A New Study on the Structure, and Phase Transition Temperature of Bulk Silicate Materials by Simulation Method of Molecular Dynamics
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. The Structural Characteristic Quantities
3.2. Effect of T
3.2.1. High T Region
3.2.2. Low T Region
3.2.3. Effects of P
At T = 70 K
At T = 300 K
At T = 1273 K
At T = 2974 K
At T = 3500 K
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satoh, A. Introduction to practice of Molecular Simulation; Elsevier Inc.: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Dung, N.T. Factors affecting the earth’s surface on heterogeneous dynamics of CaSiO3 material. Mater. Sci. Eng. B 2020, 260, 114648. [Google Scholar]
- Tuan, T.Q.; Dung, N.T. Molecular dynamics studies the effects of the earth’s surface depth on the heterogeneous kinetics of MgSiO3. Results Phys. 2019, 15, 102671. [Google Scholar]
- Dung, N.T.; Cuong, N.C.; Van, D.Q. Molecular dynamics studies the effect of structure MgSiO3 bulk on formation process geology of the Earth. Int. J. Comput. Mater. Sci. Eng. 2019, 8, 1950011. [Google Scholar] [CrossRef]
- Dung, N.T.; Van, C.L.; Phu, N.D.; Ţălu, Ş. A molecular dynamics study concerning the effect of high-temperature and high-pressure on the structure and phase transition of Fe2O3 material. AIMS Mater. Sci. 2022, 9, 406–429. [Google Scholar]
- Dung, N.T.; Van, C.L.; Phu, N.D.; Ţălu, Ş. New insights on the factors affecting the heterogeneous kinetics of bulk Fe2O3 on the Earth: A molecular dynamic simulation. AIP Adv. 2022, 12, 065016. [Google Scholar]
- Van-Beest, B.W.H.; Kramer, G.J.; Van-Santen, R.A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 1990, 64, 1955–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, F.; Walter, K.; Kurt, B.; Ulrich, B.; Andreas, W.; Rüdiger, S.; Stefan, R.; Ralf, M. Dynamics of the Glass Structure, Analysis of the Composition and Structure of Glass and Glass Ceramics; Springer: Berlin/Heidelberg, Germany, 1999; pp. 313–398. [Google Scholar]
- Horbach, J.; Kob, W. Static and dynamic properties of a viscous silica melt. Phys. Rev. B 1999, 60, 3169–3181. [Google Scholar] [CrossRef] [Green Version]
- Zeidler, A.; Salmon, P.S.; Skinner, L.B. Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions. Proc. Natl. Acad. Sci. USA 2014, 111, 10045–10048. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; KiefSir, J. Amorphoushamorphous transitions in silica glass. II. Irreversible transitions and densification limit. Phys. Rev. B 2004, 69, 224204. [Google Scholar] [CrossRef]
- Inamura, Y.; Katayama, Y.; Utsumi, W.; Funakoshi, K. Transformations in the intermediatehrange structure of SiO2 glass under high pressure and temperature. Phys. Rev. Lett. 2004, 93, 015501. [Google Scholar] [CrossRef]
- Benmore, C.J.; Soignard, E.; Amin, S.A.; Guthrie, M.; Shastri, S.D.; Lee, P.L.; Yarger, J.L. Structural and topological changes in silica glass at pressure. Phys. Rev. B 2010, 81, 054105. [Google Scholar] [CrossRef]
- Hoang, V.V.; Belashchenko, D.K.; Thuan, V.T.M. Computer simulation of the structural and thermodynamics properties of liquid and amorphous SiO2. Phys. Rev. B 2004, 348, 249–255. [Google Scholar] [CrossRef]
- Kob, W. Computer simulations of supercooled liquids and glasses. J. Phys. Cond. Matter 1999, 11, R85. [Google Scholar] [CrossRef]
