Analysis of Stress Intensity Factor of a Fibre Embedded in a Matrix
Abstract
:1. Introduction
2. Methodology
2.1. Numerical Evaluation of SIF
2.2. Non-Dimensional Parametric Analysis
3. Results and Discussion
3.1. Isotropic Fibre Embedded in a Matrix
3.2. Orthotropic Free Fibre
3.3. Orthotropic Fibre Embedded in a Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Verification of the Finite Element Model
Appendix A.1. Free Fibre Model
Appendix A.2. Embedded Fibre Model with Very Low Stiffness Matrix
Appendix A.3. Comparison with an Analytical Model
References
- Rangappa, S.M.; Satishkumar, T.P.; Cuadrado, M.M.; Siengchin, S.; Barile, C. An experimental study of the influence of inclusions on the fatigue properties of steel. Eng. Fract. Mech. 1974, 6, 759–805. [Google Scholar]
- Breite, C.; Melnikov, A.; Turon, A.; de Morais, A.B.; Otero, F.; Mesquita, F.; Costa, J.; Mayugo, J.A.; Guerrero, J.M.; Gorbatikh, L.; et al. Blind benchmarking of seven longitudinal tensile failure models for two virtual unidirectional composites. Compos. Sci. Technol. 2021, 202, 108555. [Google Scholar] [CrossRef]
- Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. ASME J. Basic Eng. 1963, 85, 528–533. [Google Scholar] [CrossRef]
- Ogihara, S.; Imafuku, Y.; Yamamoto, R.; Kogo, K. Direct evaluation of fracture toughness in a carbon fiber. In Proceedings of the 17th International Conference on Composite Materials, ICCM-17, Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Herraez, M.; Fernandez, A.; Lopes, C.S.; Gonzalez, C. Strength and toughness of structural fibres for composite material reinforcement. Phil. Trans. R. Soc. A 2016, 374, 20150274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daoud, O.E.K.; Cartwright, D.J.; Carney, M. Strain-energy release rate for a single-edge-cracked circular bar in tension. J. Strain Anal. Eng. Des. 1978, 13, 83–89. [Google Scholar] [CrossRef]
- Bush, J. Stress intensity factors for single-edge-crack solid and hollow round bars loaded in tension. J. Test. Eval. 1981, 9, 216–223. [Google Scholar]
- Ouchterlony, F. Extension of the compliance and stress intensity formulas for the single edge crack round bar in bending. Fracfure Mech. Ceram. Rocks Concr. 1981, 745, 237–256. [Google Scholar]
- Carpinteri, A. Stiffness loss and fracture resistance of a cracked beam with circular cross-section. Meccanica 1983, 18, 156–162. [Google Scholar] [CrossRef]
- Mackay, T.L.; Alperin, B.J. Stress intensity factors for fatigue cracking in high-strength bolts. Eng. Fract. Mech. 1985, 21, 391–397. [Google Scholar] [CrossRef]
- Athanassiadis, A.; Boissknot, J.M.; Brevet, P.; Francois, D.; Raharinaivo, A. Linear elastic fracture mechanics computations of cracked cylindrical tensioned bodies. Int. J. Fract. 1981, 17, 553–566. [Google Scholar] [CrossRef]
- Salah el din, A.S.; Lovegrove, J.M. Stress intensity factors for fatigue cracking of round bars. Int. J. Fatigue 1981, 3, 117–123. [Google Scholar] [CrossRef]
- Daoud, O.E.K.; Cartwright, D.J. Strain energy release rates for a straight-fronted edge crack in a circular bar subject to bending. Eng. Fract. Mech. 1984, 19, 701–707. [Google Scholar] [CrossRef]
- Erjian, S. Stress intensity factors for edge cracks in round bars. Eng. Fract. Mech. 1990, 34, 813–816. [Google Scholar] [CrossRef]
