Determination of Young Modulus and Stress-Strain Curve for Metal Fe and Interstitial Alloy FeC
Abstract
:1. Introduction
2. Theoretical Background
3. Numerical Calculations and Discussions for Fe and FeC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Satoh, A. Introduction to Practice of Molecular Simulation; Elsevier Inc.: Burlington, MA, USA, 2011. [Google Scholar]
- Mostowski, J.; Trippenbach, M.; Van, C.L. Phase Space Approach to Two-electron Atom Ionisation. In Proceedings of the Fourth International Conference on Multiphoton Processes, Boulder, Colorado, 13–17 July 1987. [Google Scholar]
- Trippenbach, M. Center of Theoretical Physics. Ph.D. Thesis, Polish Academy of Science, Warsaw, Poland, 1987; pp. 89–121. (In Polish). [Google Scholar]
- Long, V.C.; Goldstein, P. Concise Course in Nonlinear Partial Differential Equations; University of Zielona Góra Press: Zielona Góra, Poland, 2008; pp. 110–116. [Google Scholar]
- Dung, N.T.; Cuong, N.C.; Hung, T.V. Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Ni nanoparticles. RSC Adv. 2017, 7, 25406–25413. [Google Scholar]
- Dung, N.T.; Van, C.L. Effects of Number of Atoms, Shell Thickness, and Temperature on the Structure of Fe Nanoparticles Amorphous by Molecular Dynamics Method. Adv. Civ. Eng. 2021, 2021, 9976633. [Google Scholar]
- Kien, H.; Lan, M.T.; Dung, N.T.; Hung, P.K. Annealing study of amorphous bulk and nanoparticle iron using molecular dynamics simulation. Int. J. Mod. Phys. B 2014, 28, 1450155. [Google Scholar] [CrossRef]
- Sha, X.; Cohen, R.E. First-principles thermoelasticity of bcc iron under pressure. Phys. Rev. B 2006, 74, 214111. [Google Scholar] [CrossRef]
- Isaak, D.G.; Masuda, K. Elastic and viscoelastic properties of α iron at high temperatures. J. Geophys. Res. Solid Earth 1995, 100, 17689–17698. [Google Scholar] [CrossRef]
- Adams, J.J.; Agosta, D.S.; Leisure, R.G.; Ledbetter, H. Elastic constants of monocrystal iron from 3 to 500K. J. Appl. Phys. 2006, 100, 113530. [Google Scholar] [CrossRef]
- Speich, G.R.; Schwoeble, A.J.; Leslie, W.C. Elastic constants of binary iron-base alloys. Metall. Trans. 1972, 3, 2031–2037. [Google Scholar] [CrossRef]
- Minh, H.D.T.; Hoc, G.C.; Quang, N.; Dung, N.T. Influence of heating rate, temperature, pressure on the structure, and phase transition of amorphous Ni material: A molecular dynamics study. Heliyon 2020, 6, e05548. [Google Scholar] [CrossRef]
- Dung, N.T. Z-AXIS deformation method to investigate the influence of system size, structure phase transition on mechanical properties of bulk nickel. Mater. Chem. Phys. 2020, 252, 123275. [Google Scholar]
- Tuan, T.Q.; Dung, N.T. Molecular dynamics factors affecting on the structure, phase transition of Al bulk. Phys. B Condens. Matter. 2019, 570, 116–121. [Google Scholar]
- Quoc, T.T.; Trong, D.N.; Ţălu, Ş. Study on the Influence of Factors on the Structure and Mechanical Properties of Amorphous Aluminium by Molecular Dynamics Method. Adv. Mater. Sci. Eng. 2021, 2021, 5564644. [Google Scholar] [CrossRef]
- Nguyen-Trong, D.; Nguyen-Tri, P. Understanding the heterogeneous kinetics of Al nanoparticles by simulations method. J. Mol. Struct. 2020, 1218, 128498. [Google Scholar] [CrossRef]
- Trong, D.N.; Long, V.C.; Țălu, Ș. Molecular dynamics simulation of bulk Cu material under various factors. Appl. Sci. 2022, 12, 4437. [Google Scholar] [CrossRef]
- Young’s Modulus of Elasticity for Metals and Alloys. Available online: https://www.engineeringtoolbox.com/young-modulus-d_773.html (accessed on 31 July 2022).
