Study on the Direct Transformation of Milk Bottle and Wood into Wood–Plastic Composite through Injection Molding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. FTIR Analysis
3.2. XRD Analysis
3.3. Density
3.4. Water Resistance
- Water molecules can diffuse within the microvoids and pores between the polymer chains;
- Capillary transport can occur in gaps and faults at the interfaces between fiber and matrix;
- Swelling effects can propagate microcracks in the matrix.
3.5. Tensile Properties
3.6. Impact Properties
3.7. Fracture Surface Examination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunt, E.J.; Zhang, C.; Anzalone, N.; Pearce, J.M. Polymer recycling codes for distributed manufacturing with 3-D printers. Resour. Conserv. Recycl. 2015, 97, 24–30. [Google Scholar] [CrossRef]
- Seppala, J. Plastics–the good, the bad and the ugly? Express Polym. Lett. 2018, 12, 855. [Google Scholar] [CrossRef]
- Wong, S.; Ngadi, N.; Abdullah, T.; Inuwa, I. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Andrady, A.L. Plastics and the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Zia, K.M.; Bhatti, H.N.; Bhatti, I.A. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym. 2007, 67, 675–692. [Google Scholar] [CrossRef]
- Wu, G.; Li, J.; Xu, Z. Triboelectrostatic separation for granular plastic waste recycling: A review. Waste Manag. 2013, 33, 585–597. [Google Scholar] [CrossRef]
- Najafi, S.K. Use of recycled plastics in wood plastic composites—A review. Waste Manag. 2013, 33, 1898–1905. [Google Scholar] [CrossRef]
- Gardner, D.J.; Han, Y.; Wang, L. Wood-Plastic Composite Technology. Curr. For. Rep. 2015, 1, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Gosselin, R.; Rodrigue, D.; Riedl, B. Injection Molding of Postconsumer Wood-Plastic Composites I: Morphology. J. Thermoplast. Compos. Mater. 2006, 19, 639–657. [Google Scholar] [CrossRef]
- Sykacek, E.; Hrabalova, M.; Frech, H.; Mundigler, N. Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1272–1282. [Google Scholar] [CrossRef]
- Kuo, P.-Y.; Wang, S.-Y.; Chen, J.-H.; Hsueh, H.-C.; Tsai, M.-J. Effects of material compositions on the mechanical properties of wood–plastic composites manufactured by injection molding. Mater. Des. 2009, 30, 3489–3496. [Google Scholar] [CrossRef]
- Schirp, A.; Mannheim, M.; Plinke, B. Influence of refiner fibre quality and fibre modification treatments on properties of injection-moulded beech wood-plastic composites. Compos. Part A Appl. Sci. Manuf. 2014, 61, 245–257. [Google Scholar] [CrossRef]
- Dolza, C.; Fages, E.; Gonga, E.; Gomez-Caturla, J.; Balart, R.; Quiles-Carrillo, L. Development and Characterization of Environmentally Friendly Wood Plastic Composites from Biobased Polyethylene and Short Natural Fibers Processed by Injection Moulding. Polymers 2021, 13, 1692. [Google Scholar] [CrossRef] [PubMed]
- Sommerhuber, P.F.; Wang, T.; Krause, A. Wood-plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard. J. Clean. Prod. 2016, 121, 176–185. [Google Scholar] [CrossRef]
- Turku, I.; Keskisaari, A.; Kärki, T.; Puurtinen, A.; Marttila, P. Characterization of wood plastic composites manufactured from recycled plastic blends. Compos. Struct. 2017, 161, 469–476. [Google Scholar] [CrossRef]
- Taufiq, M.; Mansor, M.R.; Mustafa, Z. Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend. Compos. Struct. 2018, 189, 510–515. [Google Scholar] [CrossRef]
- Lopez, Y.M.; Paes, J.B.; Gustave, D.; Gonçalves, F.G.; Méndez, F.C.; Nantet, A.C.T. Production of wood-plastic composites using cedrela odorata sawdust waste and recycled thermoplastics mixture from post-consumer products-A sustainable approach for cleaner production in Cuba. J. Clean. Prod. 2020, 244, 118723. [Google Scholar] [CrossRef]
- Veerasingam, S.; Ranjani, M.; Venkatachalapathy, R.; Bagaev, A.; Mukhanov, V.; Litvinyuk, D.; Mugilarasan, M.; Gurumoorthi, K.; Guga-nathan, L.; Aboobacker, V.M.; et al. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 2681–2743. [Google Scholar] [CrossRef]
- ASTM International. D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar] [CrossRef]
- ASTM International. D6110-18; Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar] [CrossRef]
- ASTM International. D4892-14(2019)E1; Standard Test Method for Density of Solid Pitch (Helium Pycnometer Method). ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar] [CrossRef]
- ASTM International. D570-98; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar] [CrossRef]
- Alomayri, T.; Assaedi, H.; Shaikh, F.; Low, I. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. J. Asian Ceram. Soc. 2014, 2, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Chaharmahali, M.; Tajvidi, M.; Najafi, S.K. Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polym. Compos. 2008, 29, 606–610. [Google Scholar] [CrossRef]
- Huang, H.-X.; Zhang, J.-J. Effects of filler-filler and polymer-filler interactions on rheological and mechanical properties of HDPE-wood composites. J. Appl. Polym. Sci. 2009, 111, 2806–2812. [Google Scholar] [CrossRef]
- Tanniru, M.; Misra, R. On enhanced impact strength of calcium carbonate-reinforced high-density polyethylene composites. Mater. Sci. Eng. A 2005, 405, 178–193. [Google Scholar] [CrossRef]
Identity | Description | Picture |
---|---|---|
IM-rMB | Injection-molded sample from milk bottle pellet | |
IM-rMB:rW-4:1 | Injection-molded sample from the mixture of shredded milk bottles and wood (ratio 80:20) | |
IM-rMB:rW-3:2 | Injection-molded sample from the mixture of shredded milk bottles and wood (ratio 60:40) |
Sample | Density (g/cm3) | Water Absorption (%) |
---|---|---|
Milk bottle | 0.948 ± 0.005 | 0.221 ± 0.007 |
80% Milk bottle and 20% wood | 0.978 ± 0.010 | 0.349 ± 0.005 |
60% Milk bottle and 40% wood | 1.031 ± 0.015 | 0.371 ± 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nur-A-Tomal, M.S.; Pahlevani, F.; Sahajwalla, V. Study on the Direct Transformation of Milk Bottle and Wood into Wood–Plastic Composite through Injection Molding. J. Compos. Sci. 2022, 6, 230. https://doi.org/10.3390/jcs6080230
Nur-A-Tomal MS, Pahlevani F, Sahajwalla V. Study on the Direct Transformation of Milk Bottle and Wood into Wood–Plastic Composite through Injection Molding. Journal of Composites Science. 2022; 6(8):230. https://doi.org/10.3390/jcs6080230
Chicago/Turabian StyleNur-A-Tomal, Md. Shahruk, Farshid Pahlevani, and Veena Sahajwalla. 2022. "Study on the Direct Transformation of Milk Bottle and Wood into Wood–Plastic Composite through Injection Molding" Journal of Composites Science 6, no. 8: 230. https://doi.org/10.3390/jcs6080230
APA StyleNur-A-Tomal, M. S., Pahlevani, F., & Sahajwalla, V. (2022). Study on the Direct Transformation of Milk Bottle and Wood into Wood–Plastic Composite through Injection Molding. Journal of Composites Science, 6(8), 230. https://doi.org/10.3390/jcs6080230