Comparison of Polishing Systems on the Surface Roughness of Resin Based Composites Containing Different Monomers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Specimens Preparation
2.3. Surface Roughness Analysis
2.4. Polishing Procedures
2.5. Data Analysis
2.6. Scanning Electron Microscopy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of Surface Roughness of Oral Hard Materials to the Threshold Surface Roughness for Bacterial Plaque Retention: A Review of the Literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Jaramillo-Cartagena, R.; López-Galeano, E.J.; Latorre-Correa, F.; Agudelo-Suárez, A.A. Effect of Polishing Systems on the Surface Roughness of Nano-Hybrid and Nano-Filling Composite Resins: A Systematic Review. Dent. J. 2021, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, S.R. Abrasive Finishing and Polishing in Restorative Dentistry: A State-of-the-Art Review. Dent. Clin. N. Am. 2007, 51, 379–397. [Google Scholar] [CrossRef]
- Borges, A.L.S.; Dal Piva, A.M.d.O.; Moecke, S.E.; de Morais, R.C.; Tribst, J.P.M. Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application. J. Compos. Sci. 2021, 5, 322. [Google Scholar] [CrossRef]
- Bowen, R.L. Use of Epoxy Resins in Restorative Materials. J. Dent. Res. 1956, 35, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Brauer, G.M. Properties of Sealants Containing Bis-GMA and Various Diluents. J. Dent. Res. 1978, 57, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Peutzfeldt, A. Resin Composites in Dentistry: The Monomer Systems. Eur. J. Oral Sci. 1997, 105, 97–116. [Google Scholar] [CrossRef]
- Kechagias, K.; Anastasaki, P.; Kyriakidou, M.; Dedi, K.D. Bisphenol A in Dentistry. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 3–9. [Google Scholar] [CrossRef]
- Floyd, C.J.E.; Dickens, S.H. Network Structure of Bis-GMA- and UDMA-Based Resin Systems. Dent. Mater. 2006, 22, 1143–1149. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Hayakawa, T.; Nemoto, K. Analysis of Photopolymerization Behavior of UDMA/TEGDMA Resin Mixture and Its Composite by Differential Scanning Calorimetry. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72B, 310–315. [Google Scholar] [CrossRef]
- Romo-Huerta, M.J.; Cervantes-Urenda, A.D.R.; Velasco-Neri, J.; Torres-Bugarín, O.; Valdivia, A.D.C.M. Genotoxicity Associated with Residual Monomers in Restorative Dentistry: A Systematic Review. Oral Health Prev. Dent. 2021, 19, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Moszner, N.; Salz, U. New Developments of Polymeric Dental Composites. Prog. Polym. Sci. 2001, 26, 535–576. [Google Scholar] [CrossRef]
- Moszner, N.; Gianasmidis, A.; Klapdohr, S.; Fischer, U.K.; Rheinberger, V. Sol-Gel Materials 2. Light-Curing Dental Composites Based on Ormocers of Cross-Linking Alkoxysilane Methacrylates and Further Nano-Components. Dent. Mater. 2008, 24, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Augusto, M.G.; Borges, A.B.; Pucci, C.R.; Mailart, M.C.; Torres, C.R.G. Effect of Whitening Toothpastes on Wear and Roughness of Ormocer and Methacrylate-Based Composites. Am. J. Dent. 2018, 31, 303–308. [Google Scholar] [PubMed]
- Daud, A.; Adams, A.J.; Shawkat, A.; Gray, G.; Wilson, N.H.F.; Lynch, C.D.; Blum, I.R. Effects of Toothbrushing on Surface Characteristics of Microhybrid and Nanofilled Resin Composites Following Different Finishing and Polishing Procedures. J. Dent. 2020, 99, 103376. [Google Scholar] [CrossRef] [PubMed]
- Monterubbianesi, R.; Tosco, V.; Orilisi, G.; Grandini, S.; Orsini, G.; Putignano, A. Surface Evaluations of a Nanocomposite after Different Finishing and Polishing Systems for Anterior and Posterior Restorations. Microsc. Res. Tech. 2021, 84, 2922–2929. [Google Scholar] [CrossRef]