- Singh, B.N.; Huang, X.; Tähtinen, S.; Moilanen, P.; Jacquet, P.; Dekeyser, J. Final Report on In-Reactor Uniaxial Tensile Deformation of Pure Iron and Fe-Cr Alloy; Risø National Laboratory Technical University of Denmark Roskilde: Roskilde, Denmark, 2007. [Google Scholar]
- Dung, N.T. Influence of impurity concentration, atomic number, temperature and tempering time on microstructure and phase transformation of Ni1−xFex (x = 0.1, 0.3, 0.5) nanoparticles. Mod. Phys. Lett. B 2018, 32, 1850204. [Google Scholar] [CrossRef]
- Dung, N.T.; Kien, P.H.; Phuong, N.T. Simulation on the Factors Affecting the Crystallization Process of FeNi Alloy by Molecular Dynamics. ACS Omega 2019, 4, 14605–14612. [Google Scholar]
- Tuan, T.Q.; Dung, N.T. Effect of heating rate, impurity concentration of Cu, atomic number, temperatures, time annealing temperature on the structure, crystallization temperature and crystallization process of Ni1−xCux bulk; x = 0.1, 0.3, 0.5, 0.7. Int. J. Mod. Phys. B 2018, 32, 1830009. [Google Scholar] [CrossRef]
- Dung, N.T.; Van, C.L. Factors affecting the depth of the Earth’s surface on the heterogeneous dynamics of Cu1− x Nix alloy, x= 0.1, 0.3, 0.5, 0.7, 0.9 by molecular dynamics simulation method. Mater. Today Commun. 2021, 29, 102812. [Google Scholar]
- Dung, N.T.; Phuong, N.T. Molecular dynamic study on factors influencing the structure, phase transition and crystallization process of NiCu6912 nanoparticle. Mater. Chem. Phys. 2020, 250, 123075. [Google Scholar]
- Dung, N.T.; Phuong, N.T. Factors affecting the structure, phase transition and crystallization process of AlNi nanoparticles. J. Alloys Compd. 2020, 812, 152133. [Google Scholar]
- Long, V.C.; Van, D.Q.; Dung, N.T. Ab Initio Calculations on the Structural and Electronic Properties of AgAu Alloys. ACS Omega 2020, 5, 31391–31397. [Google Scholar] [CrossRef]
- Dung, N.T.; Cuong, N.C.; Van, D.Q. Study on the Effect of Doping on Lattice Constant and Electronic Structure of Bulk AuCu by the Density Functional Theory. J. Multiscale Model. 2020, 11, 2030001. [Google Scholar]
- Quoc, T.T.; Long, V.C.; Țălu, Ș.; Nguyen Trong, D. Molecular Dynamics Study on the Crystallization Process of Cubic Cu–Au Alloy. Appl. Sci. 2022, 12, 946. [Google Scholar] [CrossRef]
- Dung, N.T.; Long, V.C.; Țălu, Ș. The The Structure and Crystallizing Process of NiAu Alloy: A Molecular Dynamics Simulation Method. J. Compos. Sci. 2021, 5, 18. [Google Scholar]
- Vu, Q.-T.; Tran, T.-T.-D.; Nguyen, T.-C.; Nguyen, T.V.; Nguyen, H.; Vinh, P.V.; Nguyen-Trong, D.; Dinh Duc, N.; Nguyen-Tri, P. DFT Prediction of Factors Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymers. Polymers 2020, 12, 1207. [Google Scholar] [CrossRef] [PubMed]
- Trong, D.N.; Long, V.C.; Dang, P.N.; Ţălu, Ş. A molecular dynamics study concerning the effect of high-temperature and high-pressure on the structure and phase transition of Fe2O3 material. AIMS Mater. Sci. 2022, 9, 406–429. [Google Scholar] [CrossRef]
- Dung, N.T.; Van, C.L.; Ţălu, Ş. The Study of the Influence of Matrix, Size, Rotation Angle, and Magnetic Field on the Isothermal Entropy, and the Néel Phase Transition Temperature of Fe2O3 Nanocomposite Thin Films by the Monte-Carlo Simulation Method. Coatings 2021, 11, 1209. [Google Scholar]
- Van, C.L.; Saraç, U.; Baykul, M.C.; Luong, D.T.; Țălu, Ș.; Dung, N.T. Electrochemical Deposition of Fe–Co–Ni Samples with Different Co Contents and Characterization of Their Microstructural and Magnetic Properties. Coatings 2022, 12, 346. [Google Scholar]
