Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aichele, T.; Lorenz, A.; Hergt, R.; Görnert, P. Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications—A review. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2003, 38, 575–587. [Google Scholar] [CrossRef]
- Gilleo, M.A.; Geller, S. Magnetic and Crystallographic Properties of Substituted Yttrium-Iron Garnet, 3 Y2O3 xM2O3·(5 − x) Fe2O3. Phys. Rev. 1958, 110, 73. [Google Scholar] [CrossRef]
- Gorbatov, O.I.; Johansson, G.; Jakobsson, A.; Mankovsky, S.; Ebert, H.; di Marco, I.; Minár, J.; Etz, C. Magnetic exchange interactions in yttrium iron garnet: A fully relativistic first-principles investigation. Phys. Rev. B 2021, 104, 174401. [Google Scholar] [CrossRef]
- Yudeuk, K.; Bang, D.J.; Kim, Y.; Kim, K.H. Magneto-optical properties of spin-coated bismuth-substituted yttrium iron garnet films on silicon substrates at 1550-nm wavelength. AIP Adv. 2020, 10, 025306. [Google Scholar]
- Kuila, M.; Deshpande, U.; Choudhary, R.J.; Rajput, P.; Phase, D.M.; Raghavendra Reddy, V. Raghavendra Reddy. Study of magneto-optical activity in cerium substituted yttrium iron garnet (Ce: YIG) epitaxial thin films. J. Appl. Phys. 2021, 129, 093903. [Google Scholar] [CrossRef]
- Hansen, P.; Witter, K.; Tolksdorf, W. Magnetic and magneto-optic properties of lead-and bismuth-substituted yttrium iron garnet films. Phys. Rev. B 1983, 27, 6608. [Google Scholar] [CrossRef]
- Serga, A.A.; Chumak, A.V.; Hillebrands, B. YIG magnonics. J. Phys. D Appl. Phys. 2010, 43, 264002. [Google Scholar] [CrossRef]
- Krupka, J.; Salski, B.; Kopyt, P.; Gwarek, W. Electrodynamic study of YIG filters and resonators. Sci. Rep. 2016, 6, 34739. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.D.; Figeys, B.; Sun, X.; Van Hoovels, N.; Tilmans, H.A.; Ciubotaru, F.; Adelmann, C. Compact tunable YIG-based RF resonators. Appl. Phys. Lett. 2021, 118, 162406. [Google Scholar] [CrossRef]
- Tu, C.; Chu, Z.Q.; Spetzler, B.; Hayes, P.; Dong, C.Z.; Liang, X.F.; Chen, H.-H.; He, Y.-F.; Wei, Y.-Y.; Lisenkov, I.; et al. Mechanical-resonance-enhanced thin-film magnetoelectric heterostructures for magnetometers, mechanical antennas, tunable RF inductors, and filters. Materials 2019, 12, 2259. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.L.; Gamino, M.; Ferreira, A.; de Oliveira, A.B.; Vaz, F.; Bohn, F.; Correa, M.A. Directional field-dependence of magnetoimpedance effect on integrated YIG/Pt-stripline system. Sensors 2021, 21, 6145. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, G.; de Vreugd, C.P.; Bichurin, M.I.; Petrov, V.M. Magnetoelectric interactions in bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate: Evidence for strong coupling in single crystals and epitaxial films. Appl. Phys. Lett. 2005, 86, 222506. [Google Scholar] [CrossRef]
- Yang, X.; Gao, Y.; Wu, J.; Zhou, Z.; Beguhn, S.; Nan, T.; Sun, N.X. Voltage tunable multiferroic phase shifter with YIG/PMN-PT heterostructure. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 191–193. [Google Scholar] [CrossRef]
