A Study on the Structural Features of Amorphous Nanoparticles of Ni by Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Method of Calculation
3. Results and Discussions
3.1. Structural Characteristic Quantities
3.2. Factors Affecting the Structural Characteristic Quantities
3.2.1. Influence of the Heating Rate
3.2.2. Effect of N
3.2.3. Effect of Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rostovshchikova, T.N.; Shilina, M.I.; Golubina, E.V.; Lokteva, E.S.; Krotova, I.N.; Nikolaev, S.A.; Maslakov, K.I.; Yavsin, D.A. Adsorption and oxidation of carbon monoxide on Au and Ni nanoparticles deposited on Al2O3 by laser electrodispersion. Russ. Chem. Bull. 2015, 64, 812–818. [Google Scholar] [CrossRef]
- Chandra, S.; Kumar, A.; Tomar, P.K. Synthesis of Ni nanoparticles and their characterizations. J. Saudi Chem. Soc. 2014, 18, 437–442. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef]
- Gatin, A.K.; Grishin, M.V.; Gurevich, S.A.; Dokhlikova, N.V.; Kirsankin, A.A.; Kozhevin, V.M.; Lokteva, E.S.; Rostovshchikova, T.N.; Sarvadii, S.Y.; Shub, B.R.; et al. Interaction of amorphous and crystalline nickel nanoparticles with hydrogen. Russ. Chem. Bull. 2015, 64, 2337–2343. [Google Scholar] [CrossRef]
- Goryaeva, A.M.; Fusco, C.; Bugnet, M.; Amodeo, J. Influence of an amorphous surface layer on the mechanical properties of metallic nanoparticles under c ompression. Phys. Rev. Mater. 2019, 3, 033606. [Google Scholar] [CrossRef]
- Huang, C.; Chen, X.; Xue, Z.; Wang, T. Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. Sci. Adv. 2020, 6, eaba1321. [Google Scholar] [CrossRef]
- Jiang, W.; Guan, H.Y.; Wang, Z.; Guo, A.B. Nanoparticle with a ferrimagnetic interlayer coupling in the presence of single ion anisotropis. Phys. B Condens. Matter 2012, 407, 378–383. [Google Scholar] [CrossRef]
- Yüksel, Y.; Aydıner, E.; Polat, H. Thermal and magnetic properties of a ferrimagnetic nanoparticle with spin-3/2 core and spin-1 shell structure. J. Magn. Magn. Mater. 2011, 323, 3168–3175. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Bramowicz, M.; Kulesza, S.; Dalouji, V.; Solaymani, S.; Valedbagi, S. Fractal features of carbon–nickel composite thin flms. Microsc. Res. Tech. 2016, 79, 1208–1213. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Bramowicz, M.; Kulesza, S.; Dalouji, V.; Ilkhani, M.; Ghaderi, A.; Solaymani, S. Infuence of annealing process on surface micromorphology of carbon–nickel composite thin flms. Opt. Quantum Electron. 2017, 49, 204. [Google Scholar] [CrossRef]
- Hoang, V.V.; Ganguli, D. Amorphous nanoparticles—Experiments and computer simulations. Phys. Rep. 2012, 518, 81–140. [Google Scholar] [CrossRef]
- Amodeo, J.; Lizoul, K. Mechanical properties and dislocation nucleation in nanocrystals with blunt edges. Mater. Des. 2017, 135, 223–231. [Google Scholar] [CrossRef]
- Han, W.Z.; Huang, L.; Ogata, S.; Kimizuka, H.; Yang, Z.C.; Weinberger, C.; Li, Q.J.; Liu, B.Y.; Zhang, X.X.; Li, J.; et al. From “smaller is stronger” to “size-independent strength plateau”: Towards measuring the ideal strength of iron. Adv. Mater. 2015, 27, 3385–3390. [Google Scholar] [CrossRef]
- Huu, K.P.; Thuy, T.G.T.; Khac, H.P. The study of separation of crystal Fe and morphology for FeB nanoparticle: Molecular dynamics simulation. AIP Adv. 2017, 7, 045301. [Google Scholar] [CrossRef]
- Trady, S.; Hasnaoui, A.; Mazroui, M.; Saadouni, K. Local atomic structures of single-component metallic glasses. Eur. Phys. J. B 2016, 89, 223. [Google Scholar] [CrossRef]
- Minh, H.D.T.; Coman, G.; Quang, H.N.; Dung, N.T. Influence of heating rate, temperature, pressure on the structure, and phase transition of amorphous Ni material: A molecular dynamics study. Heliyon 2020, 6, e05548. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Bramowicz, M.; Kulesza, S.; Ghaderi, A.; Dalouji, V.; Solaymani, S.; Fathikenari, M.; Ghoranneviss, M. Fractal features and surface micromorphology of diamond nanocrystals. J. Microsc. 2016, 264, 143–152. [Google Scholar] [CrossRef]
