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Abstract: Hydrogels are hydrophilic, three-dimensional networks able to imprison large amounts
of water and are largely used in pharmaceutical formulations. Hydrogels are frequently obtained
from hydrophilic polymers, either natural, biohybrid, or synthetic. Owing to their peculiar structure,
dendrimers can be considered prospective building blocks for hydrogel networks. This review
gathers the use of different types of amphiphilic dendritic structures able to generate physical
hydrogels alone. Such dendritic structures comprise dendrimers, Janus dendrimers, and dendrons.
The first part concerns different types of positively charged phosphorus dendrimers used to generate
hydrogels, which are also suitable to form fibers, and for encapsulating diverse substances, or
forming complexes with genetic materials for their slow delivery. The second part concerns PAMAM
dendrimers functionalized with collagen mimetics. The third part concerns amphiphilic Janus
dendrimers, whereas the fourth part displays different types of amphiphilic dendrons and their use,
in particular in the fields of materials and drug delivery.

Keywords: dendrimer; dendron; amphiphilicity; hydrogel; encapsulation; fiber; biomaterial; drug
delivery; nanomaterials

1. Introduction

Hydrogels are hydrophilic, three-dimensional networks able to imprison large amounts
of water and resemble, to a large extent, biological tissue. For this reason, they are, in par-
ticular, widely used in pharmaceutical formulations [1], including for commercial uses [2].
Most of these biological properties concern drug delivery [3–6]. Hydrogels are frequently
(but not only) obtained from hydrophilic polymers, either natural, such as collagen, gelatin,
hyaluronate, fibrin, alginate, agarose, and chitin, or biohybrids, such as polypeptides, or
synthetic, such as polyacrylic acid and derivatives, polyethylene oxide and copolymers,
polyvinyl alcohol, and polyphosphazene [7,8]. Cross-linking strategies are also widely
used to obtain hydrogels [9,10].

Owing to their peculiar structure, dendrimers, which are constituted of monomers as
polymers but synthesized step-by-step, not by polymerization reactions, can be considered
prospective building blocks for hydrogel networks. Indeed, the inherent multivalency of
dendrimers makes it possible to expose multiple functional groups on the surface, whereas
their highly symmetrical tree-like structure facilitates interactions between branches of
different dendrimer molecules. Many hydrogels of dendrimers are based on their reaction
with difunctional linkers, producing cross-linked polymeric networks [11]. However, the
presence of both a hydrophobic interior together with hydrophilic terminal functions in
some types of dendrimers and dendritic structures can induce the formation of physical
hydrogels with no additional reagent used (single-component hydrogel). The very first
examples of dendritic structures used for obtaining physical hydrogels concerned bolaform
“arborols” constituted of two identical wedges bearing hydroxyl terminal groups linked
through different types of hydrophobic chains. The first paper in this series, published
in 1986 [12], described the use of a C10 alkyl chain as a linker between both hydrophilic
wedges [13], then an alkyl chain with a central alkyne moiety [14]. Another example
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concerned a tetrathiafulvalene central moiety [15] (Figure 1). The self-association of the
hydrophobic moieties in water resulted in gelation.
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Figure 1. Structure of bolaform arborols suitable for forming hydrogels.

In this review, we will describe different well-defined dendritic structures that have
been used to generate single-component physical hydrogels and also the different properties
and uses of such hydrogels, beginning with phosphorus dendrimers. Indeed, a series of
phosphorus dendrimers afforded the very first examples of fully symmetrical dendrimers
suitable for generating physical hydrogels in 2001 [16]. Other types of dendritic structures
used to generate physical hydrogels concerned polyamidoamine (PAMAM) dendrimers,
amphiphilic Janus dendrimers, and different types of amphiphilic dendrons.

2. Phosphorus Dendrimers as Physical Hydrogels and Their Properties

Phosphorus dendrimers possessing high multivalency provide the favorable posi-
tioning of functional groups at the surface, as well as cavities, in the three-dimensional
organization of the scaffold [17] and, therefore, can be considered potential gelators. The in-
ternal structure of phosphorus dendrimers is hydrophobic, whereas their terminal functions
can be positively or negatively charged; thus, the whole structure becomes amphiphilic. In
this Section, we will consider positively charged phosphorus dendrimers [18] as gelators
by themselves in the first part and included in agarose gels (polymer composed of a disac-
charide made of β-D-galactose and 3,6-anhydro-L-galactopyranose) in the second part, in
particular dendrimers having gelation properties themselves.

