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Abstract: Composites of Polyhydroxyalkanoates (PHAs) have been proven to have enhanced prop-
erties in comparison to the pure form of these polyesters. Depending on what polymer or material
is added to PHAs, the enhancement of different properties is observed. Since PHAs are explored
for usage in diverse fields, understanding what blends affect what properties would guide further
investigations towards application. This article reviews works that have been carried out with
composite variation for application in several fields. Some properties of PHAs are highlighted and
composite variation for their modulations are explored.

Keywords: Polyhydroxyalkanoates; composite variation; biodegradation; biocompatibility physical
and chemical properties

1. Introduction

Polyhydroxyalkanoates (PHAs) are biodegradable polymers (specifically polyesters)
naturally produced by different types of microorganisms and fermentation. These polymers
can be gotten from the combination of different monomers which yield distinct properties.
Different monomeric compositions of PHAs have different physical and chemical prop-
erties [1]. These diverse properties of PHAs have found different applications in various
fields of science and technology. The physical properties, such as the chemical properties,
are dependent on the monomer units. Different levels of these properties can be achieved
through crystalline modifications and optimizing the processing conditions. One of the
numerous important properties of PHAs is their biodegradability. Unlike normal plastics
which have raised serious concerns due to their inability to decompose rapidly with mild
toxicity, studies have found that PHAs biodegradability puts them up as a viable candidate
for a more ecologically friendly plastic [2]. There are different factors that can affect the
degradation rate of PHAs. Such factors include environmental conditions, crystallinity,
surface area, additives, and so on [3]. Another interesting property of PHAs which have
found applications and raised research interests in the field of pharmacology, biomedical
engineering, and tissue engineering is their anti-microbial property. Studies have shown
that coating biomedical devices with PHAs which have optimized antibacterial properties
reduces the probability of biomaterial-associated infections developing [4,5].

The properties of PHAs can be modulated (changed) by combining them with other
polymers, materials to form composites. The property of PHA changes, depending on
what materials, technical parameters that are used in the formation of these composites.
Certain properties such as the rate of degradation, mechanical, antimicrobial, chemical and
physical properties can be enhanced or reduced by using composites. Mechanical, thermal,
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and electrical properties were significantly enhanced with the use of composites made with
nanofillers [6]. The effect of composite variation has been observed in other properties of
PHAs. This paper is aimed at analyzing the different composite variations that have been
tested and their effects on various properties of PHAs.

2. Results

Different studies have been rigorously carried out to observe the effect of composite
variation on various properties of PHA. This work shows a review of the relationship
between the different composites used and the resulting effect on PHA properties.

2.1. Biocompatibility
2.1.1. Effects of Surface Morphology

The effects of the morphology of the blend between PHBHHx (a member of the PHA
family) and PHB (polyhydroxybutyrate) on the biocompatibility of the material was studied.
A comparison between [7] pure PHBHHx and PHBHHx/PHB scaffolds with SEM showed
that the latter kept its shape well after being dissolved in water, while the PHBHHx scaffold
was found to have lost some of its shape after being immersed in water for a long period of
time. It was also observed that there was a reduction in the pore size of PHBHHx scaffold
after being dissolved compared with that in 2:1 PHBHHx/PHB scaffold. This was observed
since salt particles filled all over the space of the materials moving from the surface to the
sample’s internal space, which resulted in the PHBHHx scaffold having a porous surface.
But the s 2:1 PHBHHx/PHB scaffold on the other hand had a continuous surface.

The surface properties (i.e., morphology of a biomaterial have effects on the adhesion of
cells to it) [8,9]. In the absence of additions and treatments, PHB films have a coralloid (coral
looking) surface which is designed with many protrusions and pores. The attachments of
cells to the biomaterial were affected by the irregular nature of the surface morphology.
Films with smoother surfaces (i.e., pore free surfaces are more conducive for cell growth
than the coral-like ones). Introducing PHBHHx to the blend reduces the size of the pores,
thereby giving it a smoother surface, which enhances cell adhesion to the film and growth.

