Titica Vine Fiber (Heteropsis flexuosa): A Hidden Amazon Fiber with Potential Applications as Reinforcement in Polymer Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. TVFs Processing
2.2. Physical Properties of the TVFs
2.2.1. Density Determination
2.2.2. Porosity Determination
2.2.3. Moisture Content
2.3. Fiber Composition and Structure
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. X-ray Diffraction (XRD)
2.4. Tensile Tests
2.5. Pullout Tests
2.6. Scanning Electron Microscopy (SEM)
3. Results
3.1. Physical Properties of the TVFs
3.1.1. Density Determination
3.1.2. Porosity Determination
3.1.3. Moisture Content
3.2. Fiber Composition and Structure
3.2.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.2. X-ray Diffraction (XRD)
3.3. Tensile Tests
3.4. Pullout Test
3.5. Scanning Electron Microscopy (SEM)
4. Summary and Conclusions
- The TVF density measurements obtained by the geometric method for the 10 diameter intervals ranged from 0.59 to 0.44 g/cm3. The average of the set was around 0.50 g/cm3. The data obtained in the test and by the Weibull statistics revealed a tendency for decreasing density with increasing fiber diameter, from 357 to 1111 µm. Using Archimedes’ principle, the fibers showed an average density of 0.57 g/cm3, very close to that found by the geometric method, which is among the lowest for natural fibers. Gas pycnometry returned a density value of 1.62 g/cm3. This high value, in large part, can be justified due to the exclusion of the open porosity of the fiber. However, this is still a similar value when comparing to other NLFs.
- The total, open, and closed porosity for the entire set of evaluated fibers returned values of 69.01%, 11.62%, and 57.39%, respectively. This indicates that TVF is highly porous, being suitable for applications that require lightweight materials.
- The moisture content presented by the TVFs was 11.38%, being considered within the standard for fibers that are commonly used in reinforced polymer composites.
- The FTIR indicated the presence of adsorption bands such as O-H, C-H, and C-O, which are characteristics of NLFs rich in cellulose, lignin, and hemicellulose.
- The fiber’s crystallinity index was 78.3%, and the microfibrillar angle (MFA) was approximately 7.95°. Despite the good percentage of crystallinity and the low angle, essential for increasing the fiber’s mechanical strength, the theoretical cellulose content calculated was around 39%, which is considered relatively low.
- The maximum tensile strength of the fibers was around 33 to 30 MPa for the 10 intervals of diameters evaluated. The ANOVA showed that there was no influence by the diameter to increase the property. The maximum tensile strength for the whole set was 25.92 MPa, considered relatively low when compared to other traditional natural fibers. This value can be explained by the low percentage of cellulose present in the fiber (39%). The values obtained for elastic modulus and deformation were 1.02 and 7.36, respectively. These results can be compared to other natural fibers under recent study.
- Pullout tests revealed that the critical length of the TVF in the epoxy matrix is 7.62 mm, and the interfacial shear stress 0.97 MPa.
- Through SEM images, it was possible to observe typical microstructural defects in the TVF such as void, microcracks, cracks, and fiber bridges. The high porosity calculated could be observed through the cross-section image of the fibers, which presented many vacancies filled by air and lumens.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lalit, R.; Mayank, P.; Ankur, K. Natural Fibers and Biopolymers Characterization: A Future Potential Composite Material. Stroj. Cas. J. Mech. Eng. 2018, 68, 33–50. [Google Scholar] [CrossRef]