- Tsuneyuki, S.; Tsukada, M.; Aoki, M.; Matsui, M. First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics. Phys. Rev. Lett. 1988, 61, 869–872. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.; Ispas, S.; Jund, P.; Julien, R. Model of silica glass from combined classical and ab initio molecular-dynamics simulations. Eur. Phys. J. B 2000, 13, 631–636. [Google Scholar] [CrossRef]
- Vashishta, P.; Kalia, R.K.; Rino, J.P. Interaction potential for SiO2: A molecular-dynamics study of structural correlations. Phys. Rev. B 1990, 41, 12197–12209. [Google Scholar] [CrossRef]
- Wilson, M.; Madden, P.A.; Hemmati, M.; Angell, C.A. Polarization Effects, Network Dynamics, and the Infrared Spectrum of Amorphous SiO2. Phys. Rev. Lett. 1996, 77, 4023–4026. [Google Scholar] [CrossRef]
- Grimley, D.I.; Wright, A.C.; Sinclair, R.N. Neutron scattering from vitreous silica IV. Time-of-flight diffraction. J. Non-Cryst. Sol. 1990, 119, 49–64. [Google Scholar] [CrossRef]
- Mozzi, R.L.; Warren, B.E. The structure of vitreous silica. J. Appl. Crystallogr. 1969, 2, 164–172. [Google Scholar] [CrossRef]
- Konnert, J.H.; Karle, J. The computation of radial distribution functions for glassy materials. Acta Crystallogr. A 1973, 29, 702–710. [Google Scholar] [CrossRef]
- Kerrache, A.; Teboul, V.; Monteil, A. Screening dependence of the dynamical and structural properties of BKS silica. Chem. Phy. 2006, 321, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Dupree, E.; Pettifer, R.F. Determination of Si-O-Si bond angle distribution in vitreous silica by magic angle spinning NMR. Nature 1984, 308, 253–255. [Google Scholar] [CrossRef]
- Coombs, P.G.; de Natale, J.F.; Hood, P.J.; Mc-Elfresh, E.K.; Wortman, R.S.; Schachelford, J.F. The nature of the Si-O-Si bond angle distribution in vitreous silica. Philos. Mag. 1985, 51, L39–L42. [Google Scholar] [CrossRef]
- Da-Silva, J.R.G.; Pinatti, D.G.; Anderson, C.E.; Rudee, M.L. A refinement of the structure of vitreous silica. Philos. Mag. 1975, 31, 713–717. [Google Scholar] [CrossRef]
- Pettifer, R.F.; Dupree, R.; Farnan, I.; Sternberg, U. NMR determinations of Si-O-Si bond angle distributions in silica. J. Non-Cryst. Sol. 1988, 106, 408–412. [Google Scholar] [CrossRef]
- Mei, Q.; Benmore, C.J.; Weber, J.K.R. Structure of Liquid SiO2: A Measurement by High-Energy X-ray Diffraction. Phys. Rev. Lett. 2007, 98, 057802. [Google Scholar] [CrossRef]
- Munetoh, S.; Motooka, T.; Moriguchi, K.; Shintani, A. Interatomic potential for Si–O systems using Tersoff parameterization. Comp. Mater. Sci. 2007, 39, 334–339. [Google Scholar] [CrossRef]
- Geske, J.; Harrach, M.; Heckmann, L.; Horstmann, R.; Klameth, F.; Müller, N.; Pafong, E.; Wohlfromm, T.; Drossel, B.; Vogel, M. Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement. Zeitschrift für Physikalische Chemie 2018, 232, 1187–1225. [Google Scholar] [CrossRef]
- Sato, T.; Funamori, N. Sixfold-Coordinated Amorphous Polymorph of SiO2 under High Pressure. Phys. Rev. Lett. 2008, 101, 255502. [Google Scholar] [CrossRef]
- Sato, T.; Funamori, N. High-pressure structural transformation of SiO2 glass up to 100 GPa. Phys. Rev. B 2010, 82, 184102. [Google Scholar] [CrossRef]
- Sharma, R.; Mudi, A.; Chakravarty, C. Diffusional anomaly and network dynamics in liquid silica. J. Chem. Phys. 2006, 125, 044705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takada, A.; Richet, P.; Catlow, C.R.A.; Priced, G.D. Molecular dynamics simulations of vitreous silica structures. J. Non-Cryst. Solids 2018, 499, 224–229. [Google Scholar] [CrossRef]