- Tosco, V.; Monterubbianesi, R.; Orilisi, G.; Procaccini, M.; Grandini, S.; Putignano, A.; Orsini, G. Effect of Four Different Finishing and Polishing Systems on Resin Composites: Roughness Surface and Gloss Retention Evaluations. Minerva Stomatol. 2020, 69, 207–214. [Google Scholar] [CrossRef]
- Ehrmann, E.; Medioni, E.; Brulat-Bouchard, N. Finishing and polishing effects of multiblade burs on the surface texture of 5 resin composites: Microhardness and roughness testing. Restor. Dent. Endod. 2018, 44, e1. [Google Scholar] [CrossRef]
- Monterubbianesi, R.; Tosco, V.; Sabbatini, S.; Orilisi, G.; Conti, C.; Özcan, M.; Orsini, G.; Putignano, A. How Can Different Polishing Timing Influence Methacrylate and Dimethacrylate Bulk Fill Composites? Evaluation of Chemical and Physical Properties. Biomed Res. Int. 2020, 2020, 1965818. [Google Scholar] [CrossRef]
- Ugurlu, M. Effect of the Polishing Procedure and Surface Sealant Application on Fluoride Release. Braz. Dent. Sci. 2020, 24, 10. [Google Scholar] [CrossRef]
- De Andrade, G.S.; Augusto, M.G.; Simões, B.V.; Pagani, C.; Saavedra, G.; Bresciani, E. Impact of Simulated Toothbrushing on Surface Properties of Chairside CAD-CAM Materials: An In Vitro Study. J. Prosthet. Dent. 2021, 125, 469.e1–469.e6. [Google Scholar] [CrossRef] [PubMed]
- Babina, K.; Polyakova, M.; Sokhova, I.; Doroshina, V.; Arakelyan, M.; Novozhilova, N. The Effect of Finishing and Polishing Sequences on The Surface Roughness of Three Different Nanocomposites and Composite/Enamel and Composite/Cementum Interfaces. Nanomaterials 2020, 10, 1339. [Google Scholar] [CrossRef] [PubMed]
- Gregor, L.; Krejci, I.; Di Bella, E.; Feilzer, A.J.; Ardu, S. Silorane, Ormocer, Methacrylate and Compomer Long-Term Staining Susceptibility Using DeltaE and DeltaE 00 Colour-Difference Formulas. Odontology 2016, 104, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Chour, R.G.; Moda, A.; Arora, A.; Arafath, M.Y.; Shetty, V.K.; Rishal, Y. Comparative Evaluation of Effect of Different Polishing Systems on Surface Roughness of Composite Resin: An In Vitro Study. J. Int. Soc. Prev. Community Dent. 2016, 6, S166–S170. [Google Scholar] [CrossRef] [Green Version]
- Augusto, M.G.; de Andrade, G.S.; Caneppele, T.M.F.; Borges, A.B.; Torres, C.R.G. Nanofilled Bis-Acryl Composite Resin Materials: Is It Necessary to Polish? J. Prosthet. Dent. 2020, 19, 30230–30234. [Google Scholar] [CrossRef]
- Dutra, D.; Pereira, G.; Kantorski, K.Z.; Valandro, L.F.; Zanatta, F.B. Does Finishing and Polishing of Restorative Materials Affect Bacterial Adhesion and Biofilm Formation? A Systematic Review. Oper. Dent. 2018, 43, E37–E52. [Google Scholar] [CrossRef]
- Jones, C.S.; Billington, R.W.; Pearson, G.J. The In Vivo Perception of Roughness of Restorations. Br. Dent. J. 2004, 196, 42–45; discussion 31. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, R.R.; Gonçalves, L.D.S.; Lancellotti, A.C.; Consani, S.; Correr-Sobrinho, L.; Sinhoreti, M.A. Nanohybrid Resin Composites: Nanofiller Loaded Materials or Traditional Microhybrid Resins? Oper. Dent. 2009, 34, 551–557. [Google Scholar] [CrossRef]
- Tjan, A.H.L.; Chan, C.A. The Polishability of Posterior Composites. J. Prosthet. Dent. 1989, 61, 138–146. [Google Scholar] [CrossRef]
- Ausiello, P.; Dal Piva, A.M.D.O.; di Lauro, A.E.; Garcia-Godoy, F.; Testarelli, L.; Tribst, J.P.M. Mechanical Behavior of Alkasite Posterior Restorations in Comparison to Polymeric Materials: A 3D-FEA Study. Polymers 2022, 14, 1502. [Google Scholar] [CrossRef]
- Matuda, A.G.N.; Silveira, M.P.M.; Andrade, G.S.d.; Piva, A.M.d.O.D.; Tribst, J.P.M.; Borges, A.L.S.; Testarelli, L.; Mosca, G.; Ausiello, P. Computer Aided Design Modelling and Finite Element Analysis of Premolar Proximal Cavities Restored with Resin Composites. Materials 2021, 14, 2366. [Google Scholar] [CrossRef] [PubMed]