- Mohammed, l.; Ansari, M.N.; Pua, G.; Jawaid, M.; Islam, M.S. A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef]
- Väisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017, 49, 582–596. [Google Scholar] [CrossRef]
- Ghori, W.; Saba, N.; Jawaid, M.; Asim, M. A review on date palm (phoenix dactylifera) fibers and its polymer composites. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012009. [Google Scholar] [CrossRef]
- Cunha, J.S.C.; Nascimento, L.F.C.; da Luz, F.S.; Monteiro, S.N.; Lemos, M.F.; da Silva, C.G.; Simonassi, N.T. Physical and Mechanical Characterization of Titica Vine (Heteropsis flexuosa) Incorporated Epoxy Matrix Composites. Polymers 2021, 13, 4079. [Google Scholar] [CrossRef]
- Girimurugan, R.; Pugazhenthi, R.; Maheskumar, P.; Suresh, T.; Vairavel, M. Impact and hardness behaviour of epoxy resin matrix composites reinforced with banana fiber/camellia sinensis particles. Mater. Today Proc. 2021, 39, 373–377. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. Part B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Shah, D.U. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Lopes, F.P.D.; Barbosa, A.P.; Bevitori, A.B.; Silva, I.L.A.; Costa, L.L. Natural lignocellulosic fibers as engineering materials—An overview. Metall. Mater. Trans. A 2011, 42, 2963–2974. [Google Scholar] [CrossRef]
- Biswas, S.; Shahinur, S.; Hasan, M.; Ahsan, Q. Physical, Mechanical and Thermal Properties of Jute and Bamboo Fiber Reinforced Unidirectional Epoxy Composites. Procedia Eng. 2015, 105, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Cunha, J.S.C.; Neto, H.E.O.; Giacon, V.M.; Manzato, L.; Silva, C.G. Study on mechanical and thermal properties of Amazon fibers on the polymeric biocomposites: Malva and Tucum. Fibers Polym. 2021, 22, 3203–3211. [Google Scholar] [CrossRef]
- Demosthenes, L.C.C.; Nascimento, L.F.C.; Monteiro, S.N.; Costa, U.O.; Garcia Filho, F.C.; Luz, F.S.; Oliveira, M.S.; Ramos, F.J.H.T.V.; Pereira, A.C.; Braga, F.O. Thermal and structural characterization of buriti fibers and their relevance in fabric reinforced composites. J. Mater. Res. Technol. 2020, 9, 115–123. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Bezerra, W.B.A.; da Costa, G.F.F.; da Luz, F.S.; Pinheiro, W.A.; Monteiro, S.N. Mechanical properties of composites with graphene oxide functionalization of either epoxy matrix or curaua fiber reinforcement. J. Mater. Res. Technol. 2020, 9, 13390–13401. [Google Scholar] [CrossRef]
- Da Luz, F.S.; Junior, E.P.L.; Louro, L.H.L.; Monteiro, S.N. Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric. Mater. Res. 2015, 18, 170–177. [Google Scholar] [CrossRef]
- Neuba, L.M.; Pereira Junio, R.F.; Ribeiro, M.P.; Souza, A.T.; Lima, E.S.; Filho, F.C.G.; Figueiredo, A.B.-H.S.; Braga, F.O.; De Azevedo, A.R.G.; Monteiro, S.N. Promising mechanical, thermal, and ballistic properties of novel epoxy composites reinforced with Cyperus malaccensis sedge fiber. Polymers 2020, 12, 1776. [Google Scholar] [CrossRef]
- Rohen, L.A.; Margem, F.M.; Monteiro, S.N.; Vieira, C.M.F.; De Araujo, B.M.; Lima, E.S. Ballistic efficiency of an individual epoxy composite reinforced with sisal fibers in multilayered armor. Mater. Res. 2015, 18, 55–62. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Louro, L.H.L.; Trindade, W.; Elias, C.N.; Ferreira, C.L.; Lima, E.S.; Weber, R.P.; Suarez, J.M.; Figueiredo, A.B.S.; Pinheiro, W.A.; et al. Natural curaua fiber-reinforced composites in multilayered ballistic armor. Metall. Mater. Trans. A 2015, 46, 4567–4577. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 2014, 109, 102–117. [Google Scholar] [CrossRef]
