Effects of Electrolyte Compositions and Electrical Parameters on Micro-Arc Oxidation Coatings on 7075 Aluminum Alloy
Abstract
:1. Introduction
2. Experimental Method and Procedures
2.1. Micro-Arc Oxidation Production
2.2. Surface Characterization
2.3. Wear and Corrosion Analysis
3. Results and Discussion
3.1. Micro-Arc Oxidation Discharge Behavior
3.2. Macroscopic View and Microstructure Analysis of the Film
3.3. Analysis of Composition and Structure
3.4. Analysis of Wear Properties
3.5. Analysis of Corrosion Properties
4. Conclusions
- Muffin-shaped structures are smoothly formed on the surface in the sodium aluminate system, whereas nodular structures are developed in the sodium metasilicate system.
- The MAO film formed in the sodium aluminate system mainly consist of α-Al2O3 and γ-Al2O3, and the film of the sodium metasilicate system mainly consists of γ-Al2O3 with a small amount of α-Al2O3 and mullite amorphous phases.
- The MAO film formed in the sodium aluminate system film exhibits a maximum hardness of 1300–1500 HV, whereas that formed in the metasilicate system is 1049 HV.
- The MAO film formed in the sodium aluminate system exhibits better wear resistance in comparison with the sodium metasilicate system, irrespective of density. However, the films formed in the sodium metasilicate system demonstrate improved corrosion resistance in the NaCl solution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Heinz, A.; Haszler, A.; Keidel, C.; Moldenhauer, S.; Benedictus, R.; Miller, W.S. Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng. A 2000, 280, 102–107. [Google Scholar] [CrossRef]
- Birbilis, N.; Buchheit, R.G. Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys. J. Electrochem. Soc. 2005, 152, B140. [Google Scholar] [CrossRef]
- Villuendas, A.; Jorba, J.; Roca, A. The Role of Precipitates in the Behavior of Young’s Modulus in Aluminum Alloys. Metall. Mater. Trans. A 2014, 45, 3857–3865. [Google Scholar] [CrossRef]
- Jain, S.; Lim, M.L.C.; Hudson, J.L.; Scully, J.R. Spreading of intergranular corrosion on the surface of sensitized Al-4.4Mg alloys: A general finding. Corros. Sci. 2012, 59, 136–147. [Google Scholar] [CrossRef]
- Birbilis, N.; Cavanaugh, M.K.; Buchheit, R.G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros. Sci. 2006, 48, 4202–4215. [Google Scholar] [CrossRef]
- Malayoglu, U.; Tekin, K.C.; Malayoglu, U.; Shrestha, S. An investigation into the mechanical and tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy. Mater. Sci. Eng. A 2011, 528, 7451–7460. [Google Scholar] [CrossRef]
- Krishna, L.R.; Purnima, A.S.; Sundararajan, G. A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings. Wear 2006, 261, 1095–1101. [Google Scholar] [CrossRef]
- Shao, L.; Li, H.; Jiang, B.; Liu, C.; Gu, X.; Chen, D. A Comparative Study of Corrosion Behavior of Hard Anodized and Micro-Arc Oxidation Coatings on 7050 Aluminum Alloy. Metals 2018, 8, 165. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Snizhko, L.O.; Gurevina, N.L.; Leyland, A.; Pilkington, A.; Matthews, A. Discharge characterization in plasma electrolytic oxidation of aluminium. J. Phys. D Appl. Phys. 2003, 36, 2110–2120. [Google Scholar] [CrossRef]
- Matykina, E.; Berkani, A.; Skeldon, P.; Thompson, G.E. Real-time imaging of coating growth during plasma electrolytic oxidation of titanium. Electrochim. Acta 2007, 53, 1987–1994. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, L.; Liu, H.; Li, W. Investigation of MAO coating growth mechanism on aluminum alloy by two-step oxidation method. Appl. Surf. Sci. 2014, 293, 12–17. [Google Scholar] [CrossRef]