- Mahdavi, S. Nano-TiO2 modifed with natural and chemical compounds as efcient adsorbents for the removal of Cd+2, Cu+2, and Ni+2 from water. Clean Technol. Environ. Policy 2016, 18, 81–94. [Google Scholar] [CrossRef]
- Dalouji, V.; Solaymani, S.; Rezaee, S.; Mehrparvar, D. Nonmetal-metal transition in carbon films embed-ded by Ni nanoparticles: The temperature coefcient of resistivity (TCR), Raman spectra and surface morphology. Optik 2018, 156, 338–345. [Google Scholar] [CrossRef]
- Yurino, T.; Ueda, Y.; Shimizu, Y.; Tanaka, S.; Nishiyama, H.; Tsurugi, H.; Sato, K.; Mashima, K. Salt-Free Reduction of Nonprecious Transition—Metal Compounds: Generation of Amorphous Ni Nanoparticles for Catalytic C–C Bond Formation. Angew. Chem. Int. Ed. 2015, 54, 14437–14441. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Wang, C.; Jiang, J. Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors. J. Mater. Chem. A 2016, 4, 14509–14538. [Google Scholar] [CrossRef]
- Xu, R.; Xie, T.; Zhao, Y.; Li, Y. Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology 2007, 18, 055602. [Google Scholar] [CrossRef]
- Wang, D.P.; Sun, D.B.; Yu, H.Y.; Qiu, Z.G.; Meng, H.M. Preparation of one-dimensional nickel nanowires by self-assembly process. Mater. Chem. Phys. 2009, 113, 227–232. [Google Scholar] [CrossRef]
- Trady, S.; Mazroui, M.; Hasnaoui, A.; Saadouni, K. Molecular dynamics study of atomic-level structure in monatomic metallic glass. J. Non-Cryst. Solids 2016, 443, 136–142. [Google Scholar] [CrossRef]
- Fedorchenko, A.I. On the glass transition of the one-component metallic melts. J. Cryst. Growth. 2017, 475, 362–367. [Google Scholar] [CrossRef]
- He, X.; Shi, H. Size and shape effects on magnetic properties of Amorphous Ni nanoparticles. Particuology 2012, 10, 497–502. [Google Scholar] [CrossRef]
- Sun, C.Q.; Zhong, W.H.; Li, S.; Tay, B.K.; Bai, H.L.; Jiang, E.Y. Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectric, and superconductive nanosolids. J. Phys. Chem. B 2004, 108, 1080–1084. [Google Scholar] [CrossRef]
- Asareh, N.; Dalouji, V.; Solaymani, S.; Rezaee, S. Relation between carriers hopping rate and structural constants in amorphous carbon nickel flms with diferent nickel nanoparticles distributions. Opt. Quantum Electron. 2019, 51, 373. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Q.; Xie, J.; Lan, W. Communication-Facile Synthesis of Amorphous Nickel Boride Nanoparticles for Highly Sensitive Non-Enzyme Glucose Detection. J. Electrochem. Soc. 2019, 166, B521–B523. [Google Scholar] [CrossRef]
- Cargnello, M. Colloidal Nanocrystals as Building Blocks for Well-Defined Heterogeneous Catalysts. Chem. Mater. 2019, 31, 576–596. [Google Scholar] [CrossRef]
- Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C.J.; Berben, P.H.; Meirer, F.; Weckhuysen, B.M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127–134. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Q.; Gu, F.; Liu, B.; Zhong, Z.; Su, F. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 2015, 5, 22759–22776. [Google Scholar] [CrossRef]
- Zacharaki, E.; Beato, P.; Tiruvalam, R.R.; Andersson, K.J.; Fjellvåg, H.; Sjåstad, A.O. From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al2O3 Model Catalysts. Langmuir 2017, 33, 9836–9843. [Google Scholar] [CrossRef]
- Li, Y.; Wen, J.; Ali, A.M.; Duan, M.; Zhu, W.; Zhang, H.; Chen, C.; Li, Y. Size structure–catalytic performance correlation of supported Ni/MCF-17 catalysts for COx-free hydrogen production. Chem. Commun. 2018, 54, 6364–6367. [Google Scholar] [CrossRef]