2.1.2. Addition of Bacterial Cellulose or Microcrystalline Cellulose

It was observed that a decrease of melting temperature and influence on the heat of
fusion and crystallinity of composites occurred due to the addition of bacterial cellulose
(BC) or microcrystalline cellulose (MC) into PHA matrix. Physico-chemical and in vitro
methods were used to test biocompatibility. The tested biocomposites met the required
pharmacological standards in regards to acidity, absorbance, alkalinity, reducing substances,
and other tests. The biocomposites were not found to be cytotoxic compared with how
viable the of cell cultures exposed to the untreated cells which served as control group
were. Data received from experimental analysis on cell morphology for in vitro cytotox-
icity assessment showed cell proliferation of cells that grew in direct contact with the
complex compared to control cultures (untreated cultures). The morphological aspects of
the treated cells are in good agreement with the results obtained from the MTT viability
test, and in conclusion, composites based on poly (3-hydroxybuthyrate) (PHB) and poly
(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) infused with bacterial cellulose (BC)
and microcrystalline cellulose (MC) are found to be biocompatible [10].

2.1.3. Biocompatibility for Neural Regeneration

PHAs’ useful properties which include biodegradability and non-cytotoxicity, have
found use as bio-implantable materials for numerous medical applications [11]. There
are some properties of PHAs, however, that have hindered its extensive usage in medical
applications, such as the surface hydrophobicity. To improve the hydrophilic properties
of PHA, different surface treatments have been considered as effective means. Different
strategies, including grafting, ultraviolet treatment, plasma treatment, and surface hydrol-
ysis have been applied to improve the hydrophilicity of the macro-molecular materials.
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Yet, these techniques pose some limitations. The grafting technique, for example, makes
the surface of the material very unstable due to weak interactions between the masses.
Direct UV radiation greatly reduces mechanical resistance properties of polymer films
and makes them very brittle. Even plasma treatment can only increase hydrophilicity of
temporary surface PHA and the surface tends to revert to its untreated state soon after
treatment. Alkali and lipase treatment is proven to be very effective in improving wetting
and adhesion properties of polymer surfaces. NaOH acts as a hydrolysis catalyst and lipase
is a special enzyme acting on the ester bonds of polymers [12–15].

Other methods have also been recruited to improve the hydrophilic property of
PHA, such as electrospinning, blending with other material and bio-modification with
different proteins [16–18]. Results of experiments carried out showed that mixing with
10% gelatin reduced the destruction of the spatial structure of PHBHHx and improved
the mechanical tensile properties. At the same time, the increased surface porosity and
decreased crystallinity caused by gelatin uptake may be beneficial for cell proliferation
compared to pure PHBHHx [19].

2.2. Mechanical Properties
2.2.1. Blending PHAs with Plasticizers

Mixing PHAs, specifically PHB with other polymers or with plasticizers, may offer
opportunities to move processability forward by bringing down the processing tempera-
ture and lessening the brittleness of PHAs based plastics. So, numerous blends contain-
ing PHB/PHAs have been examined, and additionally numerous types of plasticizers
have been proposed [20,21]. The experimental results report the utilization of plasticizers
from materials that are cheap and promptly accessible on the market, and for the most
part, with interesting characteristics, such as oxypropylated glycerin (or laprol), glycerol,
glycerol triacetate, 4-nonylphenol, 4,40-dihydroxydiphenyl- methane, acetyl tributyl cit-
rate, salicylic ester, acetyl- salicylic corrosive ester, soybean oil, epoxidized soy- bean oil,
dibutylphthalate, triethyl citrate, dioctyl phthalate, dioctylsebacate, acetyl tributyl citrate,
di-2-ethylhexylphthalate, tri(ethylene glycol) bis(2ethylhexanoate),triacetine, and greasy
alcohols with or without glycerol greasy esters, polyethylene glycol (PEG) as well as
low molecular weight polyhydroxybutyrate since PHAs with medium chain length are
elastomers with low melting point and a relatively lower degree of crystallinity [22,23].

