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Abstract: The interest in recycled carbon fiber (rCF) is growing rapidly and the supply chain for these
materials is gradually being established. However, the processing routes, material intermediates and
properties of rCF composites are less understood for designers to adopt them into practice. This paper
provides a practical pathway for rCFs in conjunction with low cost and, for the most part, commodity
thermoplastic resins, namely polyethylene (PE), polyamide 66 (PA66) and polyethylene terephthalate
(PET). Industrially relevant wet-laid (WL) process routes have been adopted to produce mats using
two variants of WL mats, namely (a) high speed wet-laid inclined wire to produce broad good ‘roll’
forms and (b) 3DEPTM process patented by Materials Innovation Technologies (MIT)-recycled carbon
fiber (RCF), now Carbon Conversions, which involves mixing fibers and water and depositing the
fibers on a water-immersed mold. These are referred to as ‘sheet’ forms. The produced mats were
evaluated for their processing into composites as ‘fully consolidated mats’ and ‘non-consolidated’
as-produced mats. Comprehensive mechanical data in terms of tensile strength, tensile modulus and
impact toughness for rCF C/PE, C/PA66 and C/PET are presented. The work is of high value to
sustainable composite designers and modelers.

Keywords: recycled carbon fiber; thermoplastics; wet-laid processing; compression molding

1. Introduction

Discontinuous carbon fibers have a number of advantages, such as (a) fiber aspect
ratio can be greater than critical fiber length, hence, superior mechanical properties can be
realized; (b) higher drapeability offered due to fiber movement during processes, such as
compression and thermo-stamping; (c) ability to hybridize fiber lengths and types; and
(d) lower cost, since secondary weaving and braiding are not necessary. Traditional pro-
cesses, such as injection molding and extrusion, result in significant fiber length attrition
due to friction and interaction with the screw with the material. Wet-laid (WL) processing
offers a low-energy alternative to traditional processes, such as weaving and/or stitch bond-
ing, producing mats in desired fiber-matrix weight fraction. Both reinforcing fibers and
resin fibers (resin in fiber form) are mixed in desired weight proportion in water (with dis-
persant and flocculent) and mixed till the material assumes a homogenous form. The water
is drained rapidly from the fiber bulk, resulting in a well-dispersed fiber-polymer mat.

Two types of industrially relevant WL mat process routes have been investigated
in this work, namely—(a) high speed wet-laid line to produce broad good ‘roll’ forms
and (b) 3DEPTM process patented by Carbon Conversions, mixing fibers and water, and
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depositing on a water-immersed mold. The underlying hypothesis is that the high-speed
WL process would yield preferred fiber alignment in the ‘roll’ direction, while the 3DEPTM

would produce randomized fiber orientation. This work reports mechanical properties of
WL-processed rCF mat composites in conjunction with commodity thermoplastics, namely
polyethylene (PE) and polyethylene terephthalate (PET) and engineering thermoplastic
polyamide (PA66). There is no work, to our knowledge, that quantifies the mechanical
performance of rCF WL mat composites, while such information would be valuable to a
designer and modeler(s).

2. Literature Review

With increased emphasis on circular economy, rCFs are finding use in applications,
such as automotive, sporting goods and industrial parts [1–5]. The processes used to obtain
rCF are pyrolysis and solvolysis of out-of-date prepregs and end-of-life CF intensive parts.
Other sources include manufacturing scrap, edge trims and waste from textile processes.
Carbon Conversions specializes in pyrolysis-based recovery of CFs [6], the primary focus
of this effort. Several efforts have emphasized the importance of processing discontinuous
carbon fiber thermoplastic composites [7–9].

Thomason [10] and Vaidya [11] illustrated the importance of fiber aspect ratio of
discontinuous fibers. Polyamide (PA), polyethylene (PE) and polyethylene terephthalate
(PE) are of continued interest as thermoplastic matrices in reinforced composites due to
their recyclability and superior mechanical properties [12–14].

The WL process is promising in terms of fiber length retention. Hemamalini and
Dev [15] discussed that WL is an emerging technique to produce nonwovens using short
natural cellulosic fibers and synthetic fibers and their blends. The steps involved in wet
laying are dispersion, deposition and consolidation. Uniform dispersion is the key to
attain defect-free nonwovens in web laying. WL processing is like the papermaking
process with differences in fiber length and density of the fibers [16,17]. The quality of the
dispersion depends on material parameters, such as fiber length, surfactant, source of the
fibers, linear density of the fibers and machine parameters, such as dispersion time and
mechanical agitation.