- Lin, J.F.; Fukui, H.; Prendergast, D.; Okuchi, T.; Cai, Y.Q.; Nozomu, H.; Choong-Shik, Y.; Andrea, T.; Peter, E.; Michael, Y.H.; et al. Electronic bonding transition in compressed SiO2 glass. Phys. Rev. B 2007, 75, 012201. [Google Scholar] [CrossRef] [Green Version]
- Lacks, D.J. Localized Mechanical Instabilities and Structural Transformations in Silica Glass under High Pressure. Phys. Rev. Lett. 1998, 80, 5385–5388. [Google Scholar] [CrossRef]
- Yuan, F.; Huang, L. Brittle to Ductile Transition in Densified Silica Glass. Sci. Rep. 2014, 4, 5035. [Google Scholar] [CrossRef]
- Koziatek, P.; Barrat, J.L.; Rodney, D. Short- and medium-range orders in as-quenched and deformed SiO2 glasses: An atomistic stud. J. Non-Crystal. Solids 2015, 414, 7–15. [Google Scholar] [CrossRef]
- Erhard, L.C.; Rohrer, J.; Albe, K.; Volker, L.D. A machine-learned interatomic potential for silica and its relation to empirical models. npj Comput. Mater. 2022, 8, 90. [Google Scholar] [CrossRef]
- Kono, Y.; Ohara, K.; Kondo, N.M.; Yamada, H.; Hiroi, S.; Noritake, F.; Nitta, K.; Sekizawa, O.; Higo, Y.; Tange, Y.; et al. Experimental evidence of tetrahedral symmetry breaking in SiO2 glass under pressure. Nat. Commun. 2022, 13, 2292. [Google Scholar] [CrossRef]
- Sebastian, S.; Ştefan, Ţ.; Rashid, D.; Ali, A.; Dinara, S.; Marco, S. Evaluation of the Topographical Surface Changes of Silicon Wafers after Annealing and Plasma Cleaning. Silicon 2020, 12, 2563–2570. [Google Scholar]
- Zeidler, A.; Wezka, K.; Rowlands, R.F.; Whittaker, D.A.J.; Philip, S.S.; Annalisa, P.; James, W.E.D.; Stefan, K.; Henry, E.F.; Martin, C.W.; et al. High-Pressure Transformation of SiO2 Glass from a Tetrahedral to an Octahedral Network: A Joint Approach Using Neutron Diffraction and Molecular Dynamics. Phys. Rev. Lett. 2014, 113, 135501. [Google Scholar] [CrossRef] [Green Version]
- Guerette, M.; Ackerson, M.R.; Thomas, J.; Yuan, F.; Watson, E.B.; Walker, D.; Huang, L. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression. Sci. Rep. 2015, 5, 15343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralidharan, K.; Simmons, J.H.; Deymier, P.A.; Runge, K. Molecular dynamics studies of brittle fracture in vitreous silica: Review and recent progress. J. Non-Cryst. Solids 2005, 351, 1532–1542. [Google Scholar] [CrossRef]
- Kramer, G.J.; Farragher, N.P.; Van-Beest, B.W.H.; Van-Santen, R.A. Interatomic force fields for silicas, aluminophosphates, and zeolites: Derivation based on ab initio calculations. Phys. Rev. B 1991, 43, 5068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trachta, M.; Rubeš, M.; Bludský, O. Toward accurate ab initio modeling of siliceous zeolite structures. J. Chem. Phys. 2022, 156, 094708. [Google Scholar] [CrossRef]
- Guissani, Y.; Guillot, B. A numerical investigation of the liquid–vapor coexistence curve of silica. J. Chem. Phys. 1996, 104, 7633–7644. [Google Scholar] [CrossRef]
- Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. B 1967, 159, 98–103. [Google Scholar] [CrossRef]
- Dinnebier, R.E.; Billinge, S.J.L. Powder Diffraction: Theory and Practice, 1st ed.; Royal Society of Chemistry: London, UK, 2008; pp. 470–473. [Google Scholar]