- Grassi, E.D.A.; de Andrade, G.S.; Tribst, J.P.M.; Machry, R.V.; Valandro, L.F.; de Carvalho Ramos, N.; Bresciani, E.; de Siqueira Ferreira Anzaloni Saavedra, G. Fatigue Behavior and Stress Distribution of Molars Restored with MOD Inlays with and without Deep Margin Elevation. Clin. Oral Investig. 2022, 26, 2513–2526. [Google Scholar] [CrossRef] [PubMed]
Material | Organic Matrix | Filler Composition | Filler Content (% w/w) | Type |
---|---|---|---|---|
Admira Fusion, VOCO GMBH, Cuxhaven, Germany | Ormocer-aromatic and aliphatic dimethacrylates, polysiloxane functionalized with methacrylate | Barium aluminum borosilicate glass, fumed silica (0.02–1 µm) | 84 | Nanohybrid |
SDI, Bayswater, Australia | UDMA; BisGMA; BisEMA; TEGDMA. | Silica (20 nm) and silanized barium glass (400 nm) | 81 | Nanohybrid |
Charisma Diamond, Heraeus Kulzer, Hanau, Germany | TCD-DI-HEA, UDMA | Barium aluminium fluoride glass (0.005–20 µm) | 81 | Nanohybrid |
Vittra APS, FGM, Joinville, Brazil | UDMA, TEGDMA | Zirconia silicate (200 nm) | 79 | Nanofilled |
Material | Abrasive/Description | Clinical Protocol |
---|---|---|
Dimanto, VOCO GMBH, Cuxhaven, Germany | Rubber disc impregnated with diamond particles | 1 step |
Diamond polishers for composite resins, Jota, Florianópolis, Brazil | Rubber discs impregnated with diamond particles with decreased size | 2 step |
Ultra-Gloss, American Burrs, Palhoça, Brazil | Rubber discs impregnated with silicon carbide particles with decreased size | 3 step |
Material | Polishing System | Initial Surface Roughness | Surface Roughness after Polishing |
---|---|---|---|
Admira Fusion | Dimanto—1 step | 0.9797 ± 0.1530 | 0.2561 ± 0.0393 |
Diamond polishers for composite resins—2 step | 0.9690 ± 0.1415 | 0.0770 ± 0.0171 | |
Ultra-Gloss—3 step | 0.9740 ± 0.1377 | 0.1948 ± 0.0292 | |
Aura BulkFill | Dimanto—1 step | 0.6330 ± 0.1395 | 0.1210 ± 0.0260 |
Diamond polishers for composite resins—2 step | 0.6312 ± 0.1275 | 0.0775 ± 0.0103 | |
Ultra-Gloss—3 step | 0.6203 ± 0.1309 | 0.2048 ± 0.0367 | |
Charisma Diamond | Dimanto—1 step | 0.7316 ± 0.0608 | 0.2693 ± 0.0162 |
Diamond polishers for composite resins—2 step | 0.7364 ± 0.0487 | 0.1091 ± 0.0090 | |
Ultra-Gloss—3 step | 0.07334 ± 0.0449 | 0.3075 ± 0.0368 | |
Vittra APS | Dimanto—1 step | 0.6259 ± 0.1034 | 0.1931 ± 0.0170 |
Diamond polishers for composite resins—2 step | 0.6300 ± 0.0934 | 0.1294 ± 0.0185 | |
Ultra-Gloss—3 step | 0.06296 ± 0.0958 | 0.1820 ± 0.0098 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augusto, M.G.; de Andrade, G.S.; Mathias-Santamaria, I.F.; Dal Piva, A.M.d.O.; Tribst, J.P.M. Comparison of Polishing Systems on the Surface Roughness of Resin Based Composites Containing Different Monomers. J. Compos. Sci. 2022, 6, 146. https://doi.org/10.3390/jcs6050146
Augusto MG, de Andrade GS, Mathias-Santamaria IF, Dal Piva AMdO, Tribst JPM. Comparison of Polishing Systems on the Surface Roughness of Resin Based Composites Containing Different Monomers. Journal of Composites Science. 2022; 6(5):146. https://doi.org/10.3390/jcs6050146
Chicago/Turabian StyleAugusto, Marina Gullo, Guilherme Schmitt de Andrade, Ingrid Fernandes Mathias-Santamaria, Amanda Maria de Oliveira Dal Piva, and João Paulo Mendes Tribst. 2022. "Comparison of Polishing Systems on the Surface Roughness of Resin Based Composites Containing Different Monomers" Journal of Composites Science 6, no. 5: 146. https://doi.org/10.3390/jcs6050146
APA StyleAugusto, M. G., de Andrade, G. S., Mathias-Santamaria, I. F., Dal Piva, A. M. d. O., & Tribst, J. P. M. (2022). Comparison of Polishing Systems on the Surface Roughness of Resin Based Composites Containing Different Monomers. Journal of Composites Science, 6(5), 146. https://doi.org/10.3390/jcs6050146