2.2.2. Adding Hydrophobically Treated CNCs to Form a PHA Composite

By adding a hydrophobically treated CNC to PHA composites, an improved breaking
point elongation by up to 301% was observed, with almost no reduction in its elastic
modulus compared to that of the pure PHA sample. Apparently double salinized CNC
also played a similar role as the nucleating agent for PHA composites. This CNC PHA
composites with ductility on the high side can improve the mechanical properties of PHA
composites and make them more suitable for mass production [24].

2.2.3. Incorporation of Natural Rubber into PHBV

Incorporation of incredibly viscous high-molecular weight natural rubber (HMW-
NR, gel extracted from NR) into PHBV can enhance its properties. HMW-NR isn’t always
commercially available, negatively affecting commercialization of the PHBV/rubber blends.
The PHBV/NR blends had been fabricated via a -step extrusion technique with the use of a
twin-screw extruder. The blends contained levels with crosslinked rubber being dispersed
in PHBV, and had clean rubber loading based variations in performance. The thermal
balance and melting power of the blends had been superior over pristine PHBV, indicating
advanced processability [25].

2.2.4. Using Nanofillers to Enhance Barrier Properties

One of the most important characteristics of materials currently used for food pack-
aging are elasticity and permeability [26]. Biodegradable nanofiller composites have
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important features which can be found in metal-based packaging, and in addition they also
have other excellent properties such as mechanical properties, thermodynamic properties
and ecologically friendly properties, and so on. Nanofiller composites can be significantly
improve high barrier properties of polymers [27]. Due to the presence of nanofillers, there
is a molecular pathway that increases as it passes through the substrate. Increase in the
diffusion path of gas or other water vapor molecules through the polymer, significantly
slows the penetration rate of the polymer and effectively enhances the polymer’s barrier
characteristics.

The surface topography of a pure PHA sample, and composite samples with graphene
nanoplatelets (GNPs) were observed under a SEM. The neat PHA polymer had a regular
cross-section with no air bubbles or holes visible through it. The nanofillers were uniformly
dispersed throughout the polymer matrix. The roughest surface was found in the GNPs-
based nanocomposites, with roughness increasing with GNPs loading and a higher number
of restacked flakes and agglomerates. While the distribution of both fillers appeared more
homogeneous. The polymer-filler interface appeared to be intact for the majority of the
flakes in both samples, with no gaps or voids. This fact is presumed to achieve maximum
reinforcement efficiency. A small number of flakes could also be seen to have rolled up as a
result of the melt-mixing procedure within the internal mixer. When GNPs were mixed
with low-modulus elastomers at high shear rates, this occurrence is common. It is worth
noting that the compression molding procedure used after mixing resulted in a preferred
orientation for both the GNPs and the carbon nanofibers (CNFs) in the axial direction
of the samples. Even if the degree of orientation was not very high in this case, it was
predicted that it will contribute to improve in-plane mechanical properties and modulation
of conduction mechanisms [28–30].

2.3. Biodegradation
2.3.1. Effects of Water Absorption and Diffusion on Degradability

Water absorption and diffusion determine the rate of hydrolytic degradation in fibrous
biopolyesters. The chemical nature (hydrophobicity–hydrophilicity ratio) of the macro-
molecules, polymer crystallinity, surface special features, and volume morphology, as well
as fibril porosity, interfibrillar space of the mats, and other structural factors, all influence
water absorption capacity. The isotherms of water absorption of PHB-PLA blends were
obtained and the deviation from linearity (the Henry low) was analyzed by the simplified
model. A dependency of these parameters on the ratio of PHB to PLA in the blend was
observed [31,32].