- Laprune, D.; Tuel, A.; Farrusseng, D.; Meunier, F.C. Highly dispersed nickel particles encapsulated in multi-hollow silicalite-1 single crystal nanoboxes: Effects of siliceous deposits and phosphorous species on the catalytic performances. ChemCatChem 2017, 9, 2297–2307. [Google Scholar] [CrossRef]
- Goodarzi, F.; Kang, L.; Wang, F.R.; Joensen, F.; Kegnaes, S.; Mielby, J. Methanation of Carbon Dioxide over Zeolite-Encapsulated Nickel Nanoparticles. ChemCatChem 2018, 10, 1566–1570. [Google Scholar] [CrossRef]
- Wen, Y.H.; Zhu, Z.Z.; Zhu, R.; Shao, G.F. Size effects on the melting of nickel nanowires: A molecular dynamics study. Phys. E 2004, 25, 47–54. [Google Scholar] [CrossRef]
- Kien, P.H.; Lan, M.T.; Dung, N.T.; Hung, P.K. Annealing study of amorphous bulk and nanoparticle iron using molecular dynamics simulation. Int. J. Mod. Phys. B 2014, 28, 1450155. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Nguyen, C.C.; Tran, V.H. Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Amorphous Ni nanoparticles. RSC Adv. 2017, 7, 25406–25413. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Çağin, T.; Johnson, W.L.; Goddard, W.A., III. Melting and crystallization in Ni nanoclusters: The mesoscale regime. J. Chem. Phys. 2001, 115, 385–394. [Google Scholar] [CrossRef]
- Andriotis, A.N.; Fthenakis, Z.G.; Menon, M. Correlated variation of melting and Curie temperatures of nickel clusters. Phys. Rev. B 2007, 75, 073413. [Google Scholar] [CrossRef]
- Dung, N.T. Influence of impurity concentration, atomic number, temperature and tempering time on microstructure and phase transformation of Ni1-xFex (x = 0.1, 0.3, 0.5) nanoparticles. Mod. Phys. Lett. B 2018, 32, 1850204. [Google Scholar] [CrossRef]
- Tuan, T.Q.; Dung, N.T. Effect of heating rate, impurity concentration of Cu, atomic number, temperatures, time annealing temperature on the structure, crystallization temperature and crystallization process of Ni1−xCux bulk; x = 0.1, 0.3, 0.5, 0.7. Int. J. Mod. Phys. B 2018, 32, 1830009. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Wang, W. Thermodynamic, dynamic and structural relaxation in supercooled liquid and glassy Ni below the critical temperature. J. Phys. Cond. Matter. 2007, 19, 196106. [Google Scholar] [CrossRef]
- Kelchner, C.L.; Plimpton, S.J.; Hamilton, J.C. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 1998, 58, 11085–11088. [Google Scholar] [CrossRef]
- Tian, C.S.; Qian, D.; Wu, D.; He, R.H.; Wu, Y.Z.; Tang, W.X.; Yin, L.F.; Shi, Y.S.; Dong, G.S.; Jin, X.F.; et al. Body-Centered-Cubic Ni and Its Magnetic Properties. Phys. Rev. Lett. 2005, 94, 137210. [Google Scholar] [CrossRef]
- Lu, H.M.; Li, P.Y.; Cao, Z.H.; Meng, X.K. Size, shape, and dimensionality-dependent melting temperatures of nanocrystals. J. Phys. Chem. C 2009, 113, 7598–7602. [Google Scholar] [CrossRef]
- Ichikawa, T. Electron diffraction study of the local atomic arrangement in amorphous Iron and Nickel films. Phys. Status Solidi A 1973, 19, 707–716. [Google Scholar] [CrossRef]
- Kien, P.H. Study of structural transition of nickel metal under temperature. Ph. Transit. 2016, 90, 732–741. [Google Scholar]
- Dung, N.T.; Van, C.L. Effects of number of atoms, shell thickness, and temperature on the structure of Fe nanoparticles amorphous by molecular dynamics method. Adv. Civ. Eng. 2021, 2021, 9976633. [Google Scholar]
- Quoc, T.T.; Trong, D.N. Molecular dynamics factors affecting on the structure, phase transition of Al bulk. Phys. B Condens. Matter 2019, 570, 116–121. [Google Scholar] [CrossRef]
- Trong, D.N.; Tri, P.N. Understanding the heterogeneous kinetics of Al nanoparticles by simulations method. J. Mol. Struct. 2020, 1218, 128498. [Google Scholar] [CrossRef]