- Petroudy, D.S.R. 3—Physical and Mechanical Properties of Natural Fibers. In Advanced High Strength Natural Fibre Composites in Construction; Woodhead Publishing: Sawston, UK, 2017; pp. 59–83. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Ansell, M.P. Mechanical properties of alkali treated plant fibers and their potential as reinforcement materials. I. Hemp fibers. J. Mater. Sci. 2006, 41, 2483–2496. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Reis, R.H.M.; Nunes, L.F.; Oliveira, M.S.; de Veiga, V.F.; Garcia Filho, F.D.C.; Pinheiro, M.A.; Monteiro, S.N. Guaruman fiber: Another possible reinforcement in composites. J. Mater. Res. Technol. 2020, 9, 622–628. [Google Scholar] [CrossRef]
- Wang, C.; Bai, S.; Yue, X.; Long, B.; Choo-Smith, L.-P. Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber. Fibers Polym. 2016, 17, 1757–1764. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Satyanarayana, K.G.; Lopes, F.P.D. High strength natural fibers for improved polymer matrix composites. Mater. Sci. Forum 2010, 638, 961–966. [Google Scholar] [CrossRef]
- Da Luz, F.S.; Paciornik, S.; Monteiro, S.N.; Da Silva, L.C.; Tommasini, F.J.; Cândido, V.S. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers. JOM 2017, 69, 2045–2051. [Google Scholar] [CrossRef]
- Mardin, H.; Wardana, I.N.G.; Suprapto, W.; Kamil, K. Effect of sugar palm fiber surface on interfacial bonding with natural sago matrix. Adv. Mater. Sci. Eng. 2016, 2016, 9240416. [Google Scholar] [CrossRef]
- Soares, M.L.; Mayo, S.J.; Gribel, R. A preliminary taxonomic revision of Heteropsis (Araceae). Syst. Bot. 2013, 38, 925–974. [Google Scholar] [CrossRef]
- Temponi, L.G.; Garcia, F.C.P.; Sakuragui, C.M.; Carvalho-Okano, R.M.D. Diversidade morfológica e formas de vida das Araceae no Parque Estadual do Rio Doce, Minas Gerais. Rodriguésia 2013, 56, 3–13. [Google Scholar] [CrossRef]
- Scipioni, M.C.; Alves, C.G.; Durigan, C.C.; da Costa Soares, M.D.L. Exploração e manejo do cipó-titica (Heteropsis spp.) Exploitation and management of the vine Heteropsis spp. Ambiência 2012, 8, 179–193. [Google Scholar] [CrossRef]
- Vargas, M.P.B.; Andel, T.V. The use of hemiepiphytes as craft fibres by indigenous communities in the colombian amazon. Ethnobot. Res. Appl. 2005, 3, 243–260. [Google Scholar] [CrossRef]
- D3800-99; American Society for Testing and Materials—ASTM. Standard Test Method for Density of High Modulus Fiber. ASTM International: West Conshohoken, PA, USA, 2010.
- D4892-14; American Society for Testing and Materials—ASTM. Standard Test Method for Density of Solid Pitch (Helium Pycnometer Method). ASTM International: West Conshohocken, PA, USA, 2019.
- Mwaikambo, L.Y.; Ansell, M.P. The determination of porosity and cellulose content of plant fibers by density methods. J. Mater. Sci. Lett. 2001, 20, 2095–2096. [Google Scholar] [CrossRef]
- D1348-94; American Society for Testing and Materials—ASTM. Standard Test Methods for Moisture in Cellulose. ASTM International: West Conshohocken, PA, USA, 2008.
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1962, 29, 786–794. [Google Scholar] [CrossRef]
- Donaldson, L. Microfibril angle: Measurement, variation and relationships—A review. IAWA J. 2008, 29, 345–386. [Google Scholar] [CrossRef]
- Sarén, M.-P.; Serimaa, R. Determination of microfibril angle distribution by X-ray diffraction. Wood Sci. Technol. 2006, 40, 445–460. [Google Scholar] [CrossRef]
- D3822-01; American Society for Testing and Materials—ASTM. Standard Test Method for Tensile Properties of Single Textile Fibers. ASTM International: West Conshohocken, PA, USA, 2001.
