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Abstract: Orthoniobates of rare-earth elements are a promising group of materials attractive for the
design of nanocomposite hydrogen separation membranes owing to a perspective type of proton con-
ductivity, good mechanical properties, and high stability in H2O- and CO2-containing atmospheres.
In general, the promising method involves the synthesis of nanocomposites with transition metals
(Cu, Ni, and Cu-Ni alloys) and their oxides with high electronic conductivity. For the first time,
lanthanum orthoniobates and nanocomposites with NiCu and NiCo nanoparticles were synthesized
using alcohol solutions of salts of the corresponding metals by the solvothermal method in a flow
reactor in a supercritical isopropanol medium. This method made it possible to obtain single-phase
La0.99Ca0.01NbO4–δ oxide. The introduction of doping titanium cations did not allow obtaining
a single-phase La0.99Ca0.01Nb0.98Ti0.02O4–δ sample, as impurities in lanthanum methaniobate and
La2Ti2O7 were found. Calcined powders and gastight pellets of orthoniobates and nanocompos-
ites were characterized by X-ray diffraction analysis as well as scanning and transmission electron
microscopy. Transport characteristics were investigated by the Van der Pauw technique, varying
measurement temperatures in a wet H2 atmosphere. The oxygen mobility was estimated by the
oxygen isotope heteroexchange with C18O2.

Keywords: orthoniobate; nanocomposite; supercritical fluids; membrane; conductivity

1. Introduction

The finding and development of suitable materials for the creation of energy conver-
sion and storage devices based on inorganic ceramic elements continue to this day. An
active search for materials considered promising ionic conductors thanks to high values of
proton and oxygen conductivity, density, and thermochemical stability is underway [1–3].
These include orthoniobates of rare-earth elements, which are characterized as perspec-
tive materials for use as components of fuel cells and other electrochemical devices such
as membranes for oxygen and hydrogen separation, ceramic membrane reactors, and
electrolyzers [4–9].

Lanthanum orthoniobates have been considered as promising proton-conducting
solid electrolytes over the past decade. These materials have good chemical stability in
atmospheres containing CO2 and H2O, unlike barium cerates and zirconates [10]. However,
despite the high stability, these compounds have a rather low conductivity compared with
the materials mentioned above [11].
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The value of proton conductivity depends on the defect structure of the oxide, as the
presence of oxygen vacancies is the main factor responsible for the appearance of proton
defects. Thus, the introduction of additional cations into the perovskite structure with a
natural deficiency of the oxygen sublattice leads to a further increase in structural disorder
and, as a result, to an increase in proton conductivity. Many efforts have been made to
improve the conductivity by single- or multi-element doping. A further increase in the
mobility of protons in materials based on LaNbO4 was achieved by doping its A-sublattice
with cations of a lower valence and a larger ionic radius, such as Sr, Ce, Yb, Pr, Mg, Cu,
and Ca [12–20], as well as doping its B-sublattice with cations having a high valence with
a small ionic radius, such as W, Al, Zr, Ti, Co, Mo, and Ta [21–28]. Despite the acceptor
nature of Ti-doping, there is an indication of n-type conductivity at 1000 ◦C for the Ti-doped
sample. One may thus suggest that the multivalent nature of Ti slightly reduces the effective
band gap and, consequently, increases the concentration of electrons. This behaviour is in
agreement with the interpretation of the dependence of the bulk conductivity as a function
of pH2O at 1200 ◦C [28].

To create highly efficient proton-conducting membranes, materials of the functional
layer should be used with a set of characteristics, such as stability in various media (CO2,
H2O), high mechanical strength, and high conductivity. It is not always possible for
individual components to meet these requirements, so approaches such as the use of
composites will help to solve this problem. In particular, lanthanum orthoniobates with
high stability in a humid and carbon-dioxide-containing atmosphere, good mechanical
properties, compatibility with transition metals (Cu, Ni, and Cu–Ni alloys) and their
oxides, and sufficiently high ionic conductivity make these compounds attractive for the
development of nanocomposite materials for hydrogen separation membranes [4,29,30].
The introduction of another component such as a metal into the composite provides
mechanical strength high electronic conductivity, which is crucial to avoid hydrogen
permeation limiting by coupled electron–proton transport across the membrane.

There are various methods for the synthesis of proton-conducting lanthanum orthonio-
bate, such as the most commonly used solid-phase method [16,19,23,24,27–30], the method
of mechanical activation [13,31], the molten salt method [32], the sol–gel method [33], and
spray pyrolysis from aqueous precursors [14,34]. Most of the methods listed above are
multi-stage, require a long processing time, and entail significant energy consumption.