There are only limited studies with WL and thermoplastic polymers in conjunction
with high-performance CFs [17]. Product opportunities for automotive and aerospace
can expand using WL intermediates. This work considers WL rCFs in conjunction with
commodity thermoplastics, such as PP and PET, as well as engineering thermoplastics, such
as PA66. Yan et al. [18] investigated process parameters of WL rCF-reinforced thermoplastic
(CFRTP) nonwoven mats. They used response surface methodology to optimize the heat-
molding compression parameters in terms of temperature, pressure and time, respectively.
They also reported that CFRTP comprising 30 wt% CF fiber length of 6 mm provided
the highest tensile strength. Ghossein et al. [19] evaluated the mechanical behavior of
WL-CF mats in conjunction with the microstructure predicted through Object-Oriented
Finite Element Analysis (OOF). The authors used novel mixing methods to reduce time to
create optimal mats. Barnett et al. [20] created CF-PPS WL mats, similar to organosheets
used in automotive production. Erland et al. [21] investigated the re-manufacture and
repairability of thick-section poly(ether ether ketone) PEEK CFRTPs. They reported results
on C/PEEK tested under three-point bend loaded to fracture before being re-heated, re-
pressed and re-tested. Their study showed that C/PEEK composites could be repaired
with minimal loss of mechanical performance, even when significant fracture occurs.
They attained a flexural modulus of 80 GPa and a maximum bending stress of 900 MPa.
Brahma et al. [22] investigated discontinuous WL CF mats and compared them to liquid-
molded PA6. There was roughly a 10–13% increase in its tensile strength, modulus and
impact strength properties at 30 and 40% weight fractions and almost a 120% increase at
50% weight fraction. Yeole et al. [23] studied the effects of dispersant and flocculent in glass
fiber WL thermoplastic composites. Kore et al. [24] hybridized bamboo fibers with carbon
fiber mats with the WL process and reported the property bounds.
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There are presently no systematic guidelines of using rCF in composite products. This
paper attempts to address this gap, and addresses commodity and engineering thermo-
plastics with rCFs to provide a comprehensive understanding of lower- and upper-bound
properties with these materials. The work is of high relevance to sustainable composite
designers and end users.

3. Materials and Methods

Two WL-processing approaches were considered in this study. Nonwoven rCF-
thermoplastic mats were produced (a) in a WL machine capable of producing ‘roll’ forms;
and (b) 3DEPTM process where rCF mats were deposited as a ‘sheet’ in a water tank.
Throughout this manuscript these variants are referred to as ‘roll’ and ‘sheet’ forms, respec-
tively.

The ‘roll’ mats were produced in 1.2 m (48”) wide rolls, while the ‘sheets’ were
produced as 3DEPTM mats using a water-based deposition on a screen tool. A ‘sheet’ was
typically 350 mm × 350 mm WL mat.

‘Sheet’: Carbon Conversions developed an innovative method for making WL fiber
preforms [5]. The 3DEPTM process lends itself to converting loose recycled fibers into
nonwoven carbon fiber mats. The 3DEPTM process uses advanced slurry molding process
for creating nonwoven rCF preforms. 3DEPTM produces homogeneous fiber distribution
within the mat with consistent areal weight and acceptable dimensional tolerance. In
this work 3DEPTM was used to produce WL rCF mats. rCF obtained from pyrolysis
of T800 prepreg were used. The recycled fiber had nominal 12.7 mm fiber length and
8–10 mm diameter.

‘Roll’: Carbon Conversions produces continuous, WL, nonwoven fabrics on a 1.2 m
wide RotoFormer machine (Allimand Interweb, Inc., Glen Falls, NY, USA). Compositions
include chopped carbon fiber and blends of carbon fiber with thermoplastic polymer staple
fibers. Areal density can range from 100 to 500 g/m2 (gsm). Areal density coefficient of
variation (COV) is typically <3%. After forming, the web is sent through a continuous
dryer and then bound onto 50–200 m rolls. rCF mats were processed via WL with three
resin systems: PE, PA66 and PET, respectively. The molecular weights are as follows:
PET—25,000 g/mol, PE—30,000 g/mol and PA66—25,000 g/mol. The tensile modulus of
neat (unreinforced) PET is 2.8 GPa, PE is 0.9 GPa and PA66 is 3.2 GPa, respectively.

The C/PET and C/PA66 were processable at 500 F due to their higher melting point,
while PE was processed at 250 F since PE melts at a lower temperature. The work was
conducted in two batches referred to as Batch 1 and Batch 2. The lessons from Batch 1 were
applied in producing Batch 2 mats. Table 1 summarizes the rCF mats designed for the ‘roll’
and ‘sheet’ forms under Batch 1. Batch 2 mats are discussed later. Composite panels were
made from the WL mats using compression-molding process with the process conditions
identified in the table.