- Murthy, D.V.B.; Srinivasan, G. Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite-ferroelectric composites. Front. Phys. 2012, 7, 418–423. [Google Scholar]
- Lisnevskaya, I.V.; Aleksandrova, I.A. Magnetoelectric composites of lead-free piezoelectrics and yttrium iron garnet: Interfacial reactions and functional properties. Appl. Phys. A 2020, 126, 406. [Google Scholar] [CrossRef]
- Litvinenko, A.; Sethi, P.; Murapaka, C.; Jenkins, A.; Cros, V.; Bortolotti, P.; Ferreira, R.; Dieny, B.; Ebels, U. Analog and Digital Phase Modulation and Signal Transmission with Spin-Torque Nano-Oscillators. Phys. Rev. Appl. 2021, 16, 024048. [Google Scholar] [CrossRef]
- Zhang, H.; Ku, M.J.H.; Casola, F.; Du, C.H.R.; van der Sar, T.; Onbasli, M.C.; Ross, C.A.; Tserkovnyak, Y.; Yacoby, A.; Walsworth, R.L. Spin-torque oscillation in a magnetic insulator probed by a single-spin sensor. Phys. Rev. B 2020, 102, 024404. [Google Scholar] [CrossRef]
- Harris, V.G.; Sokolov, A.S. The self-biased circulator: Ferrite materials design and process considerations. J. Supercond. Nov. Magn. 2019, 32, 97–108. [Google Scholar] [CrossRef]
- Ohnuma, M.; Hono, K.; Yanai, T.; Fukunaga, H.; Yoshizawa, Y. Direct evidence for structural origin of stress-induced magnetic anisotropy in Fe–Si–B–Nb–Cu nanocrystalline alloys. Appl. Phys. Lett. 2003, 83, 2859–2861. [Google Scholar] [CrossRef] [Green Version]
- Kurlyandskaya, G.V.; Lukshina, V.A.; Larranaga, A.; Orue, I.; Zaharova, A.A.; Shishkin, D.A. Induced magnetic anisotropy features in FeCrSiBNbCu nanocrystalline alloy: Role of stress distribution proven by direct X-ray measurements. J. Alloys Compd. 2013, 566, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M.; Shibuya, K.; Tokunaga, Y.; Kagawa, F.; Tsukazaki, A.; Tokura, Y.; Kawasaki, M. Systematic control of stress-induced anisotropy in pseudomorphic iron garnet thin films. J. Magn. Magn. Mater. 2013, 339, 63–70. [Google Scholar] [CrossRef]
- Quindeau, A.; Avci, C.O.; Liu, W.; Sun, C.; Mann, M.; Tang, A.S.; Onbasli, M.C.; Bono, D.; Voyles, P.M.; Xu, Y.; et al. Tm3Fe5O12/Pt heterostructures with perpendicular magnetic anisotropy for spintronic applications. Adv. Electron. Mater. 2017, 3, 1600376. [Google Scholar] [CrossRef] [Green Version]
- Soumah, L.; Beaulieu, N.; Qassym, L.; Carrétéro, C.; Jacquet, E.; Lebourgeois, R.; Youssef, J.B.; Bortolotti, P.; Cros, V.; Anane, A. Ultra-low damping insulating magnetic thin films get perpendicular. Nat. Commun. 2018, 9, 3355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhoi, B.; Kim, B.; Kim, Y.; Kim, M.-K.; Lee, J.-H.; Kim, S. Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG films. J. Appl. Phys. 2018, 123, 203902. [Google Scholar] [CrossRef]
- Popova, E.; Keller, N.; Gendron, F.; Thomas, L.; Brianso, M.-C.; Guyot, M.; Tessier, M.; Parkin, S.S.P. Perpendicular magnetic anisotropy in ultrathin yttrium iron garnet films prepared by pulsed laser deposition technique. J. Vac. Sci. Technol. A Vac. Surf. Film. 2001, 19, 2567–2570. [Google Scholar] [CrossRef]