- Hoc, N.Q.; Hoa, N.T.; Hien, N.D. Study on elastic deformation of substitution alloy AB with interstitrial atom C and BCC structure under pressure. Sci. J. Hanoi Metrop. Univ. Nat. Sci. Technol. 2017, 20, 55–66. [Google Scholar]
- Hoc, N.Q.; Tinh, B.D.; Hien, N.D. Elastic Moduli and Elastic Constants of Interstitial Alloy AuCuSi with FCC Structure under Pressure. High Temp. Mater. Process. 2019, 38, 264–272. [Google Scholar] [CrossRef]
- Hoc, N.Q.; Hien, N.D.; Thang, D.Q. Elastic Deformation of Alloy AuSi with BCC Structure under Pressure. HNUE J. Sci. Nat. Sci. 2018, 63, 74–83. [Google Scholar]
- Hoc, N.Q.; Cuong, T.D.; Hien, N.D. Study on Elastic Deformation of Interstitial Alloy FeC with BCC Structure under Pressure. J. Sci. Mat.-Phys. 2019, 35, 1–12. [Google Scholar]
- Kermouche, G.; Grange, F.; Langlade, C. Local identification of the stress–strain curves of metals at a high strain rate using repeated micro-impact testing. Mater. Sci. Eng. A 2013, 569, 71–77. [Google Scholar] [CrossRef]
- Al Baida, H.; Kermouche, G.; Langlade, C. Development of an improved method for identifying material stress–strain curve using repeated micro-impact testing. Mech. Mater. 2015, 86, 11–20. [Google Scholar] [CrossRef]
- Al Baida, H.; Langlade, C.; Kermouche, G.; Ambriz, R.R. Identifying the stress–strain curve of materials by microimpact testing. Application on pure copper, pure iron, and aluminum alloy 6061-T651. J. Mater. Res. 2015, 30, 2222–2230. [Google Scholar] [CrossRef]
- Xiong, W.; Selleby, M.; Chen, Q.; Odqvist, J.; Du, Y. Phase Equilibria and Thermodynamic Properties in the Fe-Cr System. Crit. Rev. Solid State Mater. 2010, 35, 125–152. [Google Scholar] [CrossRef]
- Zhao, K.M.; Jiang, G.; Wang, L. Electronic and thermodynamic properties of B2-FeSi from first principles. Phys. B Condens. Matter 2011, 406, 363–367. [Google Scholar] [CrossRef]
- Zhang, J.; Su, C.; Liu, Y. First-principles study of bcc Fe-Cr-Si binary and ternary random alloys from special quasi-random structure. Phys. B Condens. Matter 2020, 586, 412085. [Google Scholar] [CrossRef]
- Hoc, N.Q.; Tinh, B.D.; Hien, N.D.; Coman, G. Nonlinear deformation of BCC metal Fe and BCC interstitial alloy FeSi: Dependence on temperature, pressure and silicon concentration. Mater. Phys. Mech. 2021, 47, 501–513. [Google Scholar]
- Hoc, N.Q.; Tinh, B.D.; Hien, N.D.; Coman, G. Study on nonlinear deformation of FCC-AuCuSi under pressure by the statistical moment method. Adv. Mater. Sci. Eng. 2021, 6693326. [Google Scholar]
- Tang, N.; Hung, V.V. Investigation of the Thermodynamic Properties of Anharmonic Crystals by Momentum Method. IV. The Limiting of Absolute Stability and the Melting Temperature of Crystals. Phys. Status Solidi B 1990, 162, 379–385. [Google Scholar] [CrossRef]
- Tinh, B.D.; Hoc, N.Q.; Vinh, D.Q.; Cuong, T.D.; Hien, N.D. Thermodynamic and Elastic Properties of Interstitial Alloy FeC with BCC Structure at Zero Pressure. Adv. Mater. Sci. Eng. 2018, 2018, 5251741. [Google Scholar] [CrossRef]
- Hoc, N.Q.; Hoa, N.T.; Hien, N.D.; Thang, D.Q. Study on Nonlinear Deformation of Binary Interstitial Alloy with BCC Structure under Pressure. HNUE J. Sci. Nat. Sci. 2018, 63, 57–65. [Google Scholar]
- Magomedov, M.N. On calculating the Debye temperature and the Gruneisen parameter. Zhurnal Fiz. Khimii 1987, 61, 1003–1009. [Google Scholar]
- Good, R.J.; Hope, C.J. New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions. J. Chem. Phys. 1970, 53, 540–543. [Google Scholar] [CrossRef]
