem. 2008, 130, 326–329. [Google Scholar] [CrossRef]
- Elumalai, P.; Plashnitsa, V.V.; Fujio, Y.; Miura, N. Stabilized Zirconia-Based Sensor Attached with NiO/Au Sensing Electrode Aiming for Highly Selective Detection of Ammonia in Automobile Exhausts. Electrochem. Solid-State Lett. 2008, 11, J79. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Mohapatra, R. Synthesis and kinetic studies of PMMA nanoparticles by non-conventionally initiated emulsion polymerization. Eur. Polym. J. 2003, 39, 1839–1846. [Google Scholar] [CrossRef]
- Vijayakumari, G.; Selvakumar, N.; Jeyasubramanian, K.; Mala, R. Investigation on the Electrical Properties of Polymer metal Nanocomposites for Physiological Sensing Applications. Phys. Procedia 2013, 49, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Feizi, S.; Mehdizadeh, A.; Hosseini, M.A.; Jafari, S.A.; Ashtari, P. Reduced graphene oxide/polymethyl methacrylate (rGO/PMMA) nanocomposite for real time gamma radiation detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 940, 72–77. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [Green Version]
- Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918. [Google Scholar] [CrossRef] [Green Version]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhang, Q.; Chen, H.; Zhang, R.; Liu, L.; Yu, J. Setaria Viridis-Inspired Electrode with Polyaniline Decorated on Porous Heteroatom-Doped Carbon Nanofibers for Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 43634–43645. [Google Scholar] [CrossRef]
- Idowu, A.; Boesl, B.; Agarwal, A. 3D graphene foam-reinforced polymer composites—A review. Carbon 2018, 135, 52–71. [Google Scholar] [CrossRef]
- Yang, W.; Zou, W.; Du, Z.; Li, H.; Zhang, C. Enhanced conductive polymer nanocomposite by foam structure and polyelectrolyte encapsulated on carbon nanotubes. Compos. Sci. Technol. 2016, 123, 106–114. [Google Scholar] [CrossRef]
- Ran, F.; Shen, K.; Tan, Y.; Peng, B.; Chen, S.; Zhang, W.; Niu, X.; Kong, L.; Kang, L. Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors. J. Membr. Sci. 2016, 514, 366–375. [Google Scholar] [CrossRef]
- Yang, X.; Peng, W.; Fu, K.; Mao, L.; Jin, J.; Yang, S.; Li, G. Nanocomposites of honeycomb double-layered MnO2 nanosheets /cobalt doped hollow carbon nanofibers for application in supercapacitor and primary zinc-air battery. Electrochim. Acta 2020, 340, 135989. [Google Scholar] [CrossRef]
Temperature (°C) | Volume Density/Psi (gcm3) |
---|---|
80 | 0.355 ± 1.8 × 10−3 |
110 | 0.265 ± 2.1 × 10−3 |
140 | 0.096 ± 3.8 × 10−4 |
Sample | Cell Size | Cell Density (Cell/cm3) |
---|---|---|
Pure PMMA | 17.5 ± 3.3 | 1.3 × 108 |
PMMA/CNT 0.5 | 4.2 ± 1.0 | 7.2 × 109 |
PMMA/CNT 1 | 6.6 ± 2.0 | 1.5 × 109 |
Matrix | Nanofiller | Foaming | Property/Application | Ref |
---|---|---|---|---|
PMMA | CNT | Supercritical CO2 foaming | Young’s modulus; collapse strength | [52] |
PMMA | CNT | Supercritical CO2 foaming | Cell size 3.0–3.8 μm, cell density 1.8 × 1010–3.7 × 101 Cells/cm3 | [53] |
PMMA | CNT | Supercritical CO2 foaming | Cell size; cell density; tensile strength; tensile modulus | [54] |
PMMA | CNT | Supercritical CO2 foaming | Electrical conductivity 3.34 × 10−6–4.16 × 10−6 Scm−1 | [55] |
PMMA | CNT | Supercritical CO2 foaming | Increased cell density; reduced cell size | [56] |
PMMA | Reduced graphene oxide | Supercritical CO2 | Electrical conductivity 0.160–0.859 Sm−1; microhardness 303.6–462.5 MPa; thermal conductivity 0.35–0.70 W/mK | [62] |
PMMA | Graphene oxide | Solution blending; supercritical CO2 | Morphology; cell density; cell size | [65] |
PMMA | Montmorillonite | Subcritical CO2 | Tensile strength 12.49 MPa | [69] |
PMMA | Organically modified montmorillonite | Supercritical CO2 | Elastic modulus 2959–3449 MPa·cm3·g−1; Glass transition temperature 140–142 °C | [70] |
PMMA | Cloisite | Gas foaming | Maximum decomposition temperature 388 °C | [71] |
Poly(methyl methacrylate)/polyurethane | Cloisite | Mixing/heating | Thermal stability | [73] |
PMMA | POSS | Co-rotating twin-screw extruder | Thermal conductivity 0.16 W/mK; Tg 119 °C; thermal degradation temperature 375 °C | [78] |
PMMA | Silica | Supercritical CO2 foaming | Thermal conductivity 0.072 Wm−1K−1 | [79] |
PMMA | Silica | Supercritical CO2 foaming | Cell density 7.5 × 108–4.8 × 1011 | [80] |
PMMA | Silica | Supercritical CO2 foaming | Compressive strength 18.90–18.12 MPa | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, A.; Bocchetta, P. Poly(methyl methacrylate) Nanocomposite Foams Reinforced with Carbon and Inorganic Nanoparticles—State-of-the-Art. J. Compos. Sci. 2022, 6, 129. https://doi.org/10.3390/jcs6050129
Kausar A, Bocchetta P. Poly(methyl methacrylate) Nanocomposite Foams Reinforced with Carbon and Inorganic Nanoparticles—State-of-the-Art. Journal of Composites Science. 2022; 6(5):129. https://doi.org/10.3390/jcs6050129
Chicago/Turabian StyleKausar, Ayesha, and Patrizia Bocchetta. 2022. "Poly(methyl methacrylate) Nanocomposite Foams Reinforced with Carbon and Inorganic Nanoparticles—State-of-the-Art" Journal of Composites Science 6, no. 5: 129. https://doi.org/10.3390/jcs6050129
APA StyleKausar, A., & Bocchetta, P. (2022). Poly(methyl methacrylate) Nanocomposite Foams Reinforced with Carbon and Inorganic Nanoparticles—State-of-the-Art. Journal of Composites Science, 6(5), 129. https://doi.org/10.3390/jcs6050129