- Singh, A.V.; Khodadadi, B.; Mohammadi, J.B.; Keshavarz, S.; Mewes, T.; Negi, D.S.; Datta, R.; Galazka, Z.; Uecker, R.; Gupta, A. Bulk Single Crystal-Like Structural and Magnetic Characteristics of Epitaxial Spinel Ferrite Thin Films with Elimination of Antiphase Boundaries. Adv. Mater. 2017, 29, 1701222. [Google Scholar] [CrossRef]
- Emori, S.; Gray, B.A.; Jeon, H.-M.; Peoples, J.; Schmitt, M.; Mahalingam, K.; Hill, M.; McConney, M.E.; Gray, M.T.; Alaan, U.S.; et al. Coexistence of low damping and strong magnetoelastic coupling in epitaxial spinel ferrite thin films. Adv. Mater. 2017, 29, 1701130. [Google Scholar] [CrossRef]
- Mee, J.E.; Archer, J.L.; Meade, R.H.; Hamilton, T.N. Chemical vapor deposition of epitaxial YIG on YAG and epitaxial GdIG on YAG. Appl. Phys. Lett. 1967, 10, 289–291. [Google Scholar] [CrossRef]
- Zeyfang, R. Stresses in Epitaxially Grown Single-Crystal Films: YIG on YAG. J. Appl. Phys. 1970, 41, 3718–3721. [Google Scholar] [CrossRef]
- Aida, H.; Watanuki, R.; Ito, A. High-speed epitaxial growth of Y3Fe5O12 thick film with high magnetization on (4 2 0) Y3Al5O12 substrate using metal-organic chemical vapor deposition. Mater. Lett. 2020, 276, 128228. [Google Scholar] [CrossRef]
- Cooper, J.F.K.; Kinane, C.J.; Langridge, S.; Ali, M.; Hickey, B.J.; Niizeki, T.; Uchida, K.; Saitoh, E.; Ambaye, H.; Glavic, A. Unexpected structural and magnetic depth dependence of YIG thin films. Phys. Rev. B 2017, 96, 104404. [Google Scholar] [CrossRef] [Green Version]
- Krysztofik, A.; Özoğlu, S.; McMichael, R.D.; Coy, E. Effect of strain-induced anisotropy on magnetization dynamics in Y3Fe5O12 films recrystallized on a lattice-mismatched substrate. Sci. Rep. 2021, 11, 14011. [Google Scholar] [CrossRef] [PubMed]
- Sposito, A.; May-Smith, T.C.; Stenning, G.B.G.; de Groot, P.A.J.; Eason, R.W. Pulsed laser deposition of high-quality μm-thick YIG films on YAG. Opt. Mater. Express 2013, 3, 624–632. [Google Scholar] [CrossRef]
- Wang, H.; Du, C.; Hammel, P.C.; Yang, F. Strain-tunable magnetocrystalline anisotropy in epitaxial Y3Fe5O12 thin films. Phys. Rev. B 2014, 89, 134404. [Google Scholar] [CrossRef] [Green Version]
- Zanjani, S.M.; Onbaşlı, M.C. Predicting new iron garnet thin films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 2020, 499, 166108. [Google Scholar] [CrossRef] [Green Version]
- Van, P.C.; Surabhi, S.; Dongquoc, V.; Kuchi, R.; Yoon, S.G.; Jeong, J.R. Effect of annealing temperature on surface morphology and ultralow ferromagnetic resonance linewidth of yttrium iron garnet thin film grown by rf sputtering. Appl. Surf. Sci. 2018, 435, 377–383. [Google Scholar] [CrossRef]
- Venkatesan, T.; Harshavardhan, K.S.; Strikovski, M.; Kim, J. Recent advances in the deposition of multi-component oxide films by pulsed energy deposition. In Thin Films and Heterostructures for Oxide Electronics; Springer: Boston, MA, USA, 2005; pp. 385–413. [Google Scholar]