A relatively recently proposed method for the synthesis of nanomaterials in super-
critical fluids, thanks to their unique properties (low viscosity, lack of surface tension,
high supersaturation of the solution, and so on), provides a high-performance synthesis
of materials with the required properties. Moreover, because of the high rate of particle
formation in supercritical fluids, this method allows synthesis in a continuous stream. Here,
the synthesis process can be modified by changing the operating parameters, so elucidation
of how each parameter affects the process allows to control the structure, particles’ size, and
morphology of materials [35]. Alkali niobates nanoparticles were continuously synthesized
in a supercritical water flow system [36]. Single-phase NaNbO3 was obtained under super-
critical conditions over a wide range of parameters (T > 400 ◦C, 25 < p < 30 MPa). Besides,
metal nanopowders and nanocomposites were synthesized in supercritical fluids [37].

In the work of [38], a possibility to carry out reduction reactions of metal oxides and
salts in supercritical isopropanol media was shown. A number of oxides (CuO, CdO,
HgO, CoxOy, Bi2O3, and so on) can be used for the synthesis of functional materials based
on metal particles fixed on various supports. Nanoparticles of Ni, Cu, and Ag metals
were synthesized continuously in supercritical methanol with the formation of very small
particles, and this method provided an alternative pre-annealing treatment that improves
the sinterability of materials and decreases the temperature of sintering [39]. In previous
studies [40], we obtained metals and alloys based on nickel, copper, cobalt, and silver. The
results of our research showed that using supercritical alcohols allows for obtaining metals
and alloys in one stage. The powders after calcination are spherical nanoparticles with an
average size of 25–45 nm.
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In this study, we report that NiCu and NiCo nanoparticles and orthoniobates powders
can be synthesized using supercritical alcohol fluid technology. Moreover, for the first
time, new types of nanocomposites containing metal (M = Ni, Co, Cu) nanoparticles and
niobates were prepared. The properties (size, phase composition, and morphology) of
the synthesized materials were characterized by scanning electron microscopy (SEM),
transmission electron microscopy (HRTEM), and X-ray diffraction analysis. Transport
properties (conductivity and oxygen mobility) of obtained materials were investigated.
While single-phase rare-earth niobates have already been studied well, based on them,
nanocomposite materials with mixed conductivity of both theoretical and practical interest
were prepared and characterized for the first time.

2. Materials and Methods

Samples of oxides and nanocomposites were synthesized by solvothermal synthesis
using supercritical alcohols in a flow-through reactor. The experimental custom-built setup
for the preparation of materials is described elsewhere [41].

Materials were synthesized using alcohol solutions of salts of corresponding metals
La (NO3)3·6H2O (99.99% Vecton, Saint-Petersburg, Russia), Ca(NO3)2 (99.5% Reakhim,
Moscow, Russia) NbCl5 (99.99% Acros Organics, Geel, Belgium), Co(NO3)2·6H2O (99.90%
Reakhim, Moscow, Russia), Ni(NO3)2·nH2O (Reakhim, Moscow, Russia), Cu (NO3)2·6H2O
(99.5% Vecton, Saint-Petersburg, Russia), and C16H36O4Ti (99.99% Alfa Aesar, Karlsruhe,
Germany). Precursor solutions were prepared by dissolving salts in isopropanol (99.99%
Reakhim, Moscow, Russia) with the addition of an equimolar amount of acetylacetone
(99.99% Reakhim, Moscow, Russia) as a complexing agent. Ni/Co and Ni/Cu molar ratios
were equal to 1. A mixture of metal solutions was fed into a U-shaped reactor (l = 75 cm,
inner diameter = 4 mm) at a rate of 5 mL/min. At the same time, isopropyl alcohol
preheated to a temperature of 150 ◦C was fed into the reactor at a rate of 9 mL/min at
400 ◦C and a pressure of 120 atm. The synthesis products were separated from the mother
liquor by decantation. The precipitates were dried and calcined under air for 4 h (NiCu
and NiCo at 500 ◦C and orthoniobates at 1100 ◦C).