2.1. Phosphorus Dendrimers as Building Blocks for Physical Hydrogels

The first examples of hydrogel-forming dendrimers concerned polycationic trimethy-
lammonium acetohydrazone-terminated or pyridinium acetohydrazone-terminated phos-
phorus dendrimers of generations 0, 1, 2, and 4. They were synthesized by the grafting
of the corresponding hydrazides (so-called Girard T and P reagents, respectively) to the
aldehyde-terminated dendrimers, affording dendrimers 1a-Gn (Girard T) and 1b-Gn (Gi-
rard P) (n = 0, 1, 2 and 4), based on the trifunctional thiophosphate core [16]. The hydrazone
bond stabilized with the aromatic fragment on one side and the carbonyl group on the other
side appeared to be quite stable in water and did not require reduction. The full structure
of the second-generation dendrimers 1a-G2 and 1b-G2 is shown in Figure 2, whereas the
linear structure of all dendrimers of this series is shown in Figure 3.
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Figure 2. Full chemical structure of dendrimers 1a-G2 (functionalized with the Girard T reagent) and
1b-G2 (functionalized with the Girard P reagent).



J. Compos. Sci. 2023, 7, 26 4 of 19J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 3. Linear representation of the chemical structure of phosphorus dendrimers built from a 

trifunctional core and functionalized with the Girard T reagent (series a, in blue) or the Girard P 

reagent (series b, in green) as hydrophilic terminal functions. 

Polycationic acetohydrazone-modified dendrimers (1.8% in weight) formed stable 

physical hydrogels in water solutions when kept at 60 °C for several days. The formation 

of gels was driven by supramolecular interactions (hydrogen bonds, π−π aromatic stack-

ing, and hydrophobic effects) of functional groups on the dendrimers’ surface and in dis-

tal fragments of dendrimer branches. The gelation speed depended on the dendrimer gen-

eration (higher-generation dendrimers gelated faster), the nature of the functional groups 

on the surface (pyridinium acetohydrazone-terminated dendrimers gelated faster than 

trimethylammonium ones) and the nature of the counter-anion (acetates gelated easier 

than chlorides, as shown by anion exchange with 1b-G1). Furthermore, the gelation was 

greatly accelerated in the presence of hydrophilic additives such as metal salts (Ni(Ac)2, 

Y(Ac)3, Er(Ac)3), organic acids (D,L-lactic acid, ascorbic acid, L-tartric acid, citric acid), di-

thioerythritol, or EDTA (sodium salt of ethylenediaminetetraacetate). The hydrogels con-

tained a considerable amount of water (7500–70,000 water molecules per dendrimer mol-

ecule, depending on the generation, from G1 to G4, respectively) and were able to encap-

sulate up to 30% of Ni(Ac)2 [16]. 

Since these dendrimer hydrogels are physical gels, the gelation could be reversed by 

the addition of acetonitrile; gels dissociated and could be recovered upon the removal of 

acetonitrile. The gelation has been shown to be neither thermo-reversible nor pH-

Figure 3. Linear representation of the chemical structure of phosphorus dendrimers built from a
trifunctional core and functionalized with the Girard T reagent (series a, in blue) or the Girard P
reagent (series b, in green) as hydrophilic terminal functions.

Polycationic acetohydrazone-modified dendrimers (1.8% in weight) formed stable
physical hydrogels in water solutions when kept at 60 ◦C for several days. The formation of
gels was driven by supramolecular interactions (hydrogen bonds, π−π aromatic stacking,
and hydrophobic effects) of functional groups on the dendrimers’ surface and in distal
fragments of dendrimer branches. The gelation speed depended on the dendrimer gener-
ation (higher-generation dendrimers gelated faster), the nature of the functional groups
on the surface (pyridinium acetohydrazone-terminated dendrimers gelated faster than
trimethylammonium ones) and the nature of the counter-anion (acetates gelated easier
than chlorides, as shown by anion exchange with 1b-G1). Furthermore, the gelation was
greatly accelerated in the presence of hydrophilic additives such as metal salts (Ni(Ac)2,
Y(Ac)3, Er(Ac)3), organic acids (D,L-lactic acid, ascorbic acid, L-tartric acid, citric acid),
dithioerythritol, or EDTA (sodium salt of ethylenediaminetetraacetate). The hydrogels
contained a considerable amount of water (7500–70,000 water molecules per dendrimer
molecule, depending on the generation, from G1 to G4, respectively) and were able to
encapsulate up to 30% of Ni(Ac)2 [16].