Table 1. Sample variants, preform type and processing conditions for Batch 1 mats.

Sample Variant ** Preform Type Processing Notes ˆ

PA66/CF/68/30 Sheets Tool at 500 F and 1000 psi
PA66/CF/78/20 Sheets Tool at 500 F and 1000 psi
PA66/CF/88/10 Sheets Tool at 500 F and 1000 psi
PA66/CF/77/20 Roll Tool at 500 F and 1000 psi

PE/CF/78/20 Roll Tool at 250 F and 1000 psi

PA66/CF/77/20 Roll Tool at 509 F and 1000 psi
PA66/CF/78/20 Dried Sheets Tool at 509 F and 1000 psi

PE/CF/77/20 Roll Tool at 265 F and 1000 psi
PE/CF/77/20 Roll

PET/CF/77/20 Sheets Tool at 500 F and 1000 psi
ˆ All plates were compression molded; ** e.g., nomenclature PA66/CF/68/30 means, 68% resin, 30% carbon fiber
by weight.
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4. Results and Discussion
4.1. Partial and Fully Consolidated Panels

Compression molding was used to produce partially and fully consolidated panels as
illustrated in Figure 1a–f. Five (5) layers of 300 mm × 300 mm preforms were compression
molded in a matched metal tool. For C/PA66, the press platens were heated to a temper-
ature of 500 ◦F at 6.895 MPa (1000 psi). In a few cases, the tool temperature was held at
250–265 ◦F. The hold time was approximately 20 min at temperature. The tool was cooled
to room temperature. In some cases, slight discoloration was noted along the edges of the
panel—12 mm wide band along the four edges.
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Figure 1. Effect of consolidation; (a) PA66/CF/68/30, 5 layers of preform (less-consolidated
panel); (b) PA66/CF/88/10, 5 layers of preform (less-consolidated panel). Arrows point to
representative voids in both (a,b); (c) PA66/CF/68/30, 5 layers of preform (well-consolidated
panel); (d) PA66/CF/88/10, 5 layers of preform (well-consolidated panel); (e) PA66/CF/68/30 less-
consolidated panel, the PA66/CF/88/10 was similar in look; (f) PA66/CF/68/30 well-consolidated
panel, the PA66/CF/88/10 was similar in look; Panel size 275 mm × 275 mm.

The C/PE and C/PET panels were produced in a similar manner to C/PA66. Two
panels of PE-CF-78-20 roll were processed as three layers of preforms were compression
molded in a 300 × 300 mm matched metal tool. The tool was heated to a temperature
of 250 ◦F (for C/PE) and 500 ◦F (for C/PET) at 6.895 MPa (1000 psi). The hold time was
approximately 20 min at these temperatures. The tool was cooled to room temperature.

4.2. ‘Roll’ versus ‘Sheet’ Forms

Preform “sheets” and “roll” forms were evaluated in similar weight fraction and resin
type(s). For example, ‘sheet(s)’ PA66-CF-68-30 and PA66-CF-78-20 and ‘roll’ PA66-CF-77-20
(e.g., PA66-CF-77-20 means 77 wt% PA66 and 20 wt% CF) were evaluated and compared.
Qualitatively, the ‘roll’ form processed under similar conditions consolidated better (less
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voids) than ‘sheets’. Figure 2 illustrates a representative ‘roll’ and ‘sheet’ form composite
panel. Moisture analysis revealed that the ‘roll’ form had less moisture content. The
material was dried before consolidation. Parallel edge coupons were tabbed and tested
in two (2) directions ‘along’ and ‘across’ the machine direction. The direction was more
relevant in the ‘roll’ due to preferential fiber orientation along the warp (machine) direction.
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300 × 300 mm2.

4.3. Moisture Analysis

Moisture analysis was conducted to determine moisture content in the preform ‘sheets
and ‘roll’. Percentage moisture was determined by weight analysis. The samples studied
were PA66-CF-78-20 preform ‘sheets’ and PA66-CF-77-20 preform “roll”. The materials
were dried at 250 ◦F for 8 h. Table 2 illustrates the moisture percent in the ‘sheet’ versus ‘roll’
preform. The ‘sheet’ exhibited an average moisture content of 3% while the ‘roll’ exhibited
average moisture of 1.68%, about 45% lower than the ‘sheet’.

Table 2. Moisture analysis of WL PA66-CF ‘sheet’ and ‘roll’ forms.