For «one-pot» synthesis of nanocomposites La0.99Ca0.01NbO4/NiCuOx and
La0.99Ca0.01NbO4/NiCoOx (65:35 wt.%) in supercritical conditions, the required quantities
of corresponding salts were blended in isopropanol with the addition of acetylacetonate as
a complexing agent. The mixed solution was fed into a reactor and SCS was performed
under the same conditions as for niobates. All precursors were dried at 80 ◦C for 12 h and
calcined under air at 1100 ◦C for 6 h.

All powders of nanocomposites were pressed into pellets of 10–12 mm in diameter
and sintered by the hot-pressing technique under 50 MPa at 1100 ◦C for 15 min in Ar. The
pellets of orthoniobates powders were sintered at 1100 ◦C for 4 h in air.

The codes and compositions of samples of Ni-Co, Ni-Cu, and orthoniobates, as well
as nanocomposites based on them, are presented in Table 1.

Table 1. Properties of materials.

№ Code Composition Relative
Density, %

SSA, m2/g

700 ◦C 1100 ◦C

1 LCNb La0.99Ca0.01NbO4 77 13 1.5

2 LCNbTi La0.99Ca0.01Nb0.98Ti0.02O4–δ 74 14.6 5.9

3 NiCu Ni0.5Cu0.5Ox - 8 * -

4 NiCo Ni0.5Co0.5Ox - 10 * -

5 NiCu–LCNb La0.99Ca0.01NbO4/NiCuOx 82 4.5 0.3

6 NiCo–LCNb La0.99Ca0.01NbO4/NiCoOx 85 5.3 0.1

* Experiments were carried out for samples calcined at 500 ◦C.
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All calcined powders and gas-tight pellets of orthoniobates and nanocomposites were
characterized by X-ray diffraction, transmission electron microscopy (TEM), scanning
electron microscopy (SEM), specific surface area, conductivity, and oxygen mobility mea-
surements. Diffraction patterns were obtained using a Bruker diffractometer Advance D8
with CuKα radiation. Scanning was carried out in the range of angles of 15–90 (2Θ) with
a scanning step of 0.05 (2Θ). The identification of the obtained phases and quantitative
calculations were obtained using the ICDD X-ray data file.

Measurements of the textural characteristics of materials were carried out by physical
adsorption of N2 using an ASAP-2400 (Micromeritics Instrument. Corp., Norcross, GA,
USA). The specific surface area (SSA) was calculated using obtained adsorption isotherms.

La0.99Ca0.01Nb0.98Ti0.02O4–δ sample was examined using an FIB-SEM microscope (Tes-
can Solaris, Brno-Kohoutovice, Czech Republic) equipped with secondary and reflected
electron detectors. Samples in the form of pellets were attached to a standard holder fol-
lowed by spraying a thin carbon layer to ensure the conductivity of the near-surface layer.
The other samples were investigated using high-angle ring scanning electron microscopy in
a dark field (HAADF-STEM). High-resolution transmission electron microscopy (HRTEM)
data were obtained using a JEM-2200FS transmission electron microscope (JEOL Ltd.,
Tokyo, Japan, accelerating voltage 200 kV, grating resolution of 1A) equipped with a Cs
corrector and an EDX spectrometer (JEOL Ltd., Tokyo, Japan). The minimum spot diameter
for step-by-step line analysis or mapping of elementary EDX analysis was ~1 nm, with a
step of about 1.5 nm. Fourier–Raman spectra (3600–100 cm−1, 300 scans, resolution 4 cm−1,
geometry 180◦) were recorded using a Bruker RFS 100/S spectrometer.

Electrical conductivity was studied by impedance spectroscopy in two electrode cells
placed in a humid hydrogen atmosphere using a precision LCR HP-4284AP meter in the AC
frequency range of 20 Hz−1 MHz. Bulk conductivity values were determined from analysis
of the Z “–Z” plots. The proton conductivity of composites containing metal alloys was de-
termined on compact samples by the four-probe van der Pauw method in the galvanostatic
mode with four ion-selective probes made of proton-conducting La0.99Ca0.01NbO4 ceramics,
similar to the ion probe technique described elsewhere [42]. Ion-selective electrodes allow
the determination of proton conductivity, as they completely block the electron current,
while being reversible electrodes for protons.

The theoretical density and porosity of the pelletized composites were investigated by
Archimedes’ method.