Since these dendrimer hydrogels are physical gels, the gelation could be reversed by
the addition of acetonitrile; gels dissociated and could be recovered upon the removal of ace-
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tonitrile. The gelation has been shown to be neither thermo-reversible nor pH-dependent.
Interestingly, the three-dimensional hydrogel could be turned into an opaque aerogel by
the freeze-drying-assisted removal of water, affording ramified fiber-like constructions,
which look similar to green cabbage leaves.

Along with the formation of bulk hydrogels in the presence of additives, the directed
gelation of these dendrimers was achieved using different modes of stimulated dendrimer
gelation [19]. The formation of hydrogels has been found to be forced by the addition of a
flocculating salt. The values of the sol-gel transition temperature Tg strongly depended on
the dendrimer generation as well as concentrations of the dendrimer and the flocculating
salt. The best gelation was achieved using the 1a-G4 dendrimer and NaI. The formation
occurred at room temperature (Tg ~17 ◦C), which facilitated further handling.

Based on these data, dendrimer hydrogel fibers have been produced. The 1a-G4
dendrimer solution (10% in weight) was purged through a syringe into a flocculating
bath containing salt (10% La(NO3)3). Upon purging, stable hydrogel fibers were formed
instantly (Figure 4), and after 40 min of incubation, they could be taken from the flocculating
bath and remained stable and resistant to air. Denaturation of the macro-fiber with NaOH
revealed that they were composed of thinner fibers, similar to long hair. The dendrimer
fibers exhibited an elastic behavior, contrary to polymer fibers, which displayed a plastic
behavior (irreversible elongation). The rupture occurred above 9 GPa for the dendrimer
fibers. The Young’s modulus values were in the range of 0.5–3 GPa. It should be noted that
such mechanical behavior is quite surprising for physical gels assembled exclusively by
means of weak interactions [19].
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Figure 4. Schematization of the method used for producing dendrimer fibers with dendrimer 1a-G4.

A series of cyclam-modified latex nanoparticles coated with phosphorus dendrons
of generations 0, 1, and 2, bearing 2, 4 or 8 trimethylammonium acetohydrazone groups,
respectively, was synthesized (Figure 5) [20]. The latex nanoparticles could accommodate
on their surface about 300 molecules of the generation 0 dendron (2a-G0), 150 of the
generation 1 dendron (2a-G1), and 90 of the generation 2 dendron (2a-G2). Exposure to
multiple charged groups greatly increased the colloidal stability of the nanoparticles in
water. The gelation occurred at room temperature for 1 week. The nanolatex samples
could be freeze-dried and then re-dispersed in water into individual particles. Furthermore,
nanoparticles decorated with dendrons imitated dendrimers of high generations (G10, for
instance), and this greatly facilitated their gelation potential. Interestingly, coating with
cationic dendrons did not prevent the successful complexation of Cu2+ ions by cyclam
moieties on the surface of nanolatexes to form copper-containing hydrogels.
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Figure 5. Nanolatex functionalized with phosphorus dendrons (generations 0 to 2) bearing the Girard
T reagent as terminal functions. Cyclam moieties were suitable for the complexation of Cu2+ ions.