- Monteiro, S.N.; D’Almeida, J.R.M. Pullout test in lignocellulosic fibers—A methodology of analysis. Matéria 2006, 11, 189–196. [Google Scholar]
- Kelly, A.; Tyson, W. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids 1965, 13, 329–350. [Google Scholar] [CrossRef]
- Portela, T.G.R.; da Costa, L.L.; Santos, N.S.S.; Lopes, F.P.D.; Monteiro, S.N. Tensile behavior of lignocellulosic fiber reinforced polymer composites: Part II buriti petiole/polyester. Matéria 2010, 15, 195–201. [Google Scholar] [CrossRef]
- Nascimento, D.C.O.; Motta, L.C.; Monteiro, S.N. Weibull analysis of Tensile tested piassava fibers with different diameters. In Proceedings of the Characterization of Minerals, Metals and Materials—TMS Conference, Seattle WA, USA, 14–18 February 2010; pp. 1–8. [Google Scholar]
- Marchi, B.Z.; Oliveira, M.S.; Bezerra, W.B.A.; de Sousa, T.G.; Candido, V.S.; da Silva, A.C.R.; Monteiro, S.N. Ubim Fiber (Geonoma baculífera): A Less Known Brazilian Amazon Natural Fiber for Engineering Applications. Sustainability 2022, 14, 421. [Google Scholar] [CrossRef]
- Shah, D.U.; Schubel, P.J.; Licence, P.; Clifford, M.J. Hydroxyethylcellulose surface treatment of natural fibres: The new ‘twist’ in yarn preparation and optimization for composites applicability. J. Mater. Sci. 2012, 47, 2700–2711. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Luz, F.S.d.; Teixeira Souza, A.; Demosthenes, L.C.d.C.; Pereira, A.C.; Filho, F.d.C.G.; Braga, F.d.O.; Figueiredo, A.B.-H.d.S.; Monteiro, S.N. Tucum fiber from amazon astrocaryum vulgare palm tree: Novel reinforcement for polymer composites. Polymers 2020, 12, 2259. [Google Scholar] [CrossRef]
- Fiore, V.; Valenza, A.; Di Bella, G. Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos. Sci. Technol. 2011, 71, 1138–1144. [Google Scholar] [CrossRef]
- Qiu, J.; Khalloufi, S.; Martynenko, A.; Van Dalen, G.; Schutyser, M.; Almeida-Rivera, C. Porosity, bulk density, and volume reduction during drying: Review of measurement methods and coefficient determinations. Dry. Technol. 2015, 33, 1681–1699. [Google Scholar] [CrossRef]
- Pereira, P.H.F.; Rosa, M.D.F.; Cioffi, M.O.H.; Benini, K.C.C.D.C.; Milanese, A.C.; Voorwald, H.J.C.; Mulinari, D.R. Vegetal fibers in polymeric composites: A review. Polímeros 2015, 25, 9–22. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Satyanarayana, K.G.; Ferreira, A.S.; Nascimento, D.C.O.; Lopes, F.P.D.; Silva, I.L.A.; Bevitori, A.B.; Inácio, W.P.; Bravo Neto, J.; Portela, T.G. Selection of high strength natural fibers. Matéria 2010, 15, 488–505. [Google Scholar] [CrossRef]
- Fan, M. Characterization and Performance of Elementary Hemp Fiber: Factors influencing Tensile Strength. BioRessources 2010, 5, 2307–2322. [Google Scholar] [CrossRef]
- Suthenthiraveerappa, V.; Gopalan, V. Elastic constants of tapered laminated woven jute/epoxy and woven aloe/epoxy composites under the influence of porosity. J. Reinf. Plast. Compos. 2017, 36, 1453–1469. [Google Scholar] [CrossRef]
- Gassan, J.; Bledzki, A.K. Possibilities of improving the mechanical properties of jute epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 1999, 59, 1303–1309. [Google Scholar] [CrossRef]
- Mahir, F.I.; Keya, K.N.; Sarker, B.; Nahiun, K.M.; Khan, R.A. A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Mater. Eng. Res. 2019, 1, 86–97. [Google Scholar] [CrossRef]