The oxygen mobility and surface reactivity of the milled samples were studied using
temperature-programmed isotope exchange of oxygen (TPIE) with C18O2 in the flow reactor.
Samples were loaded into the quartz tube with an inner diameter of 3 mm. Pretreatment
was carried out in He + 1% O2 feed with a flow rate of 25 mL/min at 700 ◦C for 0.5 h. TPIE
experiments were carried out in He + 1% C18O2 gas mixture with a flow rate of 25 mL/min
while heating from 50 ◦C to 700–800 ◦C with a ramp of 5 ◦C/min. The outlet gas mixture
was analyzed by an UGA 200 mass spectrometer (Stanford Research Systems, Stanford
Research Systems Inc., Sunnyvale, CA, USA). The temperature dependencies of 18O atoms
(α) and C16O18O molecules (f16–18) mole fractions were analyzed to calculate the oxygen
tracer diffusion coefficient (D*) and its effective activation energy (Ea,D) values using a
mathematical model [43].

3. Results and Discussion
3.1. Structural Characteristics
3.1.1. Niobates

According to the diffraction patterns in Figure 1, both lanthanum orthoniobates after
supercritical synthesis are X-ray amorphous materials. The formation of the orthoniobate
phase only began after calcination at 700 ◦C. Figure 1a demonstrates XRD patterns of
the La0.99Ca0.01NbO4 (LCNb) sample, and only reflections of the fergusonite phase with
monoclinic structure (PDF [01-083-1911]) are observed for samples calcined at 1100 ◦C.
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Figure 1. XRD patterns of (a) LCNb and (b) LCNbTi sintered at different temperatures. 
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In contrast, the powder of La0.99Ca0.01Nb0.98Ti0.02O4–δ (LCNbTi) calcined at 1100 ◦C is
a mixture of three phases—monoclinic LaNbO4–δ (PDF [01-083-1911]) and low quantities of
monoclinic La2Ti2O7 (PDF [00-028-0517] and orthorhombic La0.33NbO3 (PDF [00-026-0822])
phases (Figure 2b). The impurity La0.33NbO3 is a mixed electronic and ionic (oxygen-ion
and proton) conductor depending on temperature and conditions [44]. The presence of this
impurity can also lead to an increase in the proton conductivity.
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Figure 2 shows the SEM images of LCNb and LCNbTi powders sintered at 1100 ◦C
for 4 h. The La0.99Ca0.01NbO4 sample is quite dense and pore-free, with similar grain
sizes in the range of 2–6 µm (Figure 2a). Titanium-doped lanthanum orthoniobate is still
very porous after 4 h of sintering, with a grain size distribution varying from 1 to 4 µm
(Figure 2b).

3.1.2. NiCu and NiCo

According to the XRD data, weakly crystallized phases of solid solutions of nickel,
copper, and cobalt oxides are present immediately after drying the obtained suspension.
During synthesis in supercritical medium, nickel–copper alloys were obtained, and the
metal cations were reduced in the reactor as a result of the interaction with supercritical
isopropanol. Based on XRD data (Figure 3a) after treatment at 500 ◦C in the air, the NiCo
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sample is a mixture of nickel and cobalt oxide. The unit cell parameter of Co3O4 is 8.101 Å
and that of NiO is 4.174 Å. The average crystallite size is 22.5 and 16.0 nm, respectively. As
follows from the XRD patterns for the reduced NiCo sample (Figure 2a), the lattice constant
is 3.534 Å. For metallic cobalt and nickel, the cell parameter is 3.544 Å (PDF [89-4307]) and
3.524 Å (PDF [65-2865]), respectively. Based on this, according to Vegard’s rule, the unit cell
parameter corresponds to an Ni/Co ratio of ~50/50.
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Figure 3. XRD patterns of the (a) NiCo and (b) NiCu powdered samples calcined at 500 ◦C in air
(curves NiCu and NiCo) and after treatment at 600 ◦C in hydrogen (reduced).

The NiCu powdered sample calcined at 500 ◦C is a mixture of Ni0.19Cu0.81 alloy, nickel,
NiO, and Cu2O phases (Figure 3b). For metallic Cu, the lattice parameter is 3.625 Å (PDF
[70-3038]) and that of Ni is 3.524 Å (PDF [65-2865]). After reduction of this sample, the
lattice parameter of the metal phase was changed to 3.563 Å, which corresponded to Ni/Cu
alloy with a composition ~60/40.

The TEM data of NiCo and NiCu samples show almost spherical metal nanoparticles
with an average size of 10–45 nm (Figure 4).
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Figure 4. TEM images of (a) NiCo and (b) NiCu after calcination at 500 ◦C.

