The Influence of Thermomechanical Compaction on the Marginal Adaptation of 4 Different Hydraulic Sealers: A Comparative Ex Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Committee Approval and Sample size calculation
2.2. Group and Subgroup Determination
2.3. Sample Selection and Root Canal Treatment
2.4. Sample Preparation for Scanning Electron Microscopy Analysis
2.5. Scanning Electron Microscope (SEM) Evaluation and Marginal Gap Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marquis, V.L.; Dao, T.; Farzaneh, M.; Abitbol, S.; Friedman, S. Treatment outcome in endodontics: The Toronto Study. Phase III: Initial treatment. J. Endod. 2006, 32, 299–306. [Google Scholar] [CrossRef] [PubMed]
- de Chevigny, C.; Dao, T.T.; Basrani, B.R.; Marquis, V.; Farzaneh, M.; Abitbol, S.; Friedman, S. Treatment outcome in endodontics: The Toronto study--phase 4: Initial treatment. J. Endod. 2008, 34, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Chércoles-Ruiz, A.; Sánchez-Torres, A.; Gay-Escoda, C. Endodontics, Endodontic Retreatment, and Apical Surgery Versus Tooth Extraction and Implant Placement: A Systematic Review. J. Endod. 2017, 43, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Bucchi, C.; Rosen, E.; Taschieri, S. Non-surgical root canal treatment and retreatment versus apical surgery in treating apical periodontitis: A systematic review. Int. Endod. J. 2022; ahead of print. [Google Scholar] [CrossRef]
- Sayed, M.E.; Jurado, C.A.; Tsujimoto, A.; Garcia-Cortes, J.O. Clinical decision-making regarding endodontic therapy vs extraction and implant-assisted replacement: A systematic review and meta-analysis. Gen. Dent. 2021, 69, 52–57. [Google Scholar]
- Nair, P.N. On the causes of persistent apical periodontitis: A review. Int. Endod. J. 2006, 39, 249–281. [Google Scholar] [CrossRef]
- Ricucci, D.; Siqueira, J.F.; Jr Bate, A.L.; Pitt Ford, T.R. Histologic investigation of root canal-treated teeth with apical periodontitis: A retrospective study from twenty-four patients. J. Endod. 2009, 35, 493–502. [Google Scholar] [CrossRef]
- Ricucci, D.; Siqueira, J.F., Jr. Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. J. Endod. 2010, 36, 1277–1288. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr. Aetiology of root canal treatment failure: Why well-treated teeth can fail. Int. Endod. J. 2001, 34, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zanza, A.; D’Angelo, M.; Reda, R.; Gambarini, G.; Testarelli, L.; Di Nardo, D. An Update on Nickel-Titanium Rotary Instruments in Endodontics: Mechanical Characteristics, Testing and Future Perspective—An Overview. Bioengineering 2021, 8, 218. [Google Scholar] [CrossRef]
- Ng, Y.L.; Mann, V.; Rahbaran, S.; Lewsey, J.; Gulabivala, K. Outcome of primary root canal treatment: Systematic review of the literature—Part 1. Effects of study characteristics on probability of success. Int. Endod. J. 2007, 40, 921–939. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.H.; Li, G.; Shemesh, H.; Wesselink, P.R.; Wu, M.K. The association between complete absence of post-treatment periapical lesion and quality of root canal filling. Clin. Oral Investig. 2012, 16, 1619–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komabayashi, T.; Colmenar, D.; Cvach, N.; Bhat, A.; Primus, C.; Imai, Y. Comprehensive review of current endodontic sealers. Dent. Mater. J. 2020, 39, 703–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.W.; Williams, M.C.; Camps, J.J.; Pashley, D.H. Adhesion of endodontic sealers to dentin and gutta-percha. J. Endod. 2002, 28, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, F.; Innocenti, M.; Ferrari, M. Stereomicroscopic and scanning electron microscopic study of roots obturated with vertically condensed gutta-percha, epoxy resin cement, and dentin bonding agent. J. Endod. 1998, 24, 397–400. [Google Scholar] [CrossRef]
- Balguerie, E.; van der Sluis, L.; Vallaeys, K.; Gurgel-Georgelin, M.; Diemer, F. Sealer penetration and adaptation in the dentinal tubules: A scanning electron microscopic study. J. Endod. 2011, 37, 1576–1579. [Google Scholar] [CrossRef]
- Koch, K.A.; Brave, D.G.; Nasseh, A.A. Bioceramic technology: Closing the endo-restorative circle, Part I. Dent. Today 2010, 29, 100–105. [Google Scholar]