- Sundararajan, G.; Rama Krishna, L. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf. Coat. Technol. 2003, 167, 269–277. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Wu, H.-H.; Li, Y.; Chang, H.; Tang, Y.-G. Effect of electrical parameters on characteristics of microarc oxidation coatings of commercially pure titanium in colloid. Acta Phys. Sin. 2010, 59, 1958. [Google Scholar] [CrossRef]
- Wang, J.-H.; Du, M.-H.; Han, F.-Z.; Yang, J. Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys. Appl. Surf. Sci. 2014, 292, 658–664. [Google Scholar] [CrossRef]
- Li, F.; An, M.; Liu, G.; Duan, D. Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels. Mater. Chem. Phys. 2009, 113, 971–976. [Google Scholar] [CrossRef]
- Chen, J.; Bai, Z.; Xu, J.; Li, W.; Jia, E.; Wang, J. Preparation and tribological properties of MAO-PVA/PTFE self-lubricating composite coating on aluminum alloy surface. J. Coat. Technol. Res. 2023. [CrossRef]
- Mécuson, F.; Czerwiec, T.; Belmonte, T.; Dujardin, L.; Viola, A.; Henrion, G. Diagnostics of an electrolytic microarc process for aluminium alloy oxidation. Surf. Coat. Technol. 2005, 200, 804–808. [Google Scholar] [CrossRef]
- Dunleavy, C.S.; Golosnoy, I.O.; Curran, J.A.; Clyne, T.W. Characterisation of discharge events during plasma electrolytic oxidation. Surf. Coat. Technol. 2009, 203, 3410–3419. [Google Scholar] [CrossRef]
- Hussein, R.O.; Nie, X.; Northwood, D.O. Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surf. Coat. Technol. 2010, 205, 1659–1667. [Google Scholar] [CrossRef]
- Tsai, D.-S.; Chou, C.-C. Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation. Metals 2018, 8, 105. [Google Scholar] [CrossRef]
- Terleeva, O.P.; Oh, Y.; Slonova, A.I.; Kireenko, I.B.; Ok, M.-R.; Ha, H.-P. Quantitative Parameters and Definition of Stages of Anodic-Cathodic Microplasma Processes on Aluminum Alloys. Mater. Trans. 2005, 46, 2077–2082. [Google Scholar] [CrossRef]
- Gębarowski, W.; Pietrzyk, S. Growth Characteristics of the Oxide Layer on Aluminium in the Process of Plasma Electrolytic Oxidation. Arch. Metall. Mater. 2014, 59, 407–411. [Google Scholar] [CrossRef]
- Rogov, A.B.; Shayapov, V.R. The role of cathodic current in PEO of aluminum: Influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra. Appl. Surf. Sci. 2017, 394, 323–332. [Google Scholar] [CrossRef]
- Rogov, A.B.; Yerokhin, A.; Matthews, A. The role of cathodic current in plasma electrolytic oxidation of aluminium: Current density ‘scanning waves’ on complex-shape substrates. J. Phys. D Appl. Phys. 2018, 51, 405303. [Google Scholar] [CrossRef]
- Clyne, T.W.; Troughton, S.C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Int. Mater. Rev. 2019, 64, 127–162. [Google Scholar] [CrossRef]
- Xue, W.; Deng, Z.; Chen, R.; Zhang, T. Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy. Thin Solid Film. 2000, 372, 114–117. [Google Scholar] [CrossRef]
- Aliasghari, S.; Skeldon, P.; Thompson, G.E. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Appl. Surf. Sci. 2014, 316, 463–476. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, Z.; Xin, S.; Yao, Z. Composition and mechanical properties of hard ceramic coating containing α-Al2O3 produced by microarc oxidation on Ti–6Al–4V alloy. Thin Solid Films 2005, 471, 194–199. [Google Scholar] [CrossRef]