Sample ID Wet Sample Dry Sample Moisture
Content Moisture %

PA66/CF/78/20/Preform
Sheets-1 2.6057 2.53 0.08 3.03

PA66/CF/78/20/Preform
Sheets-2 2.8037 2.72 0.08 3.00

PA66/CF/77/20/Preform
Roll-1 3.7176 3.65 0.06 1.70

PA66/CF/77/20/Preform
Roll-2 3.5691 3.51 0.06 1.66

Tension samples were cut from the consolidated 300 × 300 mm2 plate. Flat-wise tabs
were used for the tension samples (25.4 mm wide and 200 mm length). Some dog bone
samples were also tested in a couple of variants to observe the effect of sample shape and
size of final properties. Strength and modulus were determined for three specimens each,
‘along’ and ‘across’ the fiber directions at a rate 2 mm/min. The modulus was determined
with an extensometer (0.2% to 1 % strain).

4.4. Batch 1 Results

Tables 3 and 4 summarize the tensile modulus and strength for composites made with
C/PA66 ‘sheets’ versus ‘roll’, respectively. It is seen that the C/PA66 ‘roll’ had 67% higher
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average tensile strength (108 MPa (‘sheet’) versus 187.73 MPa (‘roll’)) and 72% higher
average modulus (10 GPa (‘sheet’) versus 16.5 GPa (‘roll’)). The high values for the ‘roll’
can be attributed to the preferential fiber alignment in the ‘roll’ direction while the ‘sheet’
exhibits quasi-isotropic/random orientation. There was no statistical difference in the
tensile strength and modulus between the flat edge specimens compared to the dog bone
specimen geometry as shown in Table 5.

The 30 wt% C/PE ‘roll’ specimens exhibited an average tensile strength of 45 MPa
and tensile modulus of 6.5 GPa. These were approximately half that of the 30 wt% C/PA66
composites. The C/PE was only tested (available) in the ‘roll’ direction.

Table 3. Tensile modulus and strength of C/PA66 (preform ‘Sheets’).

Type Sample
ID

Direction

Average
Modulus

Average
Modulus

Average
Strength

Average
Strength

Density
(g/cc)

Specific
Strength

Specific
Modulus

(GPa) 106 (psi) (MPa) 103 (psi)

Fl
at

Te
ns

io
n

C
ou

po
ns

PA66-CF-
68-30 1 10.01 1.45 108.00 15.66 1.24 8.07 87.09

PA66-CF-
68-30 2 9.95 1.44 103.49 15.01 1.24 8.02 83.46

PA66-CF-
78-20 1 10.01 1.45 108.00 15.66 1.21 8.27 89.25

PA66-CF-
78-20 2 9.98 1.45 105.74 15.34 1.21 8.25 87.39

PA66-CF-
88-10 1 9.99 1.45 106.49 15.44 1.18 8.46 90.25

PA66-CF-
88-10 2 9.98 1.45 105.74 15.34 1.18 8.46 89.61

Dog Bone PA66-CF-
78-20 1 9.98 1.45 105.99 15.37 1.21 8.25 87.60

Table 4. Tensile modulus and strength of C/PA66 (preform ‘Roll’).

Type Sample ID
Avg.

Modulus
(GPa)

Avg.
Modulus
106 (psi)

Avg.
Strength

(MPa)

Avg.
Strength
103 (psi)

Density
(g/cc)

Specific
Strength

Specific
Modulus

Flat
Samples

PA66-CF-77-20 * 15.32 2.22 187.72 27.23 1.21 12.66 155.14
PA66-CF-77-20 ˆ 17.07 2.48 178.16 25.84 1.21 14.11 147.24

Dog Bone PA66-CF-77-20 ˆ 16.20 2.35 182.94 26.53 1.21 13.38 151.19

* 2 direction, ˆ 1direction.

Table 5. Tensile modulus and strength—C/PE (preform Roll).

Sample
Sample ID

Avg.
Modulus

Avg.
Modulus

Avg.
Strength

Avg.
Strength Density Specific

Modulus
Specific
Strength

Type (GPa) 106 (psi) (MPa) 103 (psi)

Flat
Samples PE-CF-78-20 5.19 0.75 40.39 5.86 1.03 5.04 39.21

Dog Bone PE-CF-78-20 4.21 0.61 47.72 6.92 1.03 4.09 46.33

4.5. Batch 2 Results—Tensile Modulus and Tensile Strength

Based on the results from Batch 1, a controlled set of preforms was prepared with
approximately 20 wt% CF for PA66, PE and PET, respectively. Composite plates were
produced in two configurations, namely, ‘no cross-stack’ and ‘cross-stack’, respectively. The
rationale for the two configurations was to evaluate if the preferential fiber orientation in
the ‘roll’ influenced the stacking sequence.
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Tables 6–8 summarize the results from these materials. The trend of the ‘roll’ form of
higher values than the ‘sheet’ forms was similar to that in Batch 1. The ‘roll’ form had 88%
higher strength and 137% higher modulus compared to the ‘sheet’ form. This indicates the
influence of significant fiber orientation in the ‘roll’ form. The effect of drying the mats in
Batch 2 had a marked influence in the ‘sheet’ form. Drying improved the tensile strength
and modulus by an average factor of two or greater.