Later on, the applicability of dendrimer hydrogels for biomedical applications was
explored. A series of trimethylammonium acetohydrazone-terminated or pyridinium
acetohydrazone-terminated phosphorus dendrimers of generations 1, 2, and 3, based on
the cyclotriphosphazene core (12, 24 or 48 surface groups, respectively), was synthesized
(see Figure 6 for the full structure of dendrimer 3a-G2 and Figure 7 for the linear representa-
tion of all the dendrimers synthesized in this series). The use of such a hexafunctional core
enables one to multiply by two the number of terminal functions at a given generation, com-
pared to the trichlorothiophosphine core shown in Figure 3, and is particularly useful for
the synthesis of a variety of dendritic structures [21]. The gelation properties of dendrimers
3a-Gn and 3b-Gn were assessed in media suitable for biological studies [22]. The gelation
was carried out either in water or phosphate-buffered saline (a common solution for the
handling of biomacromolecules and biological samples) in the presence of biocompatible
additives (glucose, glycine or polyethyleneglycol PEG4000). The formation of light-colored
gels (colorless to light yellow) was reported to depend on the concentration of the den-
drimer, the dendrimer generation and the type of terminal functions, the presence of a
salt, and the concentration and nature of the additive. The general conclusions supported
those drawn previously [16]. However, using glucose, glycine, or polyethyleneglycol as
additives generally required a longer gelation time (5–10 days), and water content in those
dendrimers was lower than reported before (3300–51000 water molecules per dendrimer
molecule from generation 1 to generation 3). Dendritic pyridinium salts (3b-Gn family)
were found to be more efficient than trimethylammonium salts (3a-Gn family) [22], as
observed previously.



J. Compos. Sci. 2023, 7, 26 7 of 19J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 6. Full chemical structure of dendrimer 3a-G2. 

Importantly, in this work, the authors succeeded in obtaining representative TEM 

images of structural units of hydrogels. Dendrimer hydrogels were fixed by paraformal-

dehyde and cut into ultrathin sections (~70 nm thick). The TEM observation revealed ran-

dom porous networks, with the network porosity and electron density of structural units 

correlating with the water content in hydrogels. There were two types of structural units: 

spherical particles and fibers co-assembled in the hydrogel network. The presence of both 

types of units in gels depended on the dendrimer content in the hydrogel network and on 

the nature of the additive [22]. 

Figure 6. Full chemical structure of dendrimer 3a-G2.



J. Compos. Sci. 2023, 7, 26 8 of 19J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 7. Linear representation of phosphorus dendrimers built from a hexafunctional core and 

functionalized with the Girard T reagent (in blue) or the Girard P reagent (in green) as terminal 

groups. 

Owing to the polycationic structure of acetohydrazone-terminated dendrimers, hy-

drogels efficiently bound therapeutic oligonucleotides. In general, oligonucleotide bind-

ing capacity depends rather on the nature of the additive (glucose > polyethyleneglycol > 

glycine) than on the nature of the cation. The loading capacity was 1.5–3 µmol/g. Once 

bound, oligonucleotides could be partially released from hydrogels. The release was pH-

dependent; the release rate increased at pH < 6. Nevertheless, the overall release did not 

exceed 10% after 24 h [22]. This gives the idea that dendrimer hydrogels can be used as 

depots of therapeutic oligonucleotides for a sustained release over weeks. 

Thus, phosphorus dendritic molecules present a convenient platform for obtaining 

functional hydrogels. By modulating dendrimer topology, generation and surface chem-

istry, one can produce materials with controllable properties. 

2.2. Phosphorus Dendrimers in Hydrogels 

A good example of a dendrimer inside a hydrogel is an agarose gel containing a poly-

electrolyte dendrimer complexed with nucleic acids. In this case, dendrimers themselves 

are generally not involved in the formation of the hydrogel network. Such complexes, so-

called dendriplexes [23], are frequently analyzed by the agarose gel electrophoresis assay, 

and these studies clearly demonstrated the compatibility of polycationic phosphorus den-

drimers with the agarose hydrogel scaffold. Different examples of such analyses of den-

driplexes by gel electrophoresis were reported. The fluorescent dendron 4-G2 (Figure 8) 

was associated with the plasmid DNA coding the gene of fluorescent fusion protein 

BACE-GFP and also with the HygEGFP plasmid [24]. Different types of fourth-generation 

dendrimers bearing cyclic ammoniums as terminal functions (5-G4, 6-G4, 7-G4) were 

tested for their ability to interact with a [32P]-labelled 20-mer double-stranded 
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Importantly, in this work, the authors succeeded in obtaining representative TEM
images of structural units of hydrogels. Dendrimer hydrogels were fixed by paraformalde-
hyde and cut into ultrathin sections (~70 nm thick). The TEM observation revealed random
porous networks, with the network porosity and electron density of structural units cor-
relating with the water content in hydrogels. There were two types of structural units:
spherical particles and fibers co-assembled in the hydrogel network. The presence of both
types of units in gels depended on the dendrimer content in the hydrogel network and on
the nature of the additive [22].