- Koch, K.A.; Brave, G.D.; Nasseh, A.A. Bioceramic technology: Closing the endo-restorative circle, part 2. Dent. Today 2010, 29, 98–105. [Google Scholar]
- Donfrancesco, O.; Del, G.A.; Zanza, A.; Relucenti, M.; Petracchiola, S.; Gambarini, G.; Luca, T.; Marco, S. SEM Evaluation of Endosequence BC Sealer Hiflow in Different Environmental Conditions. J. Compos. Sci. 2021, 5, 99. [Google Scholar] [CrossRef]
- Kebudi Benezra, M.; Schembri Wismayer, P.; Camilleri, J. Influence of environment on testing of hydraulic sealers. Sci. Rep. 2017, 7, 17927. [Google Scholar] [CrossRef] [Green Version]
- Donfrancesco, O.; Seracchiani, M.; Morese, A.; Ferri, V.; Nottola, S.A.; Relucenti, M.; Gambarini, G.; Testarelli, L. Analysis of Stability in Time of Marginal Adaptation of Endosequence Root Repair Material on Biological Samples. Dent. Hypotheses 2020, 11, 11–15. [Google Scholar]
- Camilleri, J.; Atmeh, A.; Li, X.; Meschi, N. Present status and future directions: Hydraulic materials for endodontic use. Int. Endod. J. 2022, 55 (Suppl. S3), 710–777. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J. Classification of Hydraulic Cements Used in Dentistry. Front. Dent. Med. 2020, 1, 9. [Google Scholar] [CrossRef]
- Pirani, C.; Camilleri, J. Effectiveness of root canal filling materials and techniques for treatment of apical periodontitis—A Systematic review. Int. Endod. J. 2022; ahead of print. [Google Scholar] [CrossRef]
- Aminsobhani, M.; Ghorbanzadeh, A.; Sharifian, M.R.; Namjou, S.; Kharazifard, M.J. Comparison of Obturation Quality in Modified Continuous Wave Compaction, Continuous Wave Compaction, Lateral Compaction and Warm Vertical Compaction Techniques. J. Dent. 2015, 12, 99–108. [Google Scholar]
- Hadis, M.; Camilleri, J. Characterization of heat resistant hydraulic sealer for warm vertical obturation. Dent. Mater. 2020, 36, 1183–1189. [Google Scholar] [CrossRef]
- Arikatla, S.K.; Chalasani, U.; Mandava, J.; Yelisela, R.K. Interfacial adaptation and penetration depth of bioceramic endodontic sealers. J. Conserv. Dent. 2018, 21, 373–377. [Google Scholar]
- Shokouhinejad, N.; Nekoofar, M.H.; Ashoftehyazdi, K.; Zahraee, S.; Khoshkhounejad, M. Marginal adaptation of new bioceramic materials and mineral trioxide aggregate: A scanning electron microscopy study. Iran. Endod. J. 2014, 9, 144–148. [Google Scholar]
- McCullagh, J.J.; Biagioni, P.A.; Lamey, P.J.; Hussey, D.L. Thermographic assessment of root canal obturation using thermomechanical compaction. Int. Endod. J. 1997, 30, 191–195. [Google Scholar] [CrossRef]
- Fors, U.; Jonasson, E.; Berquist, A.; Berg, J.O. Measurements of the root surface temperature during thermo-mechanical root canal filling in vitro. Int. Endod. J. 1985, 18, 199–202. [Google Scholar] [CrossRef]
- Hardie, E.M. Further studies on heat generation during obturation techniques involving thermally softened gutta-percha. Int. Endod. J. 1987, 20, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Donnermeyer, D.; Ibing, M.; Bürklein, S.; Weber, I.; Reitze, M.P.; Schäfer, E. Physico-Chemical Investigation of Endodontic Sealers Exposed to Simulated Intracanal Heat Application: Hydraulic Calcium Silicate-Based Sealers. Materials 2021, 14, 728. [Google Scholar] [CrossRef] [PubMed]
- Aksel, H.; Makowka, S.; Bosaid, F.; Guardian, M.G.; Sarkar, D.; Azim, A.A. Effect of heat application on the physical properties and chemical structure of calcium silicate-based sealers. Clin. Oral. Investig. 2021, 25, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Haapasalo, M.; Mobuchon, C.; Li, X.; Ma, J.; Shen, Y. Cytotoxicity and the Effect of Temperature on Physical Properties and Chemical Composition of a New Calcium Silicate-based Root Canal Sealer. J. Endod. 2020, 46, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Zamparini, F.; Prati, C.; Taddei, P.; Spinelli, A.; Di Foggia, M.; Gandolfi, M.G. Chemical-Physical Properties and Bioactivity of New Premixed Calcium Silicate-Bioceramic Root Canal Sealers. Int. J. Mol. Sci. 2022, 23, 13914. [Google Scholar] [CrossRef]
- Gaeta, C.; Marruganti, C.; Mignosa, E.; Malvicini, G.; Verniani, G.; Tonini, R.; Simone, G. Comparison of physico-chemical properties of zinc oxide eugenol cement and a bioceramic sealer. Aust. Endod. J. 2022. [Google Scholar] [CrossRef]