Table 6. Tensile modulus and strength of PA66-CF (preform ‘Roll’).

Sample ID Preform
Type

Stacking
Sequence Direction

Tensile
Modulus

Tensile
Strength

(GPa) (MPa)

PA66-CF-77-20-CS Roll Cross Stack 1 19.98 257.70
PA66-CF-77-20-CS Roll Cross Sack 2 15.16 217.34

PA66-CF-77-20-NCS Roll No Cross Stack 1 20.57 242.06
PA66-CF-77-20-NCS Roll No Cross Stack 2 16.92 248.29

Table 7. Tensile modulus and strength of PA66-CF (preform ‘Sheet’).

Sample ID Preform
Type

Stacking
Sequence Direction

Tensile
Modulus

Tensile
Strength

(GPa) (MPa)

PA66-CF-78-
20-Predried Sheets N/A 1 10.66 169.95

PA66-CF-78-
20-Predried Sheets N/A 2 6.39 84.31

Table 8. Tensile modulus and strength—PE-CF (preform ‘Roll’).

Sample ID Preform
Type

Stacking
Sequence Direction

Tensile
Modulus

Tensile
Strength

(GPa) (MPa)

PE-CF-77-20-CS Roll Cross Stack 1 5.50 53.74
PE-CF-77-20-CS Roll Cross Stack 2 5.57 52.43

PE-CF-77-20-NCS Roll No Cross Stack 1 4.20 39.41
PE-CF-77-20-NCS Roll No Cross Stack 2 6.97 66.48
PE-CF-77-20-MIT Roll N/A 1 5.80 53.27
PE-CF-77-20-MIT Roll N/A 2 7.57 75.11

Batch 2 of the PE/CF panels was processed at a higher temperature than Batch 1 (260 ◦F
instead of 245 ◦F). Increasing the processing temperature increased the tensile strength
marginally. The cross-stack panel exhibits similar properties in both the directions while the
no-cross stack exhibits a difference in properties in the two directions as shown in Table 9.

Table 9. Tensile modulus and strength—C/PET (preform ‘Roll’).

Sample ID Preform
Type

Stacking
Sequence Direction

Tensile
Modulus

Tensile
Strength

(GPa) (MPa)

PET-CF-77-20 Sheets N/A 1 17.35 243.84
PET-CF-77-20 Sheets N/A 2 17.41 271.19

C/PET sheet preforms were processed at 500 F and 100 psi. These exhibit excellent ten-
sile modulus and strength and are comparable to the C/PA66 samples. Table 10 compares
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the density of the mats for different weight fractions for C/PA66, C/PET and C/PE, respec-
tively. The C/PA66 composite density ranged from 1.18 and 1.21 to 1.24 g/cc for 10%, 20%
and 30 wt%, respectively. The C/PE was 1.03 and C/PET 1.42 g/cc for 20 wt%, respectively.
The densest of the materials was C/PET. Table 11 summarizes typical (standard) materials,
such as aluminum, ABS and long glass fiber thermoplastics, for comparison to the carbon
fiber mats in terms of the density, strength and modulus, respectively. Table 12 provides a
detailed summary of all material variants studied in this work C/PA66, C/PE and C/PET
for ‘roll’ and ‘sheet’ forms in no-stack and cross-stack configurations, where applicable. The
data are summarized in terms of density, strength, modulus, specific strength and specific
modulus.

Table 10. Density of the rCF thermoplastic variants.

Sample Variants
Fiber Resin Fiber

Density
Resin

Density
Fiber

Volume
Resin

Volume
Composite

Density

Weight % Weight % g/cm3 g/cm3 Fraction Fraction g/cm3

Carbon/PA66 10 90 1.50 1.15 0.078 0.922 1.18
Carbon/PA66 20 80 1.50 1.15 0.161 0.839 1.21
Carbon/PA66 30 70 1.50 1.15 0.247 0.753 1.24

Carbon/Polyethylene 20 80 1.50 0.955 0.137 0.863 1.03
Carbon/PET 20 80 1.50 1.40 0.189 0.811 1.42

Table 11. Specific strength and specific modulus of other engineering materials.