- Dung, N.T.; Cuong, N.C.; Van, D.Q.; Tuan, T.Q. Study the effects of factors on the structure and phase transition of bulk Ag by molecular dynamics method. Int. J. Comput. Mater. Sci. Eng. 2020, 09, 2050016. [Google Scholar]
- Trong, D.N.; Long, V.C.; Ţălu, Ş. Molecular dynamics simulation of bulk Cu material pseudo-crystallization under various factors. Appl. Sci. 2022, 12, 4437. [Google Scholar] [CrossRef]
- Trong, D.N. Z-AXIS deformation method to investigate the influence of system size, structure phase transition on mechanical properties of bulk nickel. Mater. Chem. Phys. 2020, 252, 123275. [Google Scholar] [CrossRef]
- Tsuzuki, H.; Branicio, P.S.; Rino, J.P. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys.Commun. 2007, 177, 518–523. [Google Scholar] [CrossRef]
- Lu, J.; Szpunar, J.A. Applications of the embedded-atom method to glass formation and crystallization of liquid and glass transition-metal nickel. Philos. Mag. A 1997, 75, 1057–1066. [Google Scholar] [CrossRef]
- Yamamoto, R.; Mihara, T.; Taira, K.; Doyama, M. Amorphous structures of iron obtained by quenching of the liquid state. Phys. Lett. A 1979, 70, 41–43. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Lacks, D.J. First-order amorphous-amorphous transformation in silica. Phys. Rev. Lett. 2000, 84, 4529–4532. [Google Scholar] [CrossRef] [PubMed]
- Guitierrez, G.; Johansson, B. Molecular dynamics study of structural properties of amorphous Al2O3. Phys. Rev. B 2002, 65, 104202–104210. [Google Scholar] [CrossRef]
- Hoang, V.V. Glass of monatomic Lennard-Jones system at nanoscale. Phys. B Condens. Matter 2010, 405, 1908–1914. [Google Scholar] [CrossRef]
- Hoang, V.V.; Odagaki, T.; Engel, M. Cooling rate effects on structure and thermodynamics of amorphous nanoparticles. Appl. Surf. Sci. 2008, 254, 7531–7534. [Google Scholar] [CrossRef]
- Li, J. AtomEye: An efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 2003, 11, 173. [Google Scholar] [CrossRef]
- Ackland, G.J.; Jones, A.P. Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B 2006, 73, 054104. [Google Scholar] [CrossRef]
- Steinhardt, P.J.; Nelson, D.R.; Ronchetti, M. Bond-Orientational Order in Liquids and Glasses. Phys. Rev. B 1983, 28, 784–805. [Google Scholar] [CrossRef]
- Francesco, T.; Arrigo, C. Multi-technique approach to unravel the (dis)order in amorphous materials. ACS Omega 2022, 7, 23255–23264. [Google Scholar]
Values | Ni | Values | Ni |
---|---|---|---|
A | −0.12929 | D | −2.50849 |
B | −1.82709 | E | −0.135705 |
C | 1.16473 |
HR (K/s) | D (nm) | E (eV) | HR (K/s) | D (nm) | E (eV) |
---|---|---|---|---|---|
5 × 105 | 5.022 | −0.695 | 107 | 5.024 | −0.659 |
106 | 5.023 | −0.684 | 5 × 107 | 5.024 | −0.615 |
5 × 106 | 5.023 | −0.673 | 108 | 16.04 | 169.119 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran Quoc, T.; Nguyen Trong, D.; Cao Long, V.; Saraç, U.; Ţălu, Ş. A Study on the Structural Features of Amorphous Nanoparticles of Ni by Molecular Dynamics Simulation. J. Compos. Sci. 2022, 6, 278. https://doi.org/10.3390/jcs6090278
Tran Quoc T, Nguyen Trong D, Cao Long V, Saraç U, Ţălu Ş. A Study on the Structural Features of Amorphous Nanoparticles of Ni by Molecular Dynamics Simulation. Journal of Composites Science. 2022; 6(9):278. https://doi.org/10.3390/jcs6090278
Chicago/Turabian StyleTran Quoc, Tuan, Dung Nguyen Trong, Van Cao Long, Umut Saraç, and Ştefan Ţălu. 2022. "A Study on the Structural Features of Amorphous Nanoparticles of Ni by Molecular Dynamics Simulation" Journal of Composites Science 6, no. 9: 278. https://doi.org/10.3390/jcs6090278
APA StyleTran Quoc, T., Nguyen Trong, D., Cao Long, V., Saraç, U., & Ţălu, Ş. (2022). A Study on the Structural Features of Amorphous Nanoparticles of Ni by Molecular Dynamics Simulation. Journal of Composites Science, 6(9), 278. https://doi.org/10.3390/jcs6090278