- Popova, E.; Keller, N.; Jomard, F.; Thomas, L.; Brianso, M.-C.; Gendron, F.; Guyot, M.; Tessier, M. Exchange coupling in ultrathin epitaxial yttrium iron garnet films. Eur. Phys. J. B-Condens. Matter Complex Syst. 2003, 31, 69–74. [Google Scholar] [CrossRef]
- Henry, R.; Besser, P.; Heinz, D.; Mee, J. Ferromagnetic resonance properties of LPE YIG films. IEEE Trans. Magn. 1973, 9, 535–537. [Google Scholar] [CrossRef]
- Boudiar, T.; Payet-Gervy, B.; Blanc-Mignon, M.F.; Rousseau, J.J.; Le Berre, M.; Joisten, H. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering. J. Magn. Magn. Mater. 2004, 284, 77–85. [Google Scholar] [CrossRef]
- Wynne, R.; Daneu, J.L.; Fan, T.Y. Thermal coefficients of the expansion and refractive index in YAG. Appl. Opt. 1999, 38, 3282–3284. [Google Scholar] [CrossRef]
- Krichevtsov, B.B.; Gastev, S.V.; Suturin, S.M.; Fedorov, V.V.; Korovin, A.M.; Bursian, V.E.; Banshchikov, A.G.; Volkov, M.P.; Tabuchi, M.; Sokolov, N.S. Magnetization reversal in YIG/GGG (111) nanoheterostructures grown by laser molecular beam epitaxy. Sci. Technol. Adv. Mater. 2017, 18, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Lutsev, L.V.; Korovin, A.M.; Suturin, S.M.; Vlasenko, L.S.; Volkov, M.P.; Sokolov, N.S. Spin excitations in laser-molecular-beam epitaxy-grown nanosized YIG films: Towards low relaxation and desirable magnetization profile. J. Phys. D Appl. Phys. 2020, 53, 265003. [Google Scholar] [CrossRef]
- Krichevtsov, B.B.; Korovin, A.M.; Gastev, S.V.; Suturin, S.M.; Mashkov, K.V.; Sawada, M.; Sokolov, N.S. Magnetization reversal in Co/GGG/YIG/GGG (111) nanoheterostructures: Interlayer magnetic coupling and orange peel effect. J. Magn. Magn. Mater. 2020, 502, 166542. [Google Scholar] [CrossRef]
- Krichevtsov, B.B.; Bursian, V.E.; Gastev, S.V.; Korovin, A.M.; Lutsev, L.V.; Suturin, S.M.; Mashkov, K.V.; Volkov, M.P.; Sokolov, N.S. Substrate induced magnetic anisotropies and magneto-optical response in YIG nanosized epitaxial films on NdGG (111). arXiv 2018, arXiv:1901.10800. [Google Scholar]
- Komogortsev, S.V.; Vazhenina, I.G.; Kleshnina, S.A.; Iskhakov, R.S.; Lepalovskij, V.N.; Pasynkova, A.A.; Svalov, A.V. Advanced Characterization of FeNi-Based Films for the Development of Magnetic Field Sensors with Tailored Functional Parameters. Sensors 2022, 22, 3324. [Google Scholar] [CrossRef]
- Von Aulock, W.H. Handbook of Microwave Ferrite Materials; Academic Press: London, UK, 1965. [Google Scholar]
- Barandiarán, J.M.; García-Arribas, A.; de Cos, D. Transition from quasistatic to ferromagnetic resonance regime in giant magnetoimpedance. J. Appl. Phys. 2006, 99, 103904. [Google Scholar] [CrossRef]
- Shcherbinin, S.V.; Svalov, A.V.; Melnikov, G.Y.; Kurlyandskaya, G.V. Angular dependence of the ferromagnetic resonance parameters of [Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 nanostructured multilayered elements in the wide frequency range. Nanomaterials 2020, 10, 433. [Google Scholar] [CrossRef] [Green Version]
