Prediction of Gaps in Automated Tape Laying and Their Influence on Porosity in Consolidated Laminates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.2.1. Tape Laying
2.2.2. Consolidation
2.3. Methods
2.3.1. Analysis of the Tape-Laying Process
- The two conflictive targets, minimization of gaps, and minimization of overlaps, are equally important. Therefore, the probability p for cases two and three must be identical.
- The maximum gap size calculated by the geometrical model has to be smaller than the maximum target gap size bgap,max.target.
- The maximum overlap calculated by the geometrical model must be smaller than two times the maximum target gap size.
2.3.2. Characterization Methods
3. Results
3.1. Parametrization of the Geometric Model
3.2. Validation of the Methodological Approach
3.3. Influence of Gaps on Porosity
4. Conclusions and Discussion
- (1)
- The probability for gaps and overlaps must be equalized by setting the process parameter tape width accordingly.
- (2)
- The estimated maximum gap size must be smaller than the material-specific maximum target gap size by setting the target gap size accordingly. The maximum target gap size must be identified through initial consolidation trials.
- (3)
- The maximum overlap size must be smaller than two times the maximum target gap size to avoid excessive pressure inhomogeneities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schürmann, H. Konstruieren Mit Faser-Kunststoff-Verbunden: Mit 39 Tabellen, 2, Bearb. und Erw. Aufl; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-72189-5. [Google Scholar]
- Fischer, F.J.C. On Readiness in Advanced Thermoplastic Composite Production. Ph.D. Thesis, DLR, Deutsches Zentrum für Luft-und Raumfahrt, Augsburg, Germany, 2018. [Google Scholar]
- Gilani, M.; Sinan Körpe, D. Airline Weight Reduction to Minimize Direct Operating Cost. In Proceedings of the 4th International Aviation Management Conference (4th INTAVIC), Ankara, Turkey, 18–19 October 2019. [Google Scholar]
- Favaloro, M. Thermoplastic Composites in Aerospace—The Future Looks Bright: The Real Impediment to Use of Thermoplastic Composites in Critical Control Surfaces Is an Education Gap. Available online: https://www.compositesworld.com/articles/thermoplastic-composites-in-aerospace-past-present-and-future (accessed on 14 July 2021).
- Salek, M.H.; Hoa, S.V. Effects of Processing Parameters on the Mechanical Properties of Carbon/PEKK Thermoplastic Composite Materials. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2005. [Google Scholar]
- Hou, M.; de Weger, D. Optimisation of Manufacturing Conditions of Carbon Fibre Reinforced Polyetherketoneketone (PEKK) Composite. AMR 2011, 399–401, 289–293. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Aerospace Material Standards. Available online: https://www.astm.org/Standards/aerospace-material-standards.html (accessed on 14 July 2021).
- Ageorges, C.; Ye, L. Fusion Bonding of Polymer Composites; Springer: London, UK, 2002; ISBN 978-1-4471-0171-0. [Google Scholar]
- Ferrara, J.A.; Seferis, J.C.; Vassilatos, G. Processing characteristics of PEKK matrices and their composites. In Proceedings of the Advanced Materials—Affordable Processes: Concord Resort Hotel, Kiamesha Lake, NY, USA, 21–24 October 1991; Carri, R.L., Ed.; SAMPE Internat. Business Office: Covina, CA, USA, 1991; pp. 1137–1148. ISBN 093899462X. [Google Scholar]
- Bucher, R.A.; Hinkley, J.A. Fiber/Matrix Adhesion in Graphite/PEKK Composites. J. Thermoplast. Compos. Mater. 1992, 5, 2–13. [Google Scholar] [CrossRef]
- Baumgärtner, S. Beitrag zur Konsolidierung von Thermoplastischen Hochleistungsfaserverbundwerkstoffen. Ph.D. Thesis, Fraunhofer ICT, Pfinztal, Germany, 7 December 2017. [Google Scholar]
- Link, T. UD-Tape Basierte Bauteile in Kurzer Zykluszeit: Strahlungsinduzierte Vakuumkonsolidierung Beschleunigt Ud-Tape-Verarbeitung. Available online: https://www.plastverarbeiter.de/verarbeitungsverfahren/ud-tape-basierte-bauteile-in-kurzer-zykluszeit.html (accessed on 1 December 2021).
