Corrosion Properties of Aluminum Alloy Reinforced with Wood Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Composite and Characterization
2.2. Corrosion Specimen Preparation
3. Results and Discussion
3.1. Electrochemical Analysis of Composite
3.2. Scanning Electron Microscope (SEM) Analysis of Composite
3.3. X-ray Diffraction (XRD) Analysis of Composite
4. Conclusions
- The as-received aluminum alloy was less susceptible to corrosion than the produced composites due to little or no inclusions in the microstructure of the material, whereas the aluminum composite exhibited a substantial level of pitting corrosion from the SEM images observation as a result of the formation of aluminum carbide formation within the composite.
- The composites exhibited a corrosion rate within the very stable condition of 10−3 mm/year.
- The corrosion rate increased as the amount of wood particle reinforcement increased in the composite. An increase of 42% in current density was observed as wood particles increased to 15%, and a further increment of 31% was observed as the wood particles increased to 20%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surya, M.S.; Prasanthi, G.; Gugulothu, S.K. Investigation of Mechanical and Wear Behaviour of Al7075/SiC Composites Using Response Surface Methodology. Silicon 2021, 13, 2369–2379. [Google Scholar] [CrossRef]
- Omoniyi, P.; Adekunle, A.; Ibitoye, S.; Olorunpomi, O.; Abolusoro, O. Mechanical and microstructural evaluation of aluminium matrix composite reinforced with wood particles. J. King Saud Univ. Eng. Sci. 2021; in press. [Google Scholar] [CrossRef]
- Adekunle, A.S.; Adeleke, A.A.; Ikubanni, P.P.; Omoniyi, P.O.; Gbadamosi, T.A.; Odusote, J.K. Mechanical properties and microstructural evaluation of heat-treated aluminum alloy using formulated bio-quenchants. Int. Rev. Appl. Sci. Eng. 2020, 11, 243–250. [Google Scholar] [CrossRef]
- Adekunle, A.S.; Adeleke, A.A.; Ikubanni, P.P.; Omoniyi, P.O.; Gbadamosi, T.A.; Odusote, J.K. Effect of copper addition and solution heat treatment on the mechanical properties of aluminum alloy using formulated bio-quenchant oils. Eng. Appl. Sci. Res. 2020, 47, 297–305. [Google Scholar] [CrossRef]
- Adekunle, A.S.; Adeleke, A.A.; Gbadamosi, T.A.; Nwosu, F.O.; Odusote, J.K.; Omoniyi, P.O.; Popoola, T.O.; Adebiyi, K.A. A cooling potential of formulated bio-quenchant oils on a cast aluminium alloy material. J. Chem. Technol. Metall. 2020, 55, 1140–1149. [Google Scholar]
- Singh, H.; Singh, K.; Vardhan, S.; Mohan, S.; Singh, V. A comprehensive review of aluminium matrix composite reinforcement and fabrication methodologies. Funct. Compos. Struct. 2021, 3, 015007. [Google Scholar] [CrossRef]
- Agunsoye, J.O.; Bello, S.A.; Talabi, I.S.; Yekinni, A.A.; Raheem, I.A.; Oderinde, A.D.; Idegbekwu, T.E. Recycled aluminium cans/eggshell composites: Evaluation of mechanical and wear resistance properties. Tribol. Ind. 2015, 37, 107–116. [Google Scholar]
- Shoag, M.; Rahman, M.F. Using Recycling Aluminum Cans as Composite Materials Aluminum Fiber. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Sapporo, Japan, 26–28 August 2021; Volume 943. [Google Scholar]
- Adeleke, A.A.; Oki, M.; Anyim, I.K.; Ikubanni, P.P.; Adediran, A.A.; Balogun, A.A.; Orhadahwe, T.A.; Omoniyi, P.O.; Olabisi, A.S.; Akinlabi, E.T. Recent Development in Casting Technology: A Pragmatic Review. Rev. Compos. Mater. Av. 2022, 32, 91–102. [Google Scholar] [CrossRef]
- Bobic, B.; Mitrović, S.; Babic, M.; Bobic, I. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate. Tribol. Ind. 2010, 32, 3–11. [Google Scholar]