3.1.3. Nanocomposites

Modification in the phase composition of nanocomposites with the increase in calcina-
tion temperature is shown in Figure 5. During the synthesis of nanocomposites, there was
no reduction in nickel, copper, or cobalt to the metallic state. For materials after calcination
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at 500 ◦C under air, the phases of nickel and cobalt oxides were formed, while the phase of
lanthanum orthoniobate had not yet crystallized. For NiCo–LCNb nanocomposite sintered
at 700 ◦C, the main phase is monoclinic La0.99Ca0.01NbO4, with NiO and Co3O4 phases
being observed as well. With a further increase in calcination temperature under air up to
1100 ◦C, a phase of mixed nickel–cobalt oxide was formed.
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Figure 5. XRD patterns of the composites NiCo–LCNb (a) and NiCu–LCNb (b) sintered at
500–1100 ◦C.

The nanocomposite NiCu–LCNb (700 ◦C) consists of monoclinic and tetragonal phases
of the composition La0.99Ca0.01NbO4, nickel oxide NiO, and a solid solution of nickel–
copper oxide Ni0.8Cu0.2Ox (Figure 5b). Reflections corresponding to a separate copper
phase or its oxides were not observed; hence, copper compounds are apparently in X-ray
amorphous states. There were no new phases indicating products of chemical interaction
between components of nanocomposites.

According to scanning transmission electron microscopy (HAADF-STEM), both sam-
ples showed a rather uniform spatial cation distribution (Figures 6 and 7). In the NiCu–
LCNb sample, the distribution of lanthanum, niobium, and copper is uniform, but relatively
large nickel particles are observed. The ratio of nickel to copper depends on the survey area,
thus, unlike copper, nickel is unevenly distributed, which agrees with the assumption that
copper is predominantly in fine form or distributed in the volume of lanthanum-calcium
niobate. As for the NiCo–LCNb sample, the distribution of all elements is more uniform
(Figure 7).

3.2. Reducibility in Hydrogen

Temperature-programmed reduction (TPR) was performed for lanthanum orthonio-
bate and for nanocomposites sintered at different temperatures (Figure 8). La orthoniobate
is almost not reducible by hydrogen in the analyzed temperature range. The lower tem-
perature TPR peaks at 214–240 ◦C and 400–436 ◦C correspond to the reduction of NiO to
Ni, CuO to Cu, Co3O4 to CoO, and CoO to Co [45]. As shown in our previous work [46],
the recovery of a nickel–copper alloy in its pure form takes place at 201 ◦C, and in com-
posites containing NiCu and tungstates, the peak shifted towards higher temperatures of
254–312 ◦C. This was explained by the partial decoration of NiCuO particles in nanocom-
posites with tungstates oxide fragments, which reduces their reactivity. A similar situation
is observed in the case of NiCu–LCNb and NiCo–LCNb nanocomposites.
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Figure 8. TPR-H2 spectra of lanthanum orthoniobate LCNb and composites: (a) NiCo–LCNb and
(b) NiCu–LCNb composites as powders sintered at 700 and 1100 ◦C.

For both composites calcined at 1100 ◦C, reduction peaks are shifted to higher temper-
atures as compared with samples after calcination at 700 ◦C, while the amounts of removed
oxygen decreases. Figure 9 shows the diffraction patterns of composites where, in addition
to the main phase of lanthanum orthoniobate, phases of NiCo and NiCu alloys are obtained.
Hydrogen consumption during NiCo–LCNb composite reduction is larger than that for
NiCu–LCNb, as displayed in Table 2.
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Table 2. Characteristics of H2-TPR spectra.

№ Sample Tcalcination, ◦C
The Maxima of Peaks, ◦C H2 Consumption,

mol H2 g−1 × 10−3T1 T2

1 LCNb 700 325 544 0.4

2
NiCu–
LCNb

700 436 - 1.8
1100 477 654 1.3

3 NiCo–
LCNb

700 403 430 2.8
1100 445 - 2.1
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3.3. Conductivity

The electric conductivity of composites was studied for their pellets calcined at
1100 ◦C. According to XRD data (Figure 9), after reduction in H2, the monoclinic phase
of lanthanum orthoniobate was present in both nanocomposites. Ni and Ni–Co oxides
partially disappeared with formation of Ni–Co alloy. The NiCu alloy phase was detected
in the XRD patterns of the NiCu–LCNb composite. Figure 10 shows SEM micrographs
of composites after calcination at 1100 ◦C. This method of nanocomposites’ preparation
provides a high density of nanocomposite ceramics (Table 1).
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Figure 10. SEM images of the composites (a) NiCu–LCNb and (b) NiCo–LCNb after calcination at
1100 ◦C.