- Wang, Z.X.; Zhang, J.W.; Ye, F.; Lv, W.G.; Lu, S.; Sun, L.; Jiang, X.Z. Properties of Micro-Arc Oxidation Coating Fabricated on Magnesium under Two Steps Current-Decreasing Mode. Front. Mater. 2020, 7, 261. [Google Scholar] [CrossRef]
- Shu, Y.F.; Jiang, B.; Wang, C.; Song, R.G. Effects of voltage on microstructure and properties of micro-arc oxidation ceramic coatings on AZ31B magnesium alloy under constant current–constant voltage operation mode. Anti-Corros. Methods Mater. 2023. [Google Scholar] [CrossRef]
- Yao, J.; Wang, S.; Zhou, Y.; Dong, H. Effects of the Power Supply Mode and Loading Parameters on the Characteristics of Micro-Arc Oxidation Coatings on Magnesium Alloy. Metals 2020, 10, 1452. [Google Scholar] [CrossRef]
- Hussein, R.O.; Nie, X.; Northwood, D.O. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim. Acta 2013, 112, 111–119. [Google Scholar] [CrossRef]
- Xu, F.; Luo, L.; Xiong, L.; Liu, Y. Microstructure and corrosion behavior of ALD Al2O3 film on AZ31 magnesium alloy with different surface roughness. J. Magnes. Alloys 2020, 8, 480–492. [Google Scholar] [CrossRef]
- Clavería, I.; Lostalé, A.; Fernández, Á.; Castell, P.; Elduque, D.; Mendoza, G.; Zubizarreta, C. Enhancement of Tribological Behavior of Rolling Bearings by Applying a Multilayer ZrN/ZrCN Coating. Coatings 2019, 9, 434. [Google Scholar] [CrossRef]
- Islamov, D.R.; Gritsenko, V.A.; Lebedev, M.S. Determination of trap density in hafnia films produced by two atomic layer deposition techniques. Microelectron. Eng. 2017, 178, 104–107. [Google Scholar] [CrossRef]
- Balagna, C.; Spriano, S.; Faga, M.G. Characterization of Co-Cr-Mo alloys after a thermal treatment for high wear resistance. Mater. Sci. Eng. C 2012, 32, 1868–1877. [Google Scholar] [CrossRef]
- Li, J.; Cai, H.; Xue, X.; Jiang, B. The outward–inward growth behavior of microarc oxidation coatings in phosphate and silicate solution. Mater. Lett. 2010, 64, 2102–2104. [Google Scholar] [CrossRef]
- Wei, T.; Yan, F.; Tian, J. Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. J. Alloys Compd. 2005, 389, 169–176. [Google Scholar] [CrossRef]
- Tian, J.; Luo, Z.; Qi, S.; Sun, X. Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy. Surf. Coat. Technol. 2002, 154, 1–7. [Google Scholar] [CrossRef]
- Sobolev, A.; Kossenko, A.; Borodianskiy, K. Study of the Effect of Current Pulse Frequency on Ti-6Al-4V Alloy Coating Formation by Micro Arc Oxidation. Materials 2019, 12, 3983. [Google Scholar] [CrossRef]
- Koroleva, E.v.; Thompson, G.e.; Hollrigl, G.; Bloeck, M. Surface morphological changes of aluminium alloys in alkaline solution: Effect of second phase material. Corros. Sci. 1999, 41, 1475–1495. [Google Scholar] [CrossRef]
- Mengesha, G.A.; Chu, J.P.; Lou, B.-S.; Lee, J.-W. Corrosion performance of plasma electrolytic oxidation grown oxide coating on pure aluminum: Effect of borax concentration. J. Mater. Res. Technol. 2020, 9, 8766–8779. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, B.; Zhao, X.; Wang, B. Binary Additives Enhance Micro Arc Oxidation Coating on 6061Al Alloy with Improved Anti-Corrosion Property. Coatings 2020, 10, 128. [Google Scholar] [CrossRef]
- Su, P.; Wu, X.; Guo, Y.; Jiang, Z. Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60 Mg alloy. J. Alloys Compd. 2009, 475, 773–777. [Google Scholar] [CrossRef]
Electrolyte Composition | Sodium Aluminate System | Sodium Metasilicate System | |||
---|---|---|---|---|---|
Duty Cycle | 10% | 30% | 50% | 10% | |
Cathode Current Density | |||||
−2 A/dm2 | Al-C2-10% | Al-C2-30% | Al-C2-50% | Si-C2-10% | |