- Ononiwu, N.H.; Ozoegwu, C.G.; Madushele, N.; Akinlabi, E.T. Characterization, machinability studies, and multi-response optimization of AA 6082 hybrid metal matrix composite. Int. J. Adv. Manuf. Technol. 2021, 116, 1555–1573. [Google Scholar] [CrossRef]
- Orhadahwe, T.A.; Ajide, O.O.; Adeleke, A.A.; Ikubanni, P.P. A review on primary synthesis and secondary treatment of aluminium matrix composites. Arab J. Basic Appl. Sci. 2020, 27, 389–405. [Google Scholar] [CrossRef]
- Yusuf, M.; Alam, M.A.; Masood, F. Investigation on the impact strength of the stir casted Al/SiC/Gr hybrid composite for automotive applications. In Proceedings of the 5th Online International Conference on Sustainability in Process Industry, Online, 15–16 December 2020. [Google Scholar]
- Ikubanni, P.P.; Oki, M.; Adeleke, A.A.; Omoniyi, P.O. Synthesis, physico—mechanical and microstructural characterization of Al6063/SiC/PKSA hybrid reinforced composites. Sci. Rep. 2021, 11, 14845. [Google Scholar] [CrossRef] [PubMed]
- Ikubanni, P.; Oki, M.; Adeleke, A.; Adesina, O.; Omoniyi, P. Physico-tribological characteristics and wear mechanism of hybrid reinforced Al6063 matrix composites. Acta Metall. Slovaca 2021, 27, 172–179. [Google Scholar] [CrossRef]
- Prasad, D.S.; Shoba, C.; Ramanaiah, N. Investigations on mechanical properties of aluminum hybrid composites. J. Mater. Res. Technol. 2014, 3, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Virkunwar, A.K.; Ghosh, S.; Basak, R.; Rao, A.S. Mechanical and Tribological Characteristics of Aluminium Alloy Reinforced with Rice Husk Ash. In Proceedings of the An International Conference on Tribology, Tokyo, Japan, 21–23 May 2018; pp. 8–13. [Google Scholar]
- Kakinuma, H.; Muto, I.; Oya, Y.; Momii, T.; Sugawara, Y.; Hara, N. Improving the Pitting Corrosion Resistance of AA1050 Aluminum by Removing Intermetalic Particles during Conversion Treatments. Mater. Trans. 2021, 62, 1160–1167. [Google Scholar] [CrossRef]
- Kanayo, K.; Olubambi, P.A. Corrosion and wear behaviour of rice husk ash—Alumina reinforced Al-Mg-Si alloy matrix hybrid composites. J. Mater. Res. Technol. 2013, 2, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Ononiwu, N.H.; Ozoegwu, C.G.; Madushele, N.; Akinlabi, T. Evaluation of particle size distribution, mechanical properties, microstructure and electrochemical studies of AA1050/fly ash metal matrix composite. Adv. Mater. Process. Technol. 2021, 1–15. [Google Scholar] [CrossRef]
- Ononiwu, N.; Ozoegwu, C.; Madushele, N.; Akinribide, O.J. Mechanical Properties, Tribology and Electrochemical Studies of Al/Fly Ash/Eggshell Aluminium Matrix Composite. Biointerface Res. Appl. Chem. 2022, 12, 4900–4919. [Google Scholar] [CrossRef]
- Gouda, M.K.; Salman, S.; Elsayed, A. The Effect of Eggshell as a Reinforcement on the Mechanical and Corrosion Properties of MG-ZN-MN Matrix Composite. Acta Metall. Slovaca 2021, 27, 180–184. [Google Scholar] [CrossRef]
- Pérez, O.R.; García-Hinojosa, J.A.; Gómez, F.J.R.; Mejia-Sintillo, S.; Salinas-Bravo, V.M.; Lopes-Sesenez, R.; Gonzalez-Rodriguez, J.G.; Garcia-Pérez, C.A. Corrosion Behavior of A356/SiC Alloy Matrix Composites in 3.5% NaCl Solution. Int. J. Electrochem. Sci. 2019, 14, 7423–7436. [Google Scholar] [CrossRef]
- Abolusoro, O.P.; Akinlabi, E.T. Tribocorrosion Measurements and Behaviour in Aluminium Alloys: An Overview. J. Bio- Tribo-Corros. 2020, 6, 102. [Google Scholar] [CrossRef]
- Abolusoro, O.P.; Akinlabi, E.T. Wear and Corrosion Behaviour of Friction Stir Welded Aluminium Alloys—An Overview. Int. J. Mech. Prod. Eng. Res. Dev. 2019, 9, 967–982. [Google Scholar] [CrossRef]