Temperature dependences of the conductivity of nanocomposites are presented in
Figure 11. To prevent oxidation of metals, the measurements were carried out in an at-
mosphere of moist hydrogen. Their total electrical conductivity is high, up to 10−3 S/cm.
Lanthanum orthoniobate doped with Ca exhibits the highest proton conductivity of the
orthoniobates, up to ~1 × 10−4 S/cm in wet reducing conditions at 700 ◦C [15,23,44].
Figure 11a shows that nanocomposite materials have high electronic and ionic conductivity.
Figure 11b shows the experimental temperature dependences of proton conductivity of
NiCu–LCNb and NiCo–LCNb obtained using a four-electrode cell with ion probe elec-
trodes. The NiCo–LCNb nanocomposite shows high values of both electronic and proton
conductivity.

3.4. Oxygen Mobility

Figure 12 demonstrates the TPIE curves of NiCu–LCNb and NiCo–LCNb composites.
For comparison reasons, the TPIE curve for the LCNb sample obtained in the previous
work [4] is added as well. The diffusion rate for composites catastrophically declines
compared with that of LCNb. One can suppose that such a drastic decrease in oxygen
mobility is associated with a negative effect of nickel–copper/cobalt oxides having very low
oxide ionic conductivity [4,43,47]. It is likely that such an effect includes partial blocking
of oxide-ionic conductive LCNb particles by relatively large nickel–copper/cobalt oxide
particles. Reduction of these particles can partially unlock the LCNb phase, as the metallic
particles are small (Section 3.1).
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Figure 12. Temperature-programmed isotope of oxygen with C18O2 in an open reactor for samples:
1,1′—NiCu–LCNb sintered at 700 ◦C, 2,2′—NiCu–LCNb sintered at 1100 ◦C, 3,3′—NiCo–LCNb
sintered at 700 ◦C, 4,4′—NiCo–LCNb sintered at 1100 ◦C, and 5—LCNb [4]; 1–4 —initial samples,
1′-4′—samples after reduction and reoxidation. Points—experiment, lines—modelling.

However, reduction of the samples by hydrogen (in He + H2 flow at 600 ◦C for 1 h)
followed by soft reoxidation (in He + CO2 flow at 800 ◦C for 1 h) did not demonstrate a
significant increase in oxygen diffusivity (Figure 12, curves 1′-4′). The effective activation
energy (Ea,D) value was 260 kJ/mol (Table 3, Figure 13). The oxygen tracer diffusion
coefficient (D*) values were close for all samples (~10−20 cm2/s at 700 K), with visible
differences in the isotope substitution rate being generally related to the difference in the
SSA, and hence in the diffusion path.
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Table 3. The oxygen tracer diffusion coefficient values at 700 K and its effective activation energy for
NiCu–LCNb and NiCo–LCNb samples according to TPIE with C18O2 data modelling.

Sample Tcalcination, ◦C D* |700 K, [cm2/s] Ea,D, [kJ/mol]

NiCu–LCNb
700 5(±3)·10–20

1100 6(±4)·10–20

NiCo–LCNb
700 5(±3)·10–20

2601100 6(±4)·10–20
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Figure 13. Arrhenius plots of tracer diffusion coefficient for NiCu–LCNb (1, 2) and NiCo–LCNb (3, 4)
samples sintered at 700 ◦C (1,3) and 1100 ◦C (2,4) compared with LCNb sample (5) [4], according to
TPIE with C18O2 data modelling.

4. Conclusions

In the present work, proton solid electrolytes La0.99Ca0.01NbO4 and
La0.99Ca0.01Nb0.98Ti0.02O4–δ, metal alloys NiCo and NiCu, and metal–ceramic nanocom-
posites La0.99Ca0.01NbO4/NiCuOx and La0.99Ca0.01NbO4/NiCoOx were prepared using
supercritical media, and their structural and transport properties were characterized. For
the first time, an approach of one-pot synthesis of nanocomposites was developed us-
ing continuous solvothermal flow synthesis in supercritical isopropanol. This route is
a promising technique for the synthesis of single-phase initial electrolytes, alloys, and
nanocomposites. High-density ceramics by sintering of powders at 1100 ◦C using the hot
pressure technique were developed. Composites based on La orthoniobates with a high
conductivity are promising materials for hydrogen separation membranes.
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