−6 A/dm2 | Al-C6-10% | Al-C6-30% | Al-C6-50% | Si-C6-10% | |
−10 A/dm2 | Al-C10-10% | Al-C10-30% | Al-C10-50% | Si-C10-10% |
Sample | Sodium Aluminate | Sodium Metasilicate | |||
---|---|---|---|---|---|
Current Density (A/dm2) | Duty Ratio | Sparking Voltage (V) | Final Voltage (V) | Sparking Voltage (V) | Final Voltage (V) |
C2 | 10% | 418.3 | 556.9 | 389.8 | 531.6 |
C6 | 10% | 418.3 | 599.3 | 381.3 | 545.6 |
C10 | 10% | 418.1 | 605 | 366 | 542.1 |
C2 | 30% | 384.4 | 531.1 | ||
C6 | 30% | 381.5 | 560.3 | ||
C10 | 30% | 380 | 565.1 | ||
C2 | 50% | 380.4 | 520.6 | ||
C6 | 50% | 375.7 | 549.1 | ||
C10 | 50% | 374.1 | 544.8 |
Duty Ratio | Sodium Aluminate | Sodium Metasilicate | |||
---|---|---|---|---|---|
Cathode Current Density (A/dm2) | 10% | 30% | 50% | 10% | |
C2 | 26.28 | 26.64 | 30.84 | 30.46 | |
C6 | 30.72 | 40.31 | 42.76 | 37.94 | |
C10 | 34.05 | 40.69 | 41.65 | 48.43 |
Duty Ratio | Sodium Aluminate | Sodium Metasilicate | |||
---|---|---|---|---|---|
Cathode Current Density (A/dm2) | 10% | 30% | 50% | 10% | |
C2 | 4.37 | 3.92 | 3.01 | 3.35 | |
C6 | 6.03 | 3.64 | 2.83 | 6.43 | |
C10 | 3.57 | 2.48 | 2.12 | 5.51 |
Duty Ratio | Sodium Aluminate | Sodium Metasilicate | |||
---|---|---|---|---|---|
Cathode Current Density (A/dm2) | 10% | 30% | 50% | 10% | |
C2 | --- | 823 | 860 | --- | |
C6 | 1364 | 1310 | 1396 | 621 | |
C10 | 1374 | 1306 | 1504 | 1049 |
Duty Ratio | Sodium Aluminate | Sodium Metasilicate | |||
---|---|---|---|---|---|
Cathode Current Density (A/dm2) | 10% | 30% | 50% | 10% | |
C2 | 993.90 | 665.38 | 1021.13 | 1529.50 | |
C6 | 715.62 | 465.48 | 435.83 | 901.83 | |
C10 | 601.21 | 397.24 | 394.62 | 842.67 |
Duty Ratio | Sodium Aluminate | Sodium Metasilicate | |||
---|---|---|---|---|---|
Cathode Current Density (A/dm2) | 10% | 30% | 50% | 10% | |
C2 | 54.03 | 43.63 | 20.05 | 111.97 | |
C6 | 16.17 | 7.08 | 4.45 | 29.76 | |
C10 | 9.63 | 3.72 | 3.57 | 23.77 |
Duty Ratio | Sodium Aluminate | Sodium Metasilicate | |||
---|---|---|---|---|---|
Cathode Current Density (A/dm2) | 10% | 30% | 50% | 10% | |
C2 | −0.877 | −0.753 | −0.712 | −0.771 | |
C6 | −0.832 | −0.750 | −0.705 | −0.736 | |
C10 | −0.716 | −0.695 | −0.677 | −0.720 |
Duty Ratio | Sodium Aluminate | Sodium Metasilicate | |||
---|---|---|---|---|---|
Cathode Current Density (A/dm2) | 10% | 30% | 50% | 10% | |
C2 | 4.53 × 10−7 | 2.43 × 10−7 | 2.16 × 10−7 | 1.44× 10−7 | |
C6 | 3.82 × 10−7 | 1.85 × 10−7 | 1.50 × 10−8 | 1.16 × 10−8 | |
C10 | 2.57 × 10−7 | 1.26 × 10−7 | 1.23 × 10−8 | 1.20 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.; Wang, T.-Y.; Lin, H.-C. Effects of Electrolyte Compositions and Electrical Parameters on Micro-Arc Oxidation Coatings on 7075 Aluminum Alloy. J. Compos. Sci. 2023, 7, 472. https://doi.org/10.3390/jcs7110472
Abbas A, Wang T-Y, Lin H-C. Effects of Electrolyte Compositions and Electrical Parameters on Micro-Arc Oxidation Coatings on 7075 Aluminum Alloy. Journal of Composites Science. 2023; 7(11):472. https://doi.org/10.3390/jcs7110472
Chicago/Turabian StyleAbbas, Aqeel, Ting-Yi Wang, and Hsin-Chih Lin. 2023. "Effects of Electrolyte Compositions and Electrical Parameters on Micro-Arc Oxidation Coatings on 7075 Aluminum Alloy" Journal of Composites Science 7, no. 11: 472. https://doi.org/10.3390/jcs7110472
APA StyleAbbas, A., Wang, T. -Y., & Lin, H. -C. (2023). Effects of Electrolyte Compositions and Electrical Parameters on Micro-Arc Oxidation Coatings on 7075 Aluminum Alloy. Journal of Composites Science, 7(11), 472. https://doi.org/10.3390/jcs7110472