- Zhang, D.; Heider, D.; Gillespie, J.W. Void reduction of high-performance thermoplastic composites via oven vacuum bag processing. J. Compos. Mater. 2017, 51, 4219–4230. [Google Scholar] [CrossRef]
- Zhang, D.; Heider, D.; Advani, S.G.; Gillespie, J.W. Out of Autoclave Consolidation of Voids in Continuous Fiber Reinforced Thermoplastic Composites. In Proceedings of the SAMPE-Long Beach, Long Beach, CA, USA, 6–9 May 2013. [Google Scholar]
- Saenz-Castillo, D.; Martín, M.I.; Calvo, S.; Rodriguez-Lence, F.; Güemes, A. Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites. Compos. Part A Appl. Sci. Manuf. 2019, 121, 308–320. [Google Scholar] [CrossRef]
- Slange, T.K. Rapid Manufacturing of Tailored Thermoplastic Composites by Automated Lay-Up and Stamp Forming; University of Twente: Enschede, The Netherlands, 2019; ISBN 9789036547284. [Google Scholar]
- Slange, T.K.; Warnet, L.; Grouve, W.J.B.; Akkerman, R. Influence of preconsolidation on consolidation quality after stamp forming of C/PEEK composites. In ESAFORM 2016, Proceedings of the 19th International ESAFORM Conference on Material Forming, AIP, Nantes, France, 27–29 April 2016; AIP Publishing: Nantes, France, 2016. [Google Scholar] [CrossRef]
- Chang, I.Y. PEKK as a new thermoplastic matrix for high performance composites. SAMPE Q. 1988, 19, 29–34. [Google Scholar]
- Donadei, V.; Lionetto, F.; Wielandt, M.; Offringa, A.; Maffezzoli, A. Effects of Blank Quality on Press-Formed PEKK/Carbon Composite Parts. Materials 2018, 11, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saffar, F.; Sonnenfeld, C.; Beauchêne, P.; Park, C.H. In-situ Monitoring of the Out-Of-Autoclave Consolidation of Carbon/Poly-Ether-Ketone-Ketone Prepreg Laminate. Front. Mater. 2020, 7, 195. [Google Scholar] [CrossRef]
- Domininghaus, H.; Elsner, P.; Eyerer, P.; Hirth, T. (Eds.) Kunststoffe: Eigenschaften und Anwendungen; mit 275 Tabellen; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-16172-8. [Google Scholar]
- Spahr, T. An Introduction to the Polyether Ketone Ketone (PEKK) Co-Polymer; Arkema Inc.: Galesville, WI, USA, 2015. [Google Scholar]
- Choupin, T. Mechanical Performances of PEKK Thermoplastic Composites Linked to Their Processing Parameters. Ph.D. Thesis, ENSAM, ParisTech, Paris, France, 7 December 2017. [Google Scholar]
- Gardner, K.H.; Hsiao, B.S.; Matheson, R.R.; Wood, B.A. Structure, crystallization and morphology of poly (aryl ether ketone ketone). Polymer 1992, 33, 2483–2495. [Google Scholar] [CrossRef]
- Solvay. APC (PEKK-FC): PEKK-FC Thermoplastic Polymer Prepreg; Technichal Data Sheet, Solvay: Alpharetta, GA, USA, 11 October 2017. [Google Scholar]
- Henning, F.; Moeller, E. (Eds.) Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung; Hanser: München, Germany; Wien, Austria, 2011; ISBN 978-3-446-42267-4. [Google Scholar]
Angle α (°) | 45 | 50 | 60 | 70 | 80 |
---|---|---|---|---|---|
area AOverlap (mm2) | 0.0098 | 0.0082 | 0.0057 | 0.0036 | 0.0017 |
gap size bGap (mm) | 0.0700 | 0.0587 | 0.0404 | 0.0255 | 0.0123 |
Set Value in mm (Target Value +/− 45 mm) | Target Value in mm | Measured Value in mm | Deviation in mm |
---|---|---|---|
144.00 | 99.00 | 99.03 | 0.03 |
99.11 | 0.11 | ||
99.12 | 0.12 | ||
99.14 | 0.14 | ||
99.07 | 0.07 | ||
54.00 | 99.00 | 99.19 | 0.19 |
99.06 | 0.06 | ||
99.13 | 0.13 | ||
99.08 | 0.08 | ||
99.11 | 0.11 |
Operating Speed in % | Trepeat,min in mm | Trepeat,max in mm | Trepeat,mean in mm | σ Trepeat |
---|---|---|---|---|
25 | −0.25 | 0.18 | −0.07 | 0.16 |
50 | −0.28 | −0.09 | −0.14 | 0.08 |
75 | −0.52 | 0.00 | −0.20 | 0.19 |
Parameter | Value |
---|---|
Guiding accuracy Tguide (mm) | 0.10 |
Minimum repeat accuracy Trepeat,min (mm) | −0.28 |
Maximum repeat accuracy Trepeat,max (mm) | −0.09 |
Operating speed (%) | 50 |
Maximum target gap size (mm) | 0.40 |
Set tape width (mm) | 99.12 |
Target gap size (mm) | 0.11 |
Case | Minimum Gap 1 bgap,min in mm | Maximum Gap 1 bgap,max in mm |
---|---|---|
1 | −0.18 | 0.40 |
2 | 1.34 | |
3a | 0.20 | |
3b | −0.76 | −0.38 |
Case | Absolute Frequency | Relative Frequency in % |
---|---|---|
1 | 22 | 7 |
2 | 150 | 48 |
3a | 79 | 26 |
3b | 59 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Link, T.; Rosenberg, P.; Henning, F. Prediction of Gaps in Automated Tape Laying and Their Influence on Porosity in Consolidated Laminates. J. Compos. Sci. 2022, 6, 207. https://doi.org/10.3390/jcs6070207
Link T, Rosenberg P, Henning F. Prediction of Gaps in Automated Tape Laying and Their Influence on Porosity in Consolidated Laminates. Journal of Composites Science. 2022; 6(7):207. https://doi.org/10.3390/jcs6070207
Chicago/Turabian StyleLink, Tobias, Philipp Rosenberg, and Frank Henning. 2022. "Prediction of Gaps in Automated Tape Laying and Their Influence on Porosity in Consolidated Laminates" Journal of Composites Science 6, no. 7: 207. https://doi.org/10.3390/jcs6070207
APA StyleLink, T., Rosenberg, P., & Henning, F. (2022). Prediction of Gaps in Automated Tape Laying and Their Influence on Porosity in Consolidated Laminates. Journal of Composites Science, 6(7), 207. https://doi.org/10.3390/jcs6070207