2.3.2. PHA Blends and Biodegradation

Over a 24-week period, the biodegradation behavior of polyhydroxyalkanoate (PHA)
composites containing 10% distiller’s dried grains with solubles (DDGS) was characterized
and evaluated by comparing to pure PHA. Weight loss was approximately 6 times greater
for the PHA/DDGS 90/10 composites after 24 weeks than for unaltered PHA under
identical conditions [33]. Composite samples with varying wood contents (0, 20, and
50% wt) were buried in soil at a field trial site in Australia’s subtropical region, together
with polylactic acid (PLA) and polyethylene (PE) based wood composites as controls.
Under identical conditions, the degradation rate of the PHBV/WF composites increased
with wood content, with weight loss after 12 months being 5 times greater for PHBV/50 wt
percent WF than for neat PHBV plaques [34].

2.4. Electrical and Thermal Properties
2.4.1. Thermal Properties

The thermal stability of composites can be improved by certain treatments relating
to the removal of pectin, cellulose, and other substances of the filler. When fiber-matrix
interaction improves, the thermal degradation reduces. Likewise, reactive agents impact
the thermal behavior of composites. For example, the additive DCP (>0.1 phr), in a blend
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of PHBV–miscanthus (70–30 wt%), reduces the melting temperature (Tm) of the blend by
reducing crystallinity. In some cases, additives mask the nucleating effect of the vegetable
fiber in the polymeric matrix. In addition, the plasticizers commonly used for internal
lubrication increase mobility and lower the glass transition temperature (Tg). Plasticizer
loss usually appears at the beginning of the thermogravimetric analysis (TGA) curve. This
behavior is common with PHB composites. Uses glycerol and triethyl citrate (TEC) [35–39].

Both GNPs and CNFs significantly improve the thermal stability of nanocomposites,
with no discernible difference between them. In general, higher GNP loadings provide
better thermal stability than hybrids, implying that higher loadings of high aspect ratio
materials provide a bigger barrier to degradation product diffusion [40].

2.4.2. Electrical Properties

Nanocellulose bio-composites are extensively utilized in medical, electronics, pack-
aging, and other fields. They are presently used for the improvement of flexible digital
gadgets. Studies have experimentally proven the benefits of nanoscale, thereby reinforcing
the usage of cellulose nanofibers. Composites were gotten by improving diverse forms of
resin, using BC nanofibers. As BC nanofibers are bundles of semi-crystalline and prolonged
cellulose chains, the obtained nanocomposites aren’t the best in terms of flexibility, however
additionally produce excessive mechanical energy unlike low carbon steel and unusual
coefficients of thermal enlargement unlike silicon, which makes the composite appropriate
for applications. Moreover, success has been achieved in depositing an electroluminescent
layer (comprised of natural light-emitting diodes) on those BC nanocomposites. Correctly
organized poly(lactic acid) cellulose-primarily based on bio degradable nanocomposites
can enhance the mechanical ports and thermal stability of the materials [41–44].

2.5. Antimicrobial Properties
2.5.1. PHA–Vegetal Fiber Composites

Natural fibers are primarily composed of cellulose, hemicellulose and lignin, with
different physical and chemical properties. Although various natural fibers have been used
to enhance PHA, there are some problems with including them. For example, cellulose
provides fiber strength, but is less compatible with hydrophobic polymers such as PHA.
Hemicellulose is both amorphous and hydrophilic due to the hydroxyl and acetyl groups.
Therefore, its mechanical properties are low and retain moisture. The lining is aromatic
and amorphous, but less hydrophilic than the other ingredients. These properties result in
poor interfacial adhesion between the fiber and the matrix, forming polar groups and poor
dispersion within the matrix. Therefore, various pretreatments have been used to reduce
fiber polarity and water absorption, improve the affinity between the filler and the matrix,
and improve efficient stress transfer from the matrix to the fiber [45–51].