- Dip, T.M.; Begum, P.D.H.A.; Al Hossain, M.A.; Uddin, M.M.; Faruque, M.O. Analysis of physico-mechanical properties of jute and polyester blended yarn. Int. J. Sci. Res. Manag. 2018, 6, 85–99. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Abraham, E.; Deepa, B.; Pothan, L.A.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 2011, 86, 1468–1475. [Google Scholar] [CrossRef]
- Albinante, S.R.; Pacheco, E.B.; Visconte, L.L.; Tavares, M.I. Caracterização de fibras de bananeira e de coco por ressonância magnética nuclear de alta resolução no estado sólido. Polímeros 2012, 22, 460–466. [Google Scholar] [CrossRef]
- Parre, A.; Karthikeyan, B.; Balaji, A.; Udhayasankar, R. Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Mater. Today Proc. 2020, 22, 347–352. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Fa, C.; Zhang, Y.; Xiong, J.; Chen, H. Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers. Constr. Build. Mater. 2020, 248, 118648. [Google Scholar] [CrossRef]
- Bufalino, L.; de Sena Neto, A.R.; Tonoli, G.H.D.; de Souza Fonseca, A.; Costa, T.G.; Marconcini, J.M.; Colodette, J.L.; Mendes, L.M. How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 2015, 22, 3657–3672. [Google Scholar] [CrossRef]
- Ramesh, M. Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Prog. Mater. Sci. 2016, 78, 1–92. [Google Scholar] [CrossRef]
- Vinod, A.; Vijay, R.; Singaravelu, D.L.; Sanjay, M.R.; Siengchin, S.; Moure, M.M. Characterization of untreated and alkali treated natural fibers extracted from the stem of Catharanthus roseus. Mater. Res. Express 2019, 6, 085460. [Google Scholar] [CrossRef]
- Do Nascimento, H.M.; dos Santos, A.; Duarte, V.A.; Bittencourt, P.R.S.; Radovanovic, E.; Fávaro, S.L. Characterization of natural cellulosic fibers from Yucca aloifolia L. leaf as potential reinforcement of polymer composites. Cellulose 2021, 28, 5477–5492. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Colom, X.; Carrillo, F.; Nogués, F.; Garriga, P. Structural analysis of photodegradated wood by means of FT-IR spectroscopy. Polym. Degrad. Stab. 2003, 80, 543–549. [Google Scholar] [CrossRef]
- Awais, H.; Nawab, Y.; Amjad, A.; Anjang, A.; Akil, H.M.; Abidin, M.S.Z. Environmental benign natural fibre reinforced thermoplastic composites: A review. Compos. Part C Open Access 2021, 4, 100082. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Guilmaraes, J.L.; Wypych, F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Compos. A Appl. Sci. Manufact. 2007, 38, 1694–1709. [Google Scholar] [CrossRef]
- Rahman, M.M.; Afrin, S.; Haque, P. Characterization of crystalline cellulose of jute reinforced poly(vinyl alcohol) (PVA) biocomposite film for potential biomedical applications. Prog. Biomater. 2014, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Cao, Y.; Chan, F.; Chui, Y.-H.; Xiao, H. Characterization of flax fibres modified by alkaline, enzyme, and steam-heat treatments. BioResources 2012, 7, 4109–4121. [Google Scholar] [CrossRef]
- Bourmaud, A.; Le Duigou, A.; Biocomposites, C.B. Mechanical performance of flax-based biocomposites. In Biocomposites, Design and Mechanical Performance; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Cai, Y.; Su, S.; Navik, R.; Wen, S.; Peng, X.; Pervez, M.N.; Lin, L. Cationic modification of ramie fibers in liquid ammonia. Cellulose 2018, 25, 4463–4475. [Google Scholar] [CrossRef]
- Dawit, J.B.; Regassa, Y.; Lemu, H.G. Property characterization of acacia tortilis for natural fiber reinforced polymer composite. Results Mater. 2020, 5, 100054. [Google Scholar] [CrossRef]