Sample ID Density Young’s
Modulus Tensile Strength Specific Modulus Specific Strength

(g/cm3) (GPa) (MPa) (GPa/(g/cm3)) (MPa/(g/cm3))

Aluminum 2.70 70.00 570.00 25.93 211.11
ABS (Impact Grade) Min 1.02 1.40 28.00 1.37 27.45
ABS (Impact Grade) Max 1.20 2.80 138.00 2.33 115.00

Glass-PP-40-60 1.21 8.27 80.00 6.83 66.12

Table 12. Comprehensive summary of tensile strength, tensile modulus, specific strength and specific
modulus for all rCF variants in this study. The effect of stacking sequence and ‘roll’ versus ‘sheet’
form are included.

Sample ID Preform
Type

Stacking
Sequence Direction

Tensile
Modulus

Tensile
Strength Density Specific

Modulus
Specific
Strength

(GPa) (MPa) g/cm3 ((GPa)/(g/cm3)) ((MPa)/(g/cm3))

PA66-CF-77-20-CS Roll Cross Stack 1 19.98 257.70 1.21 16.51 212.97
PA66-CF-77-20-CS Roll Cross Stack 2 15.16 217.34 1.21 12.53 179.62

PA66-CF-77-20-NCS Roll No Cross Stack 1 20.57 242.06 1.21 17.00 200.05
PA66-CF-77-20-NCS Roll No Cross Stack 2 16.92 248.29 1.21 13.98 205.20

PA66-CF-78-20-
Predried Sheets N/A 1 10.66 169.95 1.21 8.81 140.45

PA66-CF-78-20-
Predried Sheets N/A 2 6.39 84.31 1.21 5.28 69.68

PE-CF-77-20-CS Roll Cross Stack 1 5.50 53.74 1.03 5.34 52.17
PE-CF-77-20-CS Roll Cross Stack 2 5.57 52.43 1.03 5.40 50.90

PE-CF-77-20-NCS Roll No Cross Stack 1 4.20 39.41 1.03 4.08 38.27
PE-CF-77-20-NCS Roll No Cross Stack 2 6.97 66.48 1.03 6.76 64.54
PE-CF-77-20-MIT Roll N/A 1 5.80 53.27 1.03 5.63 51.72
PE-CF-77-20-MIT Roll N/A 2 7.57 75.11 1.03 7.35 72.92

PET-CF-77-20 Sheets N/A 1 17.35 243.84 1.42 12.22 171.72
PET-CF-77-20 Sheets N/A 2 17.41 271.19 1.42 12.26 190.98
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4.6. Low-Velocity Impact Testing

The specimens were subjected to drop tower impact on a Dynatup 8250 under clamped
plates 100 × 100 mm with drop height impact for two energy levels (5 J and 15 J) (or drop
heights), referred to as ‘low-energy 5 J’ and ‘high-energy 15 J’ impact. Tables 13 and 14
summarized the impact data for all variants tested for drop weight impact. Figures 3 and 4
compares the normalized load and normalized energy for variants of 20 wt% carbon fiber
in each of C/PA66, C/PET and C/PE for no-stack versus cross-stack, where applicable.

Table 13. Low-velocity impact results at low-impact energy (5 J).

Variant Thickness (mm) Max Load (kN) Energy at Max
Load (Joule)

Normalized Max
Load (kN/mm)

Normalized Energy
(Joule/mm)

MIT-C/PE/77/20 2.50 1.83 7.10 0.73 2.84
C/PE/77/20 Cross Stack 2.85 1.84 7.17 0.65 2.52

C/PE/77/20 No Cross Stack 2.69 1.59 6.89 0.59 2.56
C/PA66/77/20 Cross Stack 2.25 1.46 7.45 0.65 3.31

C/PA66/77/20 No Cross Stack 2.03 1.15 7.15 0.57 3.52
C/PET/77/20 2.78 2.08 7.26 0.75 2.61

Table 14. Low-velocity impact results at higher impact energy (15 J).

Sample Variant Sample
Thickness (mm) Max Load (kN) Energy at Max

Load (Joule)
Normalized Max
Load (kN/mm)

Normalized Energy
(Joule/mm)

C/PE/77/20 2.46 1.84 11.64 0.75 6.33
C/PE/77/20
Cross Stack 2.77 2.03 12.41 0.73 6.11

C/PE/77/20
No Cross Stack 2.56 1.63 10.83 0.64 6.64

C/PA66/77/20
Cross Stack 1.81 1.66 3.30 0.92 1.99

C/PA66/77/20
No Cross Stack 2.13 1.46 4.91 0.69 3.36

C/PET/77/20 2.69 2.17 6.63 0.81 3.06
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At lower energy, the highest peak loads attained were from C/PE and C/PET, respec-
tively. In both these systems, once the peak on the force–time curve was attained, there was
penetration of the impactor through the thickness, and the unloading was, hence, sudden.
While the normalized energy was highest for C/PA66, both no-stack and cross-stack com-
pared to the rest. This suggests that C/PA66-exhibited-energy absorption occurs both in
the loading and unloading phase. There is no penetration of the indenter for C/PA66.