2.5.2. PHAs as Controlled Drug Release Systems

PHAs have been used as a matrix to create slow-release antibiotic delivery formu-
lations, which provide antimicrobial, antifungal, anti-biofilm, anti-inflammatory, and
virucidal properties depending on the conjugated/enclosed therapeutic agent. Further-
more, the antimicrobial activity that PHAs or their derivatives have been reported to have
should not be overlooked. Films based on PHB with antimicrobial activity were created
by incorporating eugenol at concentrations ranging from 10 to 200 mg/g of PHB, and
their antimicrobial activity was tested against a variety of spoilage bacteria, foodborne
pathogens, and fungi, including S. aureus, E. coli, S. typhimurium, Bacillus cereus, Aspergillus
flavus, Aspergillus niger, etc.

Tetracycline was encapsulated into polymeric microspheres via double emulsion-
solvent evaporation method. The antibacterial activity was tested against two commonly
periodontitis-causing bacteria Porphyromonas gingivalis and Actinobacillus actinomycetemcomi-
tans. The results suggested the potential use of PHB microspheres loaded with tetracycline
for slow-release delivery system [52,53].
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2.5.3. PHAs in Wound Healing

PHB-gelatin nanomesh pre-coated with ostholamide (a natural coumarin synthesized
from osthole) and collagen achieve mechanical stability in wound repair. The coated
nanomesh demonstrated sustained ostholamide release and, as a result, antibacterial
activity against the bacteria, indicating a possible future use in wound healing [54,55].

The findings of some studies suggested that drug-loaded degradable polymeric mi-
croparticles might be finding applications for skin defect treatment. The effectiveness of
using P(3HB/4HB) nonwoven membranes on model skin defects in Wistar rats was inves-
tigated in this study. Wounds healed 1.4 times faster under the P(3HB/4HB) membrane
carrying cells than under the cell-free membrane and 3.5 times faster than under the eschar
(control). On Day 14, the “membrane + cells” group experienced complete healing [56].

3. Discussion

The inherent properties of PHAs that limits their usage in diverse field can be overcome
through several modification processes (Figure 1) including the use of blends (i.e., the
combination of these polyesters with other materials in composites) [57]. PHA chemical
modification approaches are summarized on Figure 2 [58] and general scheme for its
production which was discussed in [59] is graphically exhibited on Figure 3.
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Studies have proven that combining different types of PHAs (see Figure 4) in right
proportions with other material significantly enhances wide variety of their properties [60].
These reports have further broadened current and perspective applications of PHA-based
materials (Table 1).
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SEM studies demonstrated significant variability on the nanolevel 3D structures of the
ES mixtures P(3HB): mcl-PHA [62] and foams PLLA/PHA [63].
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Table 1. This table shows a comprehensive summary of this article in a tabular form.

Property Composite Effect Reference

Biodegradation
PHBHHx/normal plastics Blends degrade considerably faster than typical plastics [64]

OMW/PHB film Accelerated rate of degradation noted [65]
UPE/PHB Significant weight loss noted after 30 days [66]

Biocompatibility PHBHHx/PHB Reduction in pore size and enhanced cell adhesion to
film [8]

PHBHHx/gelatin Increase in surface porosity and decrease in crystallinity [19]

Physical

PHBV–miscanthus Increased tensile strength [35]
+resin Increased thermal ability [44]

CNC/PHA High ductility [24]
PHBV/NR Better melting power and enhanced processability [25]

Antimicrobial
P(3HB/4HB) Wounds healed 3.5 time faster than control [56]

PHB + tetracycline Suggested for controlled drug delivery [52,53,67]

Experiments have been carried out to observe the bio-nanocomposites based on PHAs
and have proven to have positive effects on properties such as the size of the surface area of
its active sites. Another example is the tensile strength of a nanocomposite which was dras-
tically enhanced by as high as 300% when observed in a blend of 80PHB/20PCL/1stearate
Mg-Al LDH.

4. Conclusions

Other studies demonstrated that these properties are not only dependent on the nature
of the composites and ratio of the components but can also be dependent on the material
production process. Therefore, to fully optimize certain properties more studies comparing
the results of these different combinations of factors should be carried out. Such knowledge
would enable the easy application of these composites in solving various problems in
various fields of life [58,68–76].
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