- Magomedov, M.N. Activated-process parameters for diamond, silicon, and germanium crystals. Russ. Microelectron. 2011, 40, 567–573. [Google Scholar] [CrossRef]
- Leese, J.; Lord, A.E. Elastic Stiffness Coefficients of Single-Crystal Iron from Room Temperature to 500 °C. J. Appl. Phys. 1968, 39, 3986–3988. [Google Scholar] [CrossRef]
- Klotz, S.; Braden, M. Phonon Dispersion of bcc Iron to 10 GPa. Phys. Rev. Lett. 2000, 85, 3209–3212. [Google Scholar] [CrossRef]
- Singh, A.K.; Mao, H.K.; Shu, J.; Hemley, R.J. Estimation of Single-Crystal Elastic Moduli from Polycrystalline X-ray Diffraction at High Pressure: Application to FeO and Iron. Phys. Rev. Lett. 1998, 80, 2157–2160. [Google Scholar] [CrossRef]
- Mohammad, R.K.; Kerstin, W. Characterization of sandwich composite T-joints under different ageing conditions. Compos. Struct. 2018, 197, 80–88. [Google Scholar]
- Li, N.; Gu, J.F.; Chen, P.H. Fracture plane based failure criteria for fibre-reinforced composites under three dimensional stress state. Compos. Struct. 2018, 204, 466–474. [Google Scholar] [CrossRef]
Interaction | D [eV] | r0 [10−10 m] | m | N |
---|---|---|---|---|
Fe-Fe [49] | 0.4005 | 2.4775 | 7 | 11.5 |
C-C [51] | 8.43 | 1.545 | 3.73 | 2.21 |
Fe-C (proposal) | 1.84 | 1.96 | 2.5 | 5.5 |
P [GPa] | T [K] | C11 [GPa] | C12 [GPa] | K [GPa] | G [GPa] | |
---|---|---|---|---|---|---|
LMTO-GGA [8] | 0 | 250 | 297 | 148 | 198 | 100 |
EXPT [52] | 300 | 266 | 140 | 169 | 78 | |
EXPT [53] | 300 | 223 | 127 | 159 | 84 | |
SMM (this paper) | 300 | 255 | 89 | 146 | 83 | |
LMTO-GGA [8] | 4.6 | 250 | 326 | 167 | 220 | 110 |
SMM (this paper) | 250 | 288 | 101 | 163 | 93 | |
CAL [54] | 300 | 260 | 154 | 189 | 100 | |
SMM (this paper) | 300 | 283 | 99 | 160 | 92 | |
LMTO-GGA [8] | 9.8 | 250 | 360 | 188 | 245 | 120 |
SMM (this paper) | 250 | 318 | 111 | 180 | 103 | |
EXPT [53] | 300 | 283 | 167 | 206 | 101 | |
SMM (this paper) | 300 | 313 | 110 | 178 | 102 |
P [GPa] | cC = 0 | cC = 0.2% | cC = 0.4% | cC = 0.6% |
---|---|---|---|---|
1 | 21.32 | 21.23 | 21.13 | 21.04 |
3 | 22.32 | 22.22 | 22.12 | 22.03 |
5 | 23.30 | 23.20 | 23.10 | 23.00 |
7 | 24.26 | 24.16 | 24.06 | 23.96 |
P [GPa] | cC = 0 | cC = 0.2% | cC = 0.4% | cC = 0.6% |
---|---|---|---|---|
1 | 21.32 | 21.23 | 21.13 | 21.04 |
3 | 22.32 | 22.22 | 22.12 | 22.03 |
5 | 23.30 | 23.20 | 23.10 | 23.00 |
7 | 24.26 | 24.16 | 24.06 | 23.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoc, N.Q.; Trong, D.N.; Cuong, N.C.; Tinh, B.D.; Hien, N.D.; Long, V.C.; Saraç, U.; Ţălu, Ş. Determination of Young Modulus and Stress-Strain Curve for Metal Fe and Interstitial Alloy FeC. J. Compos. Sci. 2022, 6, 250. https://doi.org/10.3390/jcs6090250
Hoc NQ, Trong DN, Cuong NC, Tinh BD, Hien ND, Long VC, Saraç U, Ţălu Ş. Determination of Young Modulus and Stress-Strain Curve for Metal Fe and Interstitial Alloy FeC. Journal of Composites Science. 2022; 6(9):250. https://doi.org/10.3390/jcs6090250
Chicago/Turabian StyleHoc, Nguyen Quang, Dung Nguyen Trong, Nguyen Chinh Cuong, Bui Duc Tinh, Nguyen Duc Hien, Van Cao Long, Umut Saraç, and Ştefan Ţălu. 2022. "Determination of Young Modulus and Stress-Strain Curve for Metal Fe and Interstitial Alloy FeC" Journal of Composites Science 6, no. 9: 250. https://doi.org/10.3390/jcs6090250
APA StyleHoc, N. Q., Trong, D. N., Cuong, N. C., Tinh, B. D., Hien, N. D., Long, V. C., Saraç, U., & Ţălu, Ş. (2022). Determination of Young Modulus and Stress-Strain Curve for Metal Fe and Interstitial Alloy FeC. Journal of Composites Science, 6(9), 250. https://doi.org/10.3390/jcs6090250