- Chandler, D. Introduction to Modern Statistical Mechanics; Oxford University Press: New York, NY, USA, 1987; Volume 7, p. 3. [Google Scholar]
- Yarnell, J.; Katz, M.; Wenzel, R.; Koenig, S. Structure Factor and Radial Distribution Function for Liquid Argon at 85K. Phys. Rev. A 1973, 7, 2130–2144. [Google Scholar] [CrossRef]
- Gasser, U.; Weeks, E.R.; Schofield, A.; Pusey, P.N.; Weitz, D.A. Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization. Science 2001, 292, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Ojovan, M.I.; Louzguine-Luzgin, D.V. Revealing Structural Changes at Glass Transition via Radial Distribution Functions. J. Phys. Chem. B 2020, 124, 3186–3194. [Google Scholar] [CrossRef]
- Weeks, E.R.; Crocker, J.C.; Levitt, A.C.; Schofield, A.; Weitz, D.A. Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition. Science 2000, 287, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.R.; Spaulding, D.K.; Eggert, J.H.; Celliers, P.M.; Hicksraymond, D.G.; Smithgilbert, R.F.; Collinsand, G.W.; Jeanloz, A.R. Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science 2012, 338, 1330–1333. [Google Scholar]
- Spaulding, D.K.; McWilliams, R.S.; Jeanloz, R.; Eggert, J.H.; Celliers, P.; Hicks, D.; Collins, G.W.; Smith, R.F. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions. Phys. Rev. Lett. 2012, 108, 065701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SiO2 | Si-Si | Si-O | O-O |
---|---|---|---|
Aij(eV) | 0 | 18,003.5773 | 1388.773 |
Bij(Å−1) | 0 | 4.87318 | 2.76 |
Cij(eVÅ5) | 0 | 133.5381 | 175.0 |
qi,j(e) | - | qSi = +2.4 | qO = −1.2 |
T(K) | Links Lengths rij (Å) | First Peak Positions g(rij) | CN | ||||||
---|---|---|---|---|---|---|---|---|---|
Si-Si | Si-O | O-O | Si-Si | Si-O | O-O | Si-Si | Si-O | O-O | |
300 | 3.16 | 1.62 | 2.64 | 4.47 | 24.76 | 4.78 | 4.11 | 4.01 | 8.51 |
500 | 3.16 | 1.62 | 2.64 | 4.37 | 20.69 | 4.41 | 4.16 | 4.02 | 7.52 |
1500 | 3.14 | 1.64 | 2.64 | 3.62 | 12.72 | 3.54 | 4.23 | 4.02 | 4.02 |
2500 | 3.16 | 1.62 | 2.66 | 3.05 | 9.72 | 2.92 | 4.23 | 4.03 | 8.14 |
3000 | 3.14 | 1.62 | 2.66 | 3.03 | 8.85 | 2.83 | 4.34 | 4.02 | 8.71 |
3500 | 3.16 | 1.64 | 2.64 | 2.55 | 7.41 | 2.47 | 4.48 | 4.12 | 9.15 |
4500 | 3.16 | 1.62 | 2.66 | 2.54 | 7.14 | 2.47 | 4.49 | 4.12 | 9.16 |
5500 | 3.12 | 1.62 | 2.64 | 2.18 | 5.79 | 2.14 | 4.25 | 4.06 | 8.91 |
7000 | 3.12 | 1.56 | 2.66 | 1.96 | 5.31 | 1.92 | 3.99 | 3.96 | 8.65 |
Previous Results | rSi-Si | 3.155 [15], 3.16 [16], 3.08 [17], 3.13 [18], 3.14 [19], 3.11 [23], 3.12 [21], 3.077 [22] | |||||||
rSi-O | 1.595 [15], 1.63 [16], 1.62 [17], 1.61 [18], 1.61 [19], 1.60 [23], 1.62 [21], 1.608 [20] | ||||||||
rO-O | 2.59 [15], 2.62 [16], 2.66 [17], 2.65 [18], 2.60 [19], 2.61 [23], 2.65 [21], 2.626 [21] |
T (K) | Structural Units Number | O-Si-O (Degree) | Results (Degree) Obtained Previously | ||
---|---|---|---|---|---|
SiO4 | SiO5 | SiO6 | |||
300 | 2975 | 121 | 7 | 105 | 108.3 [15], 109 [17], 107.3 [23] by SM and 109.47 [24], 109.7 [25], 109.4 [26], 109.5 [18] by EM |
500 | 2071 | 153 | 7 | 105 | |
1500 | 2965 | 173 | 21 | 105 | |
2500 | 2959 | 232 | 0 | 105 | |
3000 | 2960 | 211 | 0 | 105 | |
3500 | 2791 | 709 | 74 | 105 | |
4500 | 2769 | 783 | 49 | 105 | |
5500 | 2653 | 959 | 119 | 100 | |
7000 | 2650 | 960 | 64 | 95 |
T (K) | l (nm) | Etot (eV) |
---|---|---|
300 | 3.440 | −53,230 |
500 | 3.442 | −53,072 |
1500 | 3.450 | −52,282 |