- Beguhn, S.; Zhou, Z.; Rand, S.; Yang, X.; Lou, J.; Sun, N.X. A new highly sensitive broadband ferromagnetic resonance measurement system with lock-in detection. J. Appl. Phys. 2012, 111, 07A503. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Yang, A.S.; Brangham, J.T.; Esser, B.D.; White, S.P.; Page, M.R.; Meng, K.-Y.; Yu, S.; Adur, R.; Ruane, W.; et al. Exceptionally high magnetization of stoichiometric Y3Fe5O12 epitaxial films grown on Gd3Ga5O12. Appl. Phys. Lett. 2016, 109, 072401. [Google Scholar] [CrossRef] [Green Version]
Film | Deposition Time | Thickness (±5%) | c (Å) | a (Å) | εzz | εxx |
---|---|---|---|---|---|---|
YIG/YAG (100) | 30 min | 55 nm | 12.440 | 12.344 | 0.52% | −0.26% |
60 min | 120 nm | 12.492 | 12.318 | 0.94% | −0.47% | |
90 min | 170 nm | 12.544 | 12.293 | 1.36% | −0.67% | |
120 min | 380 nm | 12.624 | 12.254 | 2.00% | −0.98% | |
YIG/YAG (110) | 30 min | 91 nm | 12.405 | 12.361 | 0.23% | −0.12% |
60 min | 145 nm | 12.462 | 12.333 | 0.69% | −0.35% | |
90 min | 171 nm | 12.484 | 12.322 | 0.87% | −0.44% | |
120 min | 205 nm | 12.524 | 12.303 | 1.19% | −0.59% | |
YIG/YAG (111) | 30 min | 127 nm | 12.429 | 12.355 | 0.43% | −0.17% |
60 min | 171 nm | 12.464 | 12.338 | 0.71% | −0.31% | |
90 min | 274 nm | 12.491 | 12.325 | 0.93% | −0.41% | |
120 min | 357 nm | 12.533 | 12.304 | 1.27% | −0.58% |
Film | Thickness (nm) | 4πMs (kG) | γ (GHz/kOe) | 4πMeff (kG) |
---|---|---|---|---|
YIG/YAG (100) | 55 | 1.80 | 2.80 | 1.35 |
120 | 1.70 | 2.79 | 1.55 | |
170 | 1.80 | 2.77 | 1.64 | |
380 | 1.67 | 2.76 | 1.70 | |
YIG/YAG (110) | 91 | 1.70 | 2.77 | 1.44 |
145 | 1.74 | 2.79 | 1.49 | |
171 | 1.80 | 2.78 | 1.60 | |
205 | 1.67 | 2.77 | 1.77 | |
YIG/YAG (111) | 127 | 1.71 | 2.79 | 1.36 |
171 | 1.77 | 2.79 | 1.51 | |
274 | 1.98 | 2.78 | 1.53 | |
357 | 1.86 | 2.70 | 1.58 |
Film | Thickness (nm) | Hσ (kOe) | Ha (kOe) |
---|---|---|---|
YIG/YAG (100) | 55 | −1.02 | −0.45 |
120 | −1.86 | −0.15 | |
170 | −2.69 | −0.16 | |
380 | −3.96 | −0.03 | |
YIG/YAG (110) | 91 | −0.47 | −0.26 |
145 | −1.38 | −0.25 | |
171 | −1.73 | −0.20 | |
205 | −2.36 | 0 | |
YIG/YAG (111) | 127 | −0.79 | −0.35 |
171 | −1.35 | −0.26 | |
274 | −1.78 | −0.44 | |
357 | −2.45 | −0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhou, P.; Bidthanapally, R.; Zhang, J.; Zhang, W.; Page, M.R.; Zhang, T.; Srinivasan, G. Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate. J. Compos. Sci. 2022, 6, 203. https://doi.org/10.3390/jcs6070203
Liu Y, Zhou P, Bidthanapally R, Zhang J, Zhang W, Page MR, Zhang T, Srinivasan G. Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate. Journal of Composites Science. 2022; 6(7):203. https://doi.org/10.3390/jcs6070203
Chicago/Turabian StyleLiu, Ying, Peng Zhou, Rao Bidthanapally, Jitao Zhang, Wei Zhang, Michael R. Page, Tianjin Zhang, and Gopalan Srinivasan. 2022. "Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate" Journal of Composites Science 6, no. 7: 203. https://doi.org/10.3390/jcs6070203
APA StyleLiu, Y., Zhou, P., Bidthanapally, R., Zhang, J., Zhang, W., Page, M. R., Zhang, T., & Srinivasan, G. (2022). Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate. Journal of Composites Science, 6(7), 203. https://doi.org/10.3390/jcs6070203