- Tanomaru-Filho, M.; Torres, F.F.E.; Chávez-Andrade, G.M.; de Almeida, M.; Navarro, L.G.; Steier, L.; Guerreiro-Tanomaru, J.M. Physicochemical Properties and Volumetric Change of Silicone/Bioactive Glass and Calcium Silicate–based Endodontic Sealers. J. Endod. 2017, 43, 2097–2101. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Siboni, F.; Prati, C. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer. Dent. Mater. 2016, 32, e113–e126. [Google Scholar] [CrossRef]
- Akcay, M.; Arslan, H.; Durmus, N.; Mese, M.; Capar, I.D. Dentinal tubule penetration of AH Plus, iRoot SP, MTA fillapex, and guttaflow bioseal root canal sealers after different final irrigation procedures: A confocal microscopic study. Lasers. Surg. Med. 2016, 48, 70–76. [Google Scholar] [CrossRef]
- De-Deus, G.; Souza, E.M.; Silva, E.; Belladonna, F.G.; Simões-Carvalho, M.; Cavalcante, D.M.; Versiani, M.A. A critical analysis of research methods and experimental models to study root canal fillings. Int. Endod. J. 2022, 55 (Suppl. S2), 384–445. [Google Scholar] [CrossRef]
Product Name | Chemical Matrix | Presentation | Composition |
---|---|---|---|
AH Plus Bioceramic | Tricalcium silicate | Single paste | Zirconium Dioxide, Tricalcium silicate, Dimethyl sulfoxide, Lithium carbonate, and Thickening Agents. |
EndoSequence BC Sealer HiFlow | Tricalcium and dicalcium silicates | Single paste | Zirconium Oxide, Tricalcium Silicate, Dicalcium Silicate, Calcium Hydroxide, and Fillers Agents. |
C-Root SP | Strontium silicates | Single paste | Zirconium Oxide, Strontium Silicates, Calcium Phosphates, Calcium Hydroxide, Tantalum Oxide, and Filler Agents. |
GuttaFlow Bioseal | Polydimethylsiloxane containing Bioglass | Double paste (two components automatically mixed at a ratio of 1:1) | Gutta-percha powder, Polydimethylsiloxane, Platinum Catalyst, Zirconium Dioxide, Coloring, and Bioglass. |
Obturation Techniques According to the Endodontic Sealer Selected | Marginal Gap (Mean ± Standard Deviation) [µm] | |||
---|---|---|---|---|
Apical Third | Middle Third | Coronal Third | ||
AHP | TC | 1.54 ± 0.36 (a,f,l,o) | 1.09 ± 0.61 (a,e,g,i,o) | 1.37 ± 1.07 (a,c) |
SC | 2.28 ± 0.27 (b,g,p) | 2.28 ± 0.68 (a,c) | 2.66 ± 1.38 | |
ES | TC | 1.29 ± 0.35 (c,h,m,q) | 0.98 ± 0.67 (b,c,f,h,l) | 1.21 ± 0.99 (b,d) |
SC | 2.13 ± 0.23 (d,e,i,n,r) | 2.03 ± 0.80 (b,d,m) | 2.52 ± 1.09 | |
CR | TC | 3.44 ± 0.86 (a,c,e) | 3.68 ± 1.66 (e,f) | 2.64 ± 1.53 |
SC | 3.91 ± 0.69 (f,g,h,i) | 3.17 ± 1.05 (g,h) | 3.98 ± 2.61 (a,b) | |
GF | TC | 3.26 ± 0.63 (l,m,n) | 2.81 ± 1.64 (i,l) | 2.06 ± 0.91 |
SC | 3.64 ± 0.63 (o,p,q,r) | 4.64 ± 1.92 (c,i,m) | 3.46 ± 2.11 (c,d) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanza, A.; Reda, R.; Vannettelli, E.; Donfrancesco, O.; Relucenti, M.; Bhandi, S.; Patil, S.; Mehta, D.; Krithikadatta, J.; Testarelli, L. The Influence of Thermomechanical Compaction on the Marginal Adaptation of 4 Different Hydraulic Sealers: A Comparative Ex Vivo Study. J. Compos. Sci. 2023, 7, 10. https://doi.org/10.3390/jcs7010010
Zanza A, Reda R, Vannettelli E, Donfrancesco O, Relucenti M, Bhandi S, Patil S, Mehta D, Krithikadatta J, Testarelli L. The Influence of Thermomechanical Compaction on the Marginal Adaptation of 4 Different Hydraulic Sealers: A Comparative Ex Vivo Study. Journal of Composites Science. 2023; 7(1):10. https://doi.org/10.3390/jcs7010010
Chicago/Turabian StyleZanza, Alessio, Rodolfo Reda, Elisa Vannettelli, Orlando Donfrancesco, Michela Relucenti, Shilpa Bhandi, Shankargouda Patil, Deepak Mehta, Jogikalmat Krithikadatta, and Luca Testarelli. 2023. "The Influence of Thermomechanical Compaction on the Marginal Adaptation of 4 Different Hydraulic Sealers: A Comparative Ex Vivo Study" Journal of Composites Science 7, no. 1: 10. https://doi.org/10.3390/jcs7010010
APA StyleZanza, A., Reda, R., Vannettelli, E., Donfrancesco, O., Relucenti, M., Bhandi, S., Patil, S., Mehta, D., Krithikadatta, J., & Testarelli, L. (2023). The Influence of Thermomechanical Compaction on the Marginal Adaptation of 4 Different Hydraulic Sealers: A Comparative Ex Vivo Study. Journal of Composites Science, 7(1), 10. https://doi.org/10.3390/jcs7010010