- Hossain, M.K.; Karim, M.R.; Chowdhury, M.R.; Imam, M.A.; Hosur, M.; JeelAppani, S.; Farag, R. Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Ind. Crops Prod. 2014, 58, 78–90. [Google Scholar] [CrossRef]
- Vijay, R.; Lenin Singaravelu, D.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Khan, A.; Parameswaranpillai, J. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int. J. Biol. Macromol. 2019, 125, 99–108. [Google Scholar] [CrossRef]
- Yusoff, R.B.; Takagi, H.; Nakagaito, A.N. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod. 2016, 94, 562–573. [Google Scholar] [CrossRef]
- Langhorst, A.; Ravandi, M.; Mielewski, D.; Banu, M. Technical agave fiber tensile performance: The effects of fiber heat-treatment. Ind. Crops Prod. 2021, 171, 113832. [Google Scholar] [CrossRef]
- Nirmal, U.; Singh, N.; Hashim, J.; Lau, S.T.; Jamil, N. On the effect of different polymer matrix and fibre treatment on single fibre pullout test using betelnut fibres. Mater. Des. 2011, 32, 2717–2726. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Pereira, A.C.; Garcia Filho, F.D.C.; Demosthenes, L.C.C.; Monteiro, S.N. Performance of Epoxy Matrix Reinforced with Fique Fibers in Pullout Tests. In Characterization of Minerals, Metals, and Materials; Springer: Cham, Switzerland, 2019; pp. 729–734. [Google Scholar] [CrossRef]
- da Luz, F.S.; Ramos, F.J.H.T.V.; Nascimento, L.F.C.; da Silva Figueiredo, A.B.H.; Monteiro, S.N. Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. J. Mater. Res. Technol. 2018, 7, 528–534. [Google Scholar] [CrossRef]
- Prasad, S.V.; Pavithran, C.; Rohatgi, P.K. Alkali treatment of coir fibers for coir–polyester composites. J. Mater. Sci. 1983, 18, 1443–1454. [Google Scholar] [CrossRef]
- Iozzi, M.A.; Martins, G.S.; Martins, M.A.; Ferreira, F.C.; Job, A.E.; Mattoso, L.H. Estudo da influência de tratamentos químicos da fibra de sisal nas propriedades de compósitos com borracha nitrílica. Polímeros 2010, 20, 25–32. [Google Scholar] [CrossRef] [Green Version]
Diameter Range (µm) | Density (g/cm3) | Standard Deviation | β | ϴ | R2 |
---|---|---|---|---|---|
356.63–432.03 | 0.590 | 0.136 | 4.695 | 0.645 | 0.854 |
432.03–507.43 | 0.531 | 0.081 | 7.176 | 0.566 | 0.979 |
507.43–582.83 | 0.510 | 0.088 | 6.442 | 0.547 | 0.862 |
582.83–658.23 | 0.498 | 0.076 | 7.238 | 0.531 | 0.922 |
658.23–733.63 | 0.483 | 0.084 | 6.093 | 0.520 | 0.962 |
733.63–809.03 | 0.541 | 0.065 | 8.970 | 0.569 | 0.975 |
809.03–884.43 | 0.494 | 0.046 | 10.982 | 0.515 | 0.918 |
884.43–959.83 | 0.490 | 0.018 | 26.764 | 0.498 | 0.997 |
959.83–1035.23 | 0.445 | 0.067 | 7.413 | 0.472 | 0.950 |
1035.23–1110.63 | 0.439 | 0.055 | 10.563 | 0.457 | 0.938 |
Sample | Dry Sample Weight (g) | Weight of the Immersed Sample (g) | Wet Sample Weight (g) | Density (g/cm3) |
---|---|---|---|---|
1 | 1.801 | 0.311 | 2.658 | 0.588 |
2 | 2.202 | 0.400 | 3.258 | 0.590 |
3 | 2.178 | 0.276 | 3.231 | 0.565 |
4 | 0.716 | 0.134 | 1.158 | 0.536 |
5 | 0.828 | 0.169 | 1.222 | 0.603 |
6 | 0.679 | 0.132 | 1.120 | 0.527 |
Diameter Range (µm) | Total Porosity (%) | Open Porosity (%) | Close Porosity (%) |
---|---|---|---|
356.63–432.03 | - | - | - |
432.03–507.43 | 67.222 | 6.514 | 60.708 |
507.43–582.83 | 68.519 | 10.211 | 58.307 |
582.83–658.23 | 69.259 | 12.324 | 56.935 |
658.23–733.63 | 70.185 | 14.965 | 55.220 |
733.63–809.03 | 66.605 | 4.754 | 61.851 |