For higher energy impact, C/PA66 and C/PET exhibited the highest normalized load
bearing for the cross-stack. The highest energy absorbed was noted for all C/PE variants,
regardless of no-stack or cross-stack.

The effect of stacking was less pronounced in all the impact tested samples. This
may be due to localized transverse impact and only limited contact area between the
impactor and the specimen. Cross-stack or no-stack is more of a function for in-plane
loading. The peak load in case of drop weight impact is the onset at which the unloading
phase begins. Energy absorption continues into the unloading phase for damage-tolerant
materials. Overall, the PA66 offered higher damage tolerance in terms of energy absorption,
for both low- and high-energy impact.

5. Discussion

Figures 5–7 provide a comprehensive visual of all tests conducted for C/PA66, C/PE
and C/PET, respectively. Where applicable, the no-stack versus cross-stack has been
reported. The overall tensile strength of ‘roll’ form of C/PA65 ranged from 217 to 248 MPa
and tensile modulus of 15–20 GPa, respectively. The differences between cross-stack and
no-stack are not very definitive, indicating fiber entanglement occurs in discontinuous
fibers, masking the distinct effect of fiber orientation. In some cases, modulus and strength
for cross-stack were lower by 12.5% compared to no-stack.

For 77 wt% C/PET (i.e., 23% CF), the highest values of strength ranged from 243
to 271 MPa and modulus 16–17 GPa for the ‘sheet’ form. For the ‘roll’ form, there was a
distinct difference in the cross-stack versus no-stack, or high anisotropy. The values ranged
from 128 to 170 MPa and modulus of 5–10 GPa, much lower than other variants. Further,
the fiber content in these was only 15 wt%, unlike the others, which were >20 wt% carbon
fiber. It may also be noted for the no-stack roll form, when a high degree of fiber orientation
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in the machine direction occurs, the strength and modulus are high, i.e., 256 MPa and
16 GPa, respectively.

The 77 wt% C/PE (i.e., ~20 wt% carbon fiber) exhibited the lowest values of all. For
cross-stack, the average modulus was 53 MPa and average strength was 5.5 GPa, similar in
both directions for cross-stack. For the no-cross stack, significant anisotropy was observed
at 39 and 66 MPa and 4 and 6 GPa modulus.

Figure 8 considers a long fiber thermoplastic C/PPS with 40 wt% 25 mm (1”) fiber
length, which has strength of 175 MPa and modulus 25 GPa. Although this is not a one-to-
one comparison, both C/PA66 and C/PET rCF mat composites have much higher modulus
(by 37 %), higher than LFT C/PPS. The strength of C/PPS was 25% higher, the C/PA66
rCF mats providing the closest to the LFT values.
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6. Processing Studies

Optimal processing results were obtained from panels produced with tool temperature
at 500 ◦F. The panels processed at 250–265 F tool temperature exhibited voids, as seen in
Figure 1a,b. All panels used for testing were, hence, processed at 500 ◦F tool temperature.
Several processing routes were attempted from the rCF mats.

(a) Compression molding of the preform in matched metal tool produced composite
plates. The compression molding of the PA66 rCF mats was conducted to different consoli-
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dation pressures. This helped understand process temperature–pressure–microstructure
relationships. The fully consolidated panels were used for mechanical testing/data genera-
tion; (b) compression molding of C/PA66 panels followed by pre-heating the consolidated
panel and subsequently subjecting the heated panel to single-diaphragm thermoform (SDF),
and (c) pre-heating the C/PA66 mats without compression molding (hence, a less stiff mat)
and subjecting it to SDF.

6.1. Single-Diaphragm Forming of Pre-Consolidated Panel

The purpose of this study was to evaluate the formability of the mat(s) in terms of
draw. PA66/CF/78/20 was consolidated using the 300 × 300 mm2 tool for a 2.5 mm thick
panel at 500 ◦F and 6.895 MPa (1000 psi). The consolidated panel (blank) was then re-heated
in a convection oven for approximately 5 min at 490–500 ◦F. There was very little sag (if
any) evident. A toy car mold (250 × 100 × 125 mm3) was used as a tool to thermoform the
consolidated blank. The blank exhibited some discoloration inside the oven. The blank
was unable to soften and did not reach the melt temperature without degradation. As
such, one atmosphere vacuum was used to form the part. The consolidated blank failed
catastrophically during forming, as seen in Figure 9.
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Figure 9. Pre-consolidated blank (after heating and thermoforming). Sample—PA66/CF/78/20,
5 layers of preform; (a) exposed side in oven shows much yellowing; (b) non-exposed side shows
less yellowing.