Owing to the polycationic structure of acetohydrazone-terminated dendrimers, hydro-
gels efficiently bound therapeutic oligonucleotides. In general, oligonucleotide binding
capacity depends rather on the nature of the additive (glucose > polyethyleneglycol >
glycine) than on the nature of the cation. The loading capacity was 1.5–3 µmol/g. Once
bound, oligonucleotides could be partially released from hydrogels. The release was pH-
dependent; the release rate increased at pH < 6. Nevertheless, the overall release did not
exceed 10% after 24 h [22]. This gives the idea that dendrimer hydrogels can be used as
depots of therapeutic oligonucleotides for a sustained release over weeks.

Thus, phosphorus dendritic molecules present a convenient platform for obtaining
functional hydrogels. By modulating dendrimer topology, generation and surface chemistry,
one can produce materials with controllable properties.

2.2. Phosphorus Dendrimers in Hydrogels

A good example of a dendrimer inside a hydrogel is an agarose gel containing a poly-
electrolyte dendrimer complexed with nucleic acids. In this case, dendrimers themselves
are generally not involved in the formation of the hydrogel network. Such complexes,
so-called dendriplexes [23], are frequently analyzed by the agarose gel electrophoresis
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assay, and these studies clearly demonstrated the compatibility of polycationic phosphorus
dendrimers with the agarose hydrogel scaffold. Different examples of such analyses of
dendriplexes by gel electrophoresis were reported. The fluorescent dendron 4-G2 (Figure 8)
was associated with the plasmid DNA coding the gene of fluorescent fusion protein BACE-
GFP and also with the HygEGFP plasmid [24]. Different types of fourth-generation den-
drimers bearing cyclic ammoniums as terminal functions (5-G4, 6-G4, 7-G4) were tested
for their ability to interact with a [32P]-labelled 20-mer double-stranded oligonucleotide.
The pyrrolidinium derivative 5-G4 was found to be the most efficient [25]. Generations 0 to
2 of dendrimers functionalized with PTA (1,3,5-triaza-7-phosphaadamantane) complexing
ruthenium were tested for their interaction with supercoiled DNA to afford relaxed DNA.
Generation 0 in this series (8-G0) was found to be as efficient as cisplatin [26]. Generations
3 and 4 of phosphorus dendrimers bearing charged diethylethylene diamine terminal
functions (9-G3 and 9-G4 [26]) formed dendriplexes with the supercoiled form of the
pUC19 plasmid, issued from E. coli cells. Agarose gel electrophoresis demonstrated that
the dendrimers did not induce the cleavage of the plasmid [27].

Cationic phosphorus dendrimers were also used to form dendriplexes with small
interfering siRNA, which were analyzed by agarose gel electrophoresis assays. Phosphorus
dendrimers 9-G3 and 9-G4 were used as nanocarriers for anticancer siBcl-xl, siBcl-2, siMcl-1
siRNAs and a siScrambled sequence [28]. Phosphorus dendrimers functionalized with
piperidine terminal cationic groups of the third and fourth generation (10-G3 and 10-G4)
showed a remarkable ability to bind pro-apoptotic siRNAs [29].

Phosphorus dendrimers can also be used to bring new functionalities to hydrogels
built of conventional structural blocks. The dendrimer content is thus quite low, so it
can be considered a dopant enhancing the properties of the bulk, as they are placed ran-
domly in the pores. The potential of the agarose gel to serve as a depot for the slow
release of dendriplexes containing therapeutically relevant siRNA Mcl-1 was studied [30].
Third-generation polycationic phosphorus dendrimers bearing 48 cationic acetohydrazone
groups (3a-G3 and 3b-G3) or piperidinium groups (10-G3) on the surface efficiently com-
plexed fluorescein-labelled siRNA to form nanosized dendriplexes of ~100 nm diameter.
Dendriplexes were cast into a hot agarose solution before gelation, and the release of
siRNA-containing dendriplexes was monitored. Interestingly, the release rate appeared
to strongly depend on the dendriplexes composition. Whereas dendriplexes containing a
piperidinium-terminated dendrimer (10-G3) were released for 80% after 3 h, those contain-
ing acetohydrazone-terminated dendrimers (3a-G3 and 3b-G3) were released only for 20%
after 24 h. This occurred most likely because of multiple hydrogen bonding between hydra-
zone moieties on the dendrimers’ periphery and agarose scaffold. It should be reminded
that this type of dendrimer was able to form hydrogels themselves [22]. Remarkably, using
mixtures of dendrimers, it was possible to manipulate the dendriplexes’ release rate in
quite a wide range. This observation yielded the important insight that using such a kind
of dendriplex anchoring in the neutral hydrogel scaffold, one can achieve a sustained local
release of therapeutic oligonucleotides. This is especially important for designing local drug
delivery systems and tissue engineering tools. It is also worth noting that oligonucleotides
were released from a hydrogel not as individual molecules but as dendriplexes, which
would facilitate their accumulation in cells of a surrounding tissue [31].
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3. PAMAM Dendrimers as Physical Hydrogels and Their Properties