- Yadav, S.; Gangwar, S.; Yadav, P.C.; Pathak, V.K. Mechanical and corrosion behavior of SiC/Graphite/ZrO2 hybrid reinforced aluminum- based composites for marine environment. Surf. Topogr. Metrol. Prop. 2021, 9, 045022. [Google Scholar] [CrossRef]
- Loto, R.T.; Babalola, P. Corrosion polarization behavior and microstructural analysis of AA1070 aluminium silicon carbide matrix composites in acid chloride concentrations. Cogent Eng. 2017, 4, 1422229. [Google Scholar] [CrossRef]
- Abbass, M.K.; Hassan, K.S.; Alwan, A.S. Study of Corrosion Resistance of Aluminum Alloy 6061/SiC Composites in 3.5% NaCl Solution. Int. J. Mater. Mech. Manuf. 2015, 3, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yang, H.; Yu, H.; Wang, Z.; Zeng, X. Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 3583–3593. [Google Scholar] [CrossRef]
- Omoniyi, P.O.; Akinlabi, E.T.; Mahamood, R.M.; Jen, T.C. Corrosion Resistance of Heat Treated Ti6Al4V in NaCl. Chem. Data Collect. 2021, 36, 100780. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Ademilua, B.O.; Bodunrin, M.O. Mechanical Properties and Corrosion Behaviour of Aluminium Hybrid Composites Reinforced with Silicon Carbide and Bamboo Leaf Ash. Tribol. Ind. 2013, 35, 25–35. [Google Scholar]
- Afzal, N.; Rafique, M.; Javaid, W.; Ahmad, R.; Farooq, A.; Saleem, M.; Khaliq, Z. Influence of carbon ion implantation energy on aluminum carbide precipitation and electrochemical corrosion resistance of aluminum. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2018, 436, 84–91. [Google Scholar] [CrossRef]
- Ikubanni, P.; Oki, M.; Adeleke, A.; Omoniyi, P.; Ajisegiri, E.; Akinlabi, E. Physico-mechanical properties annd microstructure responses of hybrid reinforced Al6063 composites to PKSA/SiC inclusion. Acta Metall. Slovaca 2022, 28, 25–32. [Google Scholar] [CrossRef]
Content | SO3 | Volatile | SiO2 | Al2O3 | CaO | MgO | Fe2O3 |
---|---|---|---|---|---|---|---|
wt (%) | 0.71 | 21.74 | 60.42 | 3.42 | 8.22 | 3.33 | 2.16 |
Element | Si | Fe | Cu | Mn | Mg | Ti | Cr | K | Zn | Al | Others |
---|---|---|---|---|---|---|---|---|---|---|---|
wt (%) | 0.59 | 0.43 | 0.07 | 0.39 | 2.14 | 0.01 | 0.01 | 0.01 | 0.19 | 96.04 | 0.11 |
SN | Al Alloy Composition (% wt) | WP (% wt) |
---|---|---|
1 | 100 | 0 |
2 | 85 | 15 |
3 | 80 | 20 |
Sample | Icorr (µA/cm2) | Ecorr (V) | Rct (ohms) |
---|---|---|---|
0% WP | 0.712 | −0.459 | 3.610 × 104 |
15% WP | 1.220 | −0.426 | 2.105 × 104 |
20% WP | 1.767 | −0.495 | 1.454 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoniyi, P.; Abolusoro, O.; Olorunpomi, O.; Ajiboye, T.; Adewuyi, O.; Aransiola, O.; Akinlabi, E. Corrosion Properties of Aluminum Alloy Reinforced with Wood Particles. J. Compos. Sci. 2022, 6, 189. https://doi.org/10.3390/jcs6070189
Omoniyi P, Abolusoro O, Olorunpomi O, Ajiboye T, Adewuyi O, Aransiola O, Akinlabi E. Corrosion Properties of Aluminum Alloy Reinforced with Wood Particles. Journal of Composites Science. 2022; 6(7):189. https://doi.org/10.3390/jcs6070189
Chicago/Turabian StyleOmoniyi, Peter, Olatunji Abolusoro, Olalekan Olorunpomi, Tajudeen Ajiboye, Oluwasanmi Adewuyi, Olawale Aransiola, and Esther Akinlabi. 2022. "Corrosion Properties of Aluminum Alloy Reinforced with Wood Particles" Journal of Composites Science 6, no. 7: 189. https://doi.org/10.3390/jcs6070189
APA StyleOmoniyi, P., Abolusoro, O., Olorunpomi, O., Ajiboye, T., Adewuyi, O., Aransiola, O., & Akinlabi, E. (2022). Corrosion Properties of Aluminum Alloy Reinforced with Wood Particles. Journal of Composites Science, 6(7), 189. https://doi.org/10.3390/jcs6070189