The pre-consolidated C/PA66 plate did not sag, hence, the plate was stiff when trans-
ferred from the oven to the forming station. Due to this, it appears that well-consolidated
plates possess limited ability to form to shape, resulting in cracking in the C/PA66 resin. It
appears that heating of the preforms must be done in a vacuum oven/inert condition to
prevent discoloration (yellowing). Whether the yellowing is from moisture remains unclear.
To find the cause for discoloration when the PA66/CF is heated in an oven, the preform
was heated under vacuum or inert atmosphere to determine if discoloration occurs due to
the presence of air, as shown in Table 15.

Table 15. Mats produced via different processing routes.

Sample Variants Preform Type Compression Molding Single Diaphragm Oven Compression
Molding

Sample-PA66-CF-68-30 Sheets of 14” × 14” Yes Yes Yes

Sample-PA66-CF-78-20 Sheets of 14” × 14” Yes Yes No

Sample-PA66-CF-88-10 Sheets of 14” × 14” Yes No No

Sample-PA66-CF-77-20 Roll Yes No

Sample-PE-CF-78-20 Roll Yes Yes Yes
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6.2. Compression Molding—External Heating (Heating the Preforms in a Convection Oven)

Two layers of PA66/CF/88/10 were placed in a convection oven at 500 ◦F for 5 min.
A heated mold (with oil heating up to 350 ◦F) was used to compression mold the heated
preforms. The blanks exhibited some discoloration inside the oven, see Figure 10a,b. Only
the top layers of the preform became discolored due to heat. The bottom did not reach
the processing temperature, nor did it discolor. Further, 1000 psi of positive pressure was
applied on the tool.
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6.3. Single-Diaphragm Forming—PE/CF

One layer of PE-CF-78-20 was heated in an oven at 350 F for 5–6 min. The heated
preform was transferred to the mold and subjected to one atmosphere of vacuum. The
material formed well without any discoloration, see Figure 11.
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6.4. Compression Molding—External Heating (Heating the Preforms in a Convection Oven)

Two layers of PE/CF/78/20 were heated in a convection oven at 400 ◦F for 10 min.
An in-house heated mold (with oil heating at 250 ◦F) was used as a tool to compression
mold the heated preforms. There was “no” discoloration of the blank inside the oven,
see Figure 12a,b. Subsequently, 6.895 MPa (1000 psi) of positive pressure was applied on
the tool.
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Figure 12. Forming of shell shape through external heating and compression molding.

6.5. Discussion on Heating the Mats

Since the mats have significant open porosity and air (before consolidation), getting
the mats to attain their processing temperature is important. Hence, pre-heating brings the
mats to a uniform temperature and assists with the processing. It was observed that prior
to consolidation, uniform heating of the mats, either in infrared oven or via contact heating
in the closed-cavity, brings the mats to a processable condition. While the mechanical
properties are more a function of optimal temperature and consolidation pressure, the
efficient way to get to these conditions is via pre-heating to minimize time in the press
(hence, higher process efficiency).

7. Conclusions

rCF WL mats were successfully produced in three resin types—PA66, PE and PET.
The processing method had significant influence on properties. The ‘sheet’ form exhibited
random/quasi-isotropic properties while the properties in the ‘roll’ form were guided by
the preferred fiber orientation. The tensile strength and modulus were 80–120% higher on
average in the ‘roll’ form compared to the ‘sheet’ form.

The tensile strength and modulus of the 77 wt% resin, ~20 wt% fiber mats ranked as
C/PA66 > C/PET > C/PE guided by the resin properties. Some variants, such as C/PE
20 wt% carbon fiber, had higher anisotropy, i.e., they were more sensitive for the cross-stack
versus no-stack, while in some variants, the fiber entanglement seems to minimize the
influence of fiber orientation, i.e., differences in properties in the no-stack versus cross-stack
were less discernable.

The impact response of the rCF mats indicated the best performance came from
C/PA66, while the energy absorbed by C/PE is assumed to be the highest, due to the
weaker bonding between C and PE; as evident from the strength and modulus, this helps
with energy absorption.

For PA66-CF, pre-drying was an important step as it influenced the properties by a
factor of 2 or greater; pre-dried mats performed higher. The formability of pre-consolidated
WL composites was poor due to high stiffness. Matched metal die provided the best
forming of the WL mats for all the resin systems. The material loses heat rapidly, hence, the
forming must be conducted immediately to pre-heating. The best formability was achieved
in the PE-CF mats.
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