Poly(AMidoAMine) (PAMAM) dendrimers [32] are the most popular type of den-
drimers, and they were also the first ones commercially available. They have been used
as the core of star polymers, which, in some cases, were used to produce hydrogels
(see, for instance, the grafting of Pluronic F127, a nonionic, surfactant polyol [33], or
the grafting of a polypeptide synthesized by the ring-opening polymerization of g-(2-(2-
methoxyethoxy)ethyl) L-glutamate (L-EG2Glu) N-carboxyanhydride [34]), but this type of
poorly defined compound is out of the scope of this review, which focuses only on perfectly
defined structures.
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Artificial collagen-mimetic PAMAM dendrimers were synthesized by grafting dif-
ferent collagen peptides on their surface. The first publication concerned the grafting
of the peptide proline-proline-glycine (Pro-Pro-Gly)5 (Figure 9, compound 11a-G4). The
corresponding dendrimer formed a hydrogel, which was found suitable for the trapping
and release of Rose Bengal as a model drug [35].
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This work was then extended to the grafting of a longer form of the same peptidic
sequence (Pro-Pro-Gly)10. Using a 15 wt % aqueous solution of this dendrimer at 4 ◦C
overnight formed a hydrogel, which could be dissolved by heating at 45 ◦C [36]. Another
paper concerned the peptide proline-hydroxyproline-glycine (Pro-Hyp-Gly)10 (11b-G4).
The corresponding dendrimer in aqueous suspensions (15 wt%) formed hydrogels at 40 ◦C
upon heating. The hydrogel was maintained upon heating to 80 ◦C, but it was dissolved
by cooling to 25 ◦C [37]. Gel formation, stability, and reversibility were discussed in
detail; then, trapping and release experiments of Rose Bengal were reported with these
hydrogels [38].

A related generation 4 PAMAM dendrimer bearing both a commercially available
collagen peptide (type I or type IV collagen) and doxorubicin (DOX) attached via a pH-
cleavable linkage was synthesized later on (compound 11c-G4 in Figure 9). This dendrimer
also afforded hydrogels in water and was used as a pro-drug against metastatic tumor cells,
the highly invasive MDA-MB-231 cells. The release of DOX occurred at low pH in acidic
subcellular compartments [39].

4. Janus Dendrimers as Physical Hydrogels and Their Properties

Janus dendrimers are constituted of two dendritic wedges associated by their core [40].
They are reminiscent of the bola-form dendrimers shown in Figure 1, but with two different
dendritic wedges instead of two identical wedges. A series of amphiphilic Janus dendrimers
was synthesized by the click chemistry between azide and alkyne in the presence of copper
(12-G0G2, Figure 10). These compounds formed self-assembled fibers at a very low mass
proportion (0.2 wt%) to afford supramolecular hydrogels. These hydrogels were loaded
with different molecular weight bioactive compounds, such as nadolol (a low-molecular
drug), gonadorelin (a decapeptide), and the enzyme horseradish peroxidase. The release
rate depended both on the quantity, and the type of active ingredient encapsulated [41].
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Another Janus amphiphilic dendrimer constituted on one side of a poly(aryl ether)
dendron, and on the other side, a poly(amido amine) (PAMAM) dendron was synthesized
(compound 13-G0G1 in Figure 10). The gelation properties of this compound were assessed
in a binary solvent mixture (DMSO/water), suitable for encapsulating and releasing the
Rhodamine B dye [42].