2500 | 3.451 | −51,477 |
3000 | 3.453 | −51,062 |
3500 | 3.454 | −50,501 |
4500 | 3.462 | −49,424 |
5500 | 3.473 | −48,258 |
7000 | 3.521 | −46,695 |
T(K) | Links Lengths rij (Å) | First Peak Positions g(rij) | CN | l (nm) | Etot (eV) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Si-Si | Si-O | O-O | Si-Si | Si-O | O-O | Si-Si | Si-O | O-O | |||
300 | 3.16 | 1.62 | 2.64 | 4.47 | 24.76 | 4.78 | 4.11 | 4.01 | 8.51 | 3.439 | −53,230 |
194.5 | 3.18 | 1.64 | 2.64 | 4.60 | 28.36 | 5.00 | 4.13 | 4.01 | 8.41 | 3.439 | −53,312 |
90 | 3.2 | 1.64 | 2.64 | 4.63 | 35.28 | 5.22 | 4.12 | 4.01 | 10.2 | 3.439 | −53,394 |
83.8085 | 3.2 | 1.64 | 2.64 | 4.64 | 35.81 | 5.22 | 4.12 | 4.01 | 6.73 | 3.439 | −53,399 |
70 | 3.2 | 1.64 | 2.64 | 4.61 | 37.26 | 5.27 | 4.14 | 4.01 | 6.73 | 3.439 | −53,410 |
4.22 | 3.22 | 1.64 | 2.62 | 4.67 | 42.51 | 5.57 | 4.13 | 4.00 | 7.78 | 3.439 | −53,460 |
The number of structural units and bond angle at low T values | |||||||||||
T(K) | 300 | 194.5 | 90 | 83.8085 | 70 | 4.22 | |||||
SiO4 | 2975 | 2974 | 2970 | 2969 | 2970 | 2974 | |||||
SiO5 | 121 | 128 | 144 | 150 | 144 | 133 | |||||
SiO6 | 7 | 7 | 7 | 7 | 7 | 7 | |||||
O-Si-O (degrees) | 105 | 105 | 105 | 105 | 105 | 105 |
P (GPa) | Links Lengths rij (Å) | First Peak Positions g(rij) | CN | l (nm) | Etot (eV) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Si-Si | Si-O | O-O | Si-Si | Si-O | O-O | Si-Si | Si-O | O-O | |||
0 | 3.20 | 1.64 | 2.64 | 4.61 | 37.26 | 5.27 | 4.14 | 4.01 | 6.73 | 3.439 | −53,410 |
5 | 3.12 | 1.62 | 2.62 | 3.79 | 35.11 | 4.58 | 4.41 | 4.04 | 7.57 | 3.317 | −53,347 |
10 | 3.06 | 1.62 | 2.62 | 3.64 | 27.69 | 4.29 | 4.82 | 4.09 | 8.26 | 3.232 | −53,219 |
15 | 3.06 | 1.62 | 2.56 | 3.26 | 16.54 | 3.62 | 5.88 | 4.34 | 9.33 | 3.111 | −52,990 |
20 | - | - | - | - | - | - | - | - | - | - | - |
The number of structural units and bond angle at low T | |||||||||||
P (GPa) | 0 | 5 | 10 | 15 | 20 | ||||||
SiO4 | 2970 | 2903 | 2697 | 1990 | - | ||||||
SiO5 | 144 | 389 | 894 | 1725 | - | ||||||
SiO6 | 7 | 35 | 120 | 757 | - | ||||||
O-Si-O (degree) | 105 | 105 | 105 | 105 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen Trong, D.; Long, V.C.; Ţălu, Ş.; Saraç, U.; Nguyen Dang, P.; Pham Huu, K. A New Study on the Structure, and Phase Transition Temperature of Bulk Silicate Materials by Simulation Method of Molecular Dynamics. J. Compos. Sci. 2022, 6, 234. https://doi.org/10.3390/jcs6080234
Nguyen Trong D, Long VC, Ţălu Ş, Saraç U, Nguyen Dang P, Pham Huu K. A New Study on the Structure, and Phase Transition Temperature of Bulk Silicate Materials by Simulation Method of Molecular Dynamics. Journal of Composites Science. 2022; 6(8):234. https://doi.org/10.3390/jcs6080234
Chicago/Turabian StyleNguyen Trong, Dung, Van Cao Long, Ştefan Ţălu, Umut Saraç, Phu Nguyen Dang, and Kien Pham Huu. 2022. "A New Study on the Structure, and Phase Transition Temperature of Bulk Silicate Materials by Simulation Method of Molecular Dynamics" Journal of Composites Science 6, no. 8: 234. https://doi.org/10.3390/jcs6080234
APA StyleNguyen Trong, D., Long, V. C., Ţălu, Ş., Saraç, U., Nguyen Dang, P., & Pham Huu, K. (2022). A New Study on the Structure, and Phase Transition Temperature of Bulk Silicate Materials by Simulation Method of Molecular Dynamics. Journal of Composites Science, 6(8), 234. https://doi.org/10.3390/jcs6080234