- Trantina, G.G.; de Lorenzi, H.G.; Wilkening, W.W. Three-dimensional elastic-plastic finite element analysis of small surface cracks. Eng. Fract. Mech. 1983, 18, 925–938. [Google Scholar] [CrossRef]
- Daoud, O.E.K.; Cartwright, D.J. Strain energy release rate for a circular-arc edge crack in a bar under tension or bending. J. Strain Anal. 1985, 20, 53–58. [Google Scholar] [CrossRef]
- Raju, I.S.; Newman, J.C. Stress intensity factors for circumferential surface cracks in pipes and rods. Fract. Mech. 1986, 905, 789–805. [Google Scholar]
- Nord, K.J.; Chung, T.J. Fracture and surface flaws in smooth’and threaded round bars. Int. J. Fract. 1986, 30, 47–55. [Google Scholar] [CrossRef]
- Caspers, M.; Mattheck, C.; Munz, D. Fatigue crack propagation in cylindrical bars. Z. Werkstofftech. 1986, 17, 327–333. [Google Scholar] [CrossRef]
- Ng, C.K.; Fenner, D.N. Stress intensity factors for an edge cracked circular bar in tension and bending. Int. J. Fract. 1988, 36, 291–303. [Google Scholar] [CrossRef]
- Dassault Systemes/SIMULIA. ABAQUS Version 2020 Documentation; ABAQUS, Inc.: Palo Alto, CA, USA, 2020. [Google Scholar]
- Rice, J.R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968, 35, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Sih, G.C.; Paris, P.C.; Irwin, G.R. On cracks in rectilinearly anisotropic bodies. Int. J. Fract. 1965, 189–203. [Google Scholar] [CrossRef]
- Barzegar, M.; Costa, J.; Lopes, C.S. High-fidelity computational micromechanics of first-fibre failure in unidirectional composites: Deformation mechanisms and stress concentration factors. Int. J. Solids Struct. 2020, 204–205, 18–33. [Google Scholar] [CrossRef]
- Lempriere, B.M. Poisson’s ratio in orthotropic materials. AIAA J. 1968, 2226–2227. [Google Scholar] [CrossRef]
- Astiz, M.A. An incompatible singular elastic element for two- and threedimensional crack problems. Int. J. Fract. 1986, 31, 105–124. [Google Scholar] [CrossRef]
- Tada, H.; Paris, P.C.; Irwin, G.R. The Analysis of Cracks Handbook; ASME Press: New York, NY, USA, 2000. [Google Scholar]
Coefficients of Equation (10) | |||||
---|---|---|---|---|---|
1.187 | −0.4268 | −0.4647 | |||
−0.4349 | −0.1893 | 0.7246 | |||
−0.3255 | −0.07555 | 0.4295 |
Coefficients of Equation (11) | |||||||
---|---|---|---|---|---|---|---|
−0.9022 | 0.932 | −4.647 | 17.67 | ||||
0.3677 | −0.7516 | 4.415 | −10.7 | ||||
1.833 | 1.81 | −1.928 | |||||
−1.993 | −1.727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzegar, M.; Costa, J.; Trias, D.; Guerrero, J.M.; Lopes, C.; Gonzalez, C. Analysis of Stress Intensity Factor of a Fibre Embedded in a Matrix. J. Compos. Sci. 2023, 7, 22. https://doi.org/10.3390/jcs7010022
Barzegar M, Costa J, Trias D, Guerrero JM, Lopes C, Gonzalez C. Analysis of Stress Intensity Factor of a Fibre Embedded in a Matrix. Journal of Composites Science. 2023; 7(1):22. https://doi.org/10.3390/jcs7010022
Chicago/Turabian StyleBarzegar, Mostafa, Josep Costa, Daniel Trias, Jose M. Guerrero, Claudio Lopes, and Carlos Gonzalez. 2023. "Analysis of Stress Intensity Factor of a Fibre Embedded in a Matrix" Journal of Composites Science 7, no. 1: 22. https://doi.org/10.3390/jcs7010022
APA StyleBarzegar, M., Costa, J., Trias, D., Guerrero, J. M., Lopes, C., & Gonzalez, C. (2023). Analysis of Stress Intensity Factor of a Fibre Embedded in a Matrix. Journal of Composites Science, 7(1), 22. https://doi.org/10.3390/jcs7010022