5. Dendrons as Physical Hydrogels and Their Properties

Amphiphilic dendrons are prone to self-associate in water [43]; thus, it is not surprising
that numerous examples of amphiphilic dendrons possess hydrogelation properties. A
series of dendrons bearing carbohydrate terminal functions and an O-allyl group at the core
was synthesized using a parallel combinatorial approach, depending on the length of the
alkyl linkers in the branches (values of x, y, and z in the family of compounds 14x,y,z-G2
shown in Figure 11). It was found that subtle differences in the dendrons’ structure induced
significant differences in their hydrogelation properties. Hydrogels were obtained in all
cases at low concentrations in water 0.5–1.0 wt%. Gel transition (from gel to solution)
depended on the structure, i.e., on the values of x, y, and z. For instance, gel transition was
obtained at 15◦C with dendron 145,4,3-G2 and at 37 ◦C with dendron 143,4,5-G2, which only
differed by the inversion of the x and z values [44].

The small anthryl dendron 15-G0 (Figure 12), having gluconamides at its periphery,
was shown to afford a hydrogel by heating at 60◦C in water, then cooling to room tempera-
ture. Interestingly, the presence of an anthracene at the core enabled its photo-dimerization
in a quantitative yield under irradiation of the hydrogel at λ > 300 nm. Such dimerization in-
duced physical changes from gel to solution. Such a phase transition was observed at 46 ◦C
for the hydrogel of dendron 15-G0 before irradiation and at 15 ◦C for its photo-dimerized
form. This was the first example of a dendron as a photo-responsible hydrogelator. Only
two forms were obtained for the dimer, the syn and anti of the head-to-tail form, whereas
no head-to-head form was observed, as shown by 1H NMR [45].
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Figure 12. A small dendron having an anthracene at the core, able to dimerize under photo-irradiation.

Besides the anthracene, a series of dendrons possessing an aromatic group at the core
and protected L-glutamate branches was synthesized (compounds 16a-e-G1 in Figure 13).
These dendrons displayed ambidextrous properties. Indeed, they formed organogels in
hexane and hydrogels in water, essentially composed in both cases of nanofibers. Gels
based on naphthyl and anthryl dendrons displayed an enhanced fluorescence compared to
the solutions. Strong CD (circular dichroism) values were observed for the gels, contrarily
to the solution, indicating that the chirality could be observed only in the gel [46].
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Figure 13. Examples of amphiphilic dendrons, for which the dendritic part is hydrophilic and the
core is a lipophilic aromatic group.

A series of dendrons bearing a pyrene at the core and 2 to 8 ammonium terminal
functions was first synthesized for DNA sensory applications [47]. The smallest dendrons
of the series, such as 17-G1 (Figure 13) were then used to obtain pH-responsive hydrogels.
Indeed, these dendrons formed hydrogels in basic conditions, whereas only solutions were
obtained in acidic conditions [48].

Several small dendrons having an alkyl chain at the core and hydrophilic terminal functions
were synthesized, and their gelation properties were studied, both in several organic solvents
and in water. In the series of compounds 18a-c-G0 (Figure 14), which differed by the presence or
absence of an amide group in the chain and on the chain length, compound 18c-G0 displayed
the best hydrogelation ability at 0.3 mol% concentration. These hydrogels exhibited highly
pH-responsive gel-sol transitions, with the hydrogels being present at high pH (pH = 9), whereas
a clear solution was observed at low pH (pH = 2) [49].
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The small peptide dendron 19-G1 based on L-glutamic acid and a long C17 alkyl chain
at the core (Figure 14) formed hydrogels over a wide pH range (2 to 13). Interestingly, AFM
images of the hydrogels at different pH values displayed different chiral structures, in
particular, various types of nanotubes. At pH 3 or 4, the nanotubes were similar to a string
of hollow beads. At pH 7, the nanotubes served as building blocks of a coiled superhelix. At
a pH higher than 10, the ionic interactions became dominant, and dendritic-like structures
were observed [50]. It was shown later on that metal ions (Ag+, Cu2+, Zn2+, Co2+, Mg2+,
Ca2+, Ni2+, Cd2+, Al3+, Fe3+, La3+, Eu3+, Zr4+) could enhance the gelation properties, with
the lowest concentration to gel water decreasing from 0.3 wt% for the dendron alone to
0.08 wt% in the presence of metal ions. Furthermore, a reversible shrinkage of the gel was
observed when using divalent metal ions. Such a property was used for the controlled
release of Vitamin B1. At first, the dendron and Vitamin B1 were heated in water, and
the hydrogel, including Vitamin B1, was obtained on cooling. The shrinkage of the gel,
accompanied by the release of Vitamin B1, was observed upon the addition of divalent
metal ions, in particular Mg2+ [51]. Such a process with Mg2+ was then applied to the
separation of ionic dye mixtures. The cationic dyes were methyl violet (MV), methylene
blue (MB), acridine yellow (AY), and neutral red (NR), whereas the anionic dyes were
methyl orange (MO) and acid red 26 (AR). The hydrogels were mixed with the same molar
amounts of two different dyes (one positively and one negatively charged). It was shown
that the ionic dye mixtures could be easily and spontaneously separated through hydrogel
shrinkage. Indeed, the cationic dyes remained in the gel phase, whereas the anionic dyes
were released into the aqueous phase. Such a process was then used for the stepwise release
of two-component ionic drugs, pralidoxime iodide (PI) and phenol red (PR), being used as
model drugs of small hydrophilic molecules [52].