809.03–884.43 | 69.506 | 13.028 | 56.478 |
884.43–959.83 | 69.753 | 13.732 | 56.021 |
959.83–1035.23 | 72.531 | 21.655 | 50.876 |
1035.23–1110.63 | 72.901 | 22.711 | 50.190 |
NLFs | Density (g/cm3) | Crystallinity Index (%) | Cellulose (%) | MFA (°) | Reference |
---|---|---|---|---|---|
Titica Vine | 0.50 | 78.3 | 39 | 7.95 | PW |
Buriti | 1.31 | 63.1 | 58 | 7 | [12] |
Sisal | 1.33 | 72.2 | 73 | 20 | [68,69] |
Jute | 1.40 | 73.4 | 72 | 8 | [67,68,69] |
Coir | 1.20 | 43.5 | 36 | 51 | [68,69,70] |
Flax | 1.38 | 72.2 | 75 | 10 | [68,70,71,72,73] |
Ramie | 1.50 | 76.4 | 68 | 7.5 | [69,71,73,74] |
Diameter Range (µm) | σmax (MPa) | Standard Deviation | β | ϴ | R2 |
---|---|---|---|---|---|
356.63–432.03 | 32.665 | 6.078 | 5.459 | 34.610 | 0.940 |
432.03–507.43 | 26.175 | 4.708 | 5.426 | 28.270 | 0.959 |
507.43–582.83 | 24.206 | 3.302 | 7.299 | 25.700 | 0.913 |
582.83–658.23 | 22.675 | 7.981 | 2.493 | 26.110 | 0.847 |
658.23–733.63 | 22.369 | 6.832 | 2.993 | 25.280 | 0.923 |
733.63–809.03 | 22.226 | 6.832 | 2.983 | 25.300 | 0.704 |
809.03–884.43 | 21.670 | 6.761 | 1.785 | 25.420 | 0.962 |
884.43–959.83 | 26.341 | 10.394 | 4.082 | 29.010 | 0.898 |
959.83–1035.23 | 31.243 | 10.867 | 2.986 | 35.160 | 0.945 |
1035.23–1110.63 | 29.750 | 3.167 | 9.211 | 31.240 | 0.853 |
Variation Causes | DF | SS | MS | Fcalculated | Fcritical |
---|---|---|---|---|---|
Treatment | 9 | 732.62 | 81.40 | 1.61 | 2.12 |
Residue | 40 | 2022.32 | 50.56 | ||
Total | 49 | 2754.94 |
Fiber | σmax (MPa) | E (GPa) | ε (%) | Reference |
---|---|---|---|---|
Titica vine | 25.92 ± 6.69 | 1.02 ± 0.22 | 7.36 ± 2.05 | PW |
Catharanthus roseus | 27.02 ± 1.1 | 1.23 ± 0.04 | 2.15 ± 0.10 | [64] |
Acácia tortilis | 71.63 | 4.21 | 1.33 | [75] |
Sugar cane | 169.51 ± 18.65 | 5.18 ± 0.63 | 6.25 ± 0.01 | [76] |
Tridax procumbens | 25.75 ± 2.45 | 0.94 ± 0.09 | 2.77 ± 0.64 | [77] |
Kenaf | 280 ± 90 | 22 ± 6 | 1.29 ± 0.20 | [78] |
Coir | 44 ± 8 | 2 ± 0.30 | 4.5 ± 0.80 | [78] |
Agave Tequilana Weber Azul | 68.2 ± 30 | 2.39 ± 0.71 | 7.40 ± 4.5 | [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, J.d.S.C.d.; Nascimento, L.F.C.; Luz, F.S.d.; Garcia Filho, F.d.C.; Oliveira, M.S.; Monteiro, S.N. Titica Vine Fiber (Heteropsis flexuosa): A Hidden Amazon Fiber with Potential Applications as Reinforcement in Polymer Matrix Composites. J. Compos. Sci. 2022, 6, 251. https://doi.org/10.3390/jcs6090251
Cunha JdSCd, Nascimento LFC, Luz FSd, Garcia Filho FdC, Oliveira MS, Monteiro SN. Titica Vine Fiber (Heteropsis flexuosa): A Hidden Amazon Fiber with Potential Applications as Reinforcement in Polymer Matrix Composites. Journal of Composites Science. 2022; 6(9):251. https://doi.org/10.3390/jcs6090251
Chicago/Turabian StyleCunha, Juliana dos Santos Carneiro da, Lucio Fabio Cassiano Nascimento, Fernanda Santos da Luz, Fabio da Costa Garcia Filho, Michelle Souza Oliveira, and Sergio Neves Monteiro. 2022. "Titica Vine Fiber (Heteropsis flexuosa): A Hidden Amazon Fiber with Potential Applications as Reinforcement in Polymer Matrix Composites" Journal of Composites Science 6, no. 9: 251. https://doi.org/10.3390/jcs6090251
APA StyleCunha, J. d. S. C. d., Nascimento, L. F. C., Luz, F. S. d., Garcia Filho, F. d. C., Oliveira, M. S., & Monteiro, S. N. (2022). Titica Vine Fiber (Heteropsis flexuosa): A Hidden Amazon Fiber with Potential Applications as Reinforcement in Polymer Matrix Composites. Journal of Composites Science, 6(9), 251. https://doi.org/10.3390/jcs6090251