These hydrogels based on dendron 19-G1 were also used to regulate the chiral packing
of a cyanine dye, forming a helical H-aggregate. It was possible with this system to visually
discriminate the presence of chiral amines ((R)-1-(4-methoxyphenyl) ethanamine and (S)-
1-(4-methoxyphenyl) ethanamine) [53]. The same dendron was also used to generate
hydrogels in the presence of a positively charged azobenzene derivative. The hydrogel was
composed of long nanofibers and presented a dual thermal and photo-switchable reversible
volume phase transition upon either heating or photo-irradiation [54].

All the previously shown dendrons are composed of a lipophilic core and hydrophilic
surface. There are few examples of dendrons having, on the contrary, a hydrophilic
core and a lipophilic surface composed of aromatic groups. The glucose-cored poly(aryl
ether) dendron 20-G1 afforded transparent hydrogels (Figure 15). The structure of these
hydrogels varied with the pH, from nanofibers to spherical aggregates. The addition of
KOH (pH = 10) converted the hydrogel to a solution [55]. This hydrogel was used for
enhancing resonance energy transfer from organic donors (phenanthrene, naphthalene, and
pyrene) to lanthanide [Eu3+ and Tb3+] ions. It is important to note that such a transfer was
not observed in solution; it occurred solely in the hydrogel. The system has been utilized to
generate cool white-light emission from the gel by incorporating an additional lanthanide
ion, Tb3+, along with the organic donors and Eu3+ [56].

Another type of amphiphilic dendron was obtained by solid phase synthesis to incor-
porate a single-stranded DNA at the core (compound 21-G1 in Figure 15). This dendron
self-assembled in water into nanofibers, formed by the association of the hydrophobic parts
of the dendrons, to produce a hydrogel. Hydrophobic species such as Nile Red entered
into these nanofibers, and a bright fluorescence could be observed [57].
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6. Conclusions

Physical hydrogels attract the attention of researchers due to the simplicity of their
preparation as well as their attractive physicochemical and mechanical properties. Den-
drimers, being inherent multivalent species, are highly promising building blocks for
physical hydrogels due to their high number of functional residues available for gela-
tion. Importantly, the dendritic scaffold takes part in the gelation along with surface
groups. Therefore, the use of dendritic molecules for gelation gives room for precise
engineering of hydrogel properties by finding an optimal balance between the hydrophilic-
ity/hydrophobicity of the dendritic scaffold and surface functional groups, with the choice
of functional group chemistry defining the gelation mode.

Dendrimer-based hydrogels have been used as functional materials and drug-delivery
vehicles, as illustrated in Figure 16. Quite limited data available to date suggests, neverthe-
less, that the use of dendrimers and dendrons should be developed for the adjustment of
material properties. However, there are several challenges to be addressed in further explo-
rations, namely the large-scale production of hydrogels for sustained drug release or tissue
engineering. The recent success of the dendrimer-based formulation VivaGel approved
by the US FDA to prevent HIV infection [58,59] and to treat bacterial vaginosis [60,61] is
encouraging. Furthermore, a better understanding of the relationships between dendritic
gelator structure and the following modulation of hydrogel properties can serve as key
parameters to construct the next generation of therapeutic systems or biomaterials.
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