Recent Advances in Enzyme Immobilisation Strategies: An Overview of Techniques and Composite Carriers
Abstract
:1. Introduction
2. Overview of Enzyme Immobilisation Techniques
2.1. Adsorption
2.2. Cross-Linking
2.3. Entrapment or Encapsulation
2.4. Covalent Bonding
3. Overview of the Enzyme Carriers Materials
3.1. Enzyme Immobilisation via Nanocarriers
3.2. Future Strategy Using Agrowaste Resource as a Carrier
4. Future Recommendations and Challenges
- Nanotechnology
- Recent developments in nanotechnology are believed to have a considerable impact on enzyme immobilisation. For instance, nanoparticles have unique features, including a large surface area and improved catalytic activity. These materials can provide the optimum environment for enzyme immobilisation, enhancing stability and efficiency.
- 2.
- Advance in bioinformatics
- Bioinformatics tools and enzyme engineering advancements, such as directed evolution and rational design, could contribute to the development of enzymes with improved characteristics, such as increased stability, substrate selectivity, and catalytic efficiency for immobilisation. We can improve performance and stability by designing enzymes, specifically for immobilisation and stabilisation.
- 3.
- Multienzymatic systems
- Methods for immobilising numerous enzymes or multienzymatic systems should be investigated, and effective multienzyme systems for complex processes should be designed.
- 4.
- Three-dimensional printing technology in customise complexed immobilised enzyme
- The use of 3D printing technology should be explored to precisely organise enzymes within immobilisation matrices, allowing for complex and customised designs.
- 5.
- Environmentally friendly and renewable carriers
- We emphasise creating environmentally friendly and sustainable immobilisation procedures, taking into account factors such as the utilisation of renewable carriers and the reusability of immobilised enzymes.
- 6.
- Bioelectrochemical systems
- Enzyme immobilisation in bioelectrochemical processes is relatively new, and it might lead to the development of more sustainable and efficient technologies for energy, environmental, and healthcare purposes. These studies involve the interactions between enzymes and electrode surfaces.
- 7.
- Scaling-up
- We should work on the industrial-level manufacturing of immobilised enzymes, taking into account factors such as profitability, scaling, stability, and catalytic activity efficiency under industrial settings.
- Mass transfer limitations:
- Internal and external mass transfer limitation will be improved by enhancing the surface area and altering the geometry or shape of the carrier’s enzyme,
- 2.
- Enzyme denaturation and inactivation:
- Enzymes are delicate and easily denatured under harsh micro and macro conditions.
- 3.
- Complexity, cost, and scalability:
- We should focus on the synthesis and development of simple, low-cost, large-scale, improved catalytic activity and stability for large-scale industrial applications.
- 4.
- Uniformity and reproducibility:
- Immobilised enzymes frequently suffer reproducibility issues. This is owing to the fact that immobilised enzymes can undergo conformation changes alter and lose catalytic activity over time. These difficulties can be caused by enzyme denaturation or changes in the microenvironment around the immobilised enzyme.
- Strengthen the consistency and repeatability of enzyme immobilisation methods to ensure identical and consistent results for each batch.
- 5.
- Unstable in harsh environmental conditions:
- The stability of immobilised enzymes should be boosted, and their catalytic activity should be retained under harsh environmental conditions, including extremely low and high temperatures, pH, organic solvents, and inhibitors.
- 6.
- Regeneration and reusability issues:
- We should develop enzyme immobilisation methods that promote regeneration and reusability of immobilised enzymes while retaining activity even after several cycles of reaction.
- 7.
- Long-term storage stability issues:
- We should develop methods to improve the long-term storage stability of immobilised enzymes, especially for applications such as biosensors, biofuel cells, and bioreactors.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badgujar, K.C.; Badgujar, V.C.; Bhanage, B.M. Recent Update on Use of Ionic Liquids for Enzyme Immobilization, Activation, and Catalysis: A Partnership for Sustainability. Curr. Opin. Green Sustain. Chem. 2022, 36, 100621. [Google Scholar] [CrossRef]
- Somu, P.; Narayanasamy, S.; Gomez, L.A.; Rajendran, S.; Lee, Y.R.; Balakrishnan, D. Immobilization of Enzymes for Bioremediation: A Future Remedial and Mitigating Strategy. Environ. Res. 2022, 212, 113411. [Google Scholar] [CrossRef] [PubMed]
- Cardoso Pinto, G.; Lucena, G.N.; Debone Piazza, R.; Lopes Costa, J.M.; Coimbra e Silva, E.T.C.; Gu, Y.; de Paula, A.V.; Silva, N.J.O.; Costa Marques, R.F. Evaluation of the Alternating Magnetic Field (AMF) Influence in Catalytic Activities of Enzymes Immobilized into Magnetic Graphene Oxide: A New Approach. Mater. Today Commun. 2023, 36, 106441. [Google Scholar] [CrossRef]
- Remonatto, D.; Izidoro, B.F.; Mazziero, V.T.; Catarino, B.P.; do Nascimento, J.F.C.; Cerri, M.O.; Andrade, G.S.S.; de Paula, A.V. 3D Printing and Enzyme Immobilization: An Overview of Current Trends. Bioprinting 2023, 33, e00289. [Google Scholar] [CrossRef]
- Parandi, E.; Safaripour, M.; Mosleh, N.; Saidi, M.; Rashidi Nodeh, H.; Oryani, B.; Rezania, S. Lipase Enzyme Immobilized over Magnetic Titanium Graphene Oxide as Catalyst for Biodiesel Synthesis from Waste Cooking Oil. Biomass Bioenergy 2023, 173, 106794. [Google Scholar] [CrossRef]
- Lee, J.S.; Hong, S.; Lee, J.; Choi, T.S.; Rhie, K.; Khim, J.S. Evaluation of Residual Toxicity of Hypochlorite-Treated Water Using Bioluminescent Microbes and Microalgae: Implications for Ballast Water Management. Ecotoxicol. Environ. Saf. 2019, 167, 130–137. [Google Scholar] [CrossRef]
- Davoodi, S.M.; Miri, S.; Brar, S.K.; Martel, R. Continuous Fixed-Bed Column Studies to Remove Polycyclic Aromatic Hydrocarbons by Degrading Enzymes Immobilized on Polyimide Aerogels. J. Water Process Eng. 2023, 53, 103597. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Zhou, Y.; Zhu, L.; Zhang, C.; Yan, X.; You, S.; Qi, W.; Su, R. A Reusable and Leakage-Proof Immobilized Laccase@UiO-66-NH2(30) for the Efficient Biodegradation of Rifampicin and Lincomycin. Biochem. Eng. J. 2023, 194, 108897. [Google Scholar] [CrossRef]
- Primožič, M.; Kravanja, G.; Knez, Ž.; Crnjac, A.; Leitgeb, M. Immobilized Laccase in the Form of (Magnetic) Cross-Linked Enzyme Aggregates for Sustainable Diclofenac (Bio)Degradation. J. Clean. Prod. 2020, 275, 124121. [Google Scholar] [CrossRef]
- Torabizadeh, H. Nano Co-Immobilization of α-Amylase and Maltogenic Amylase by Nanomagnetic Combi-Cross-Linked Enzyme Aggregates Method for Maltose Production from Corn Starch. Carbohydr. Res. 2020, 488, 107904. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Bin Mat, H.; Mohamad, M.; Hamzah, F.; Rashid, M.U. Strategy to Enhance Catalytic Activity and Stability of Sol–Gel Oxidoreductases. J. Sol-Gel Sci. Technol. 2021, 98, 462–469. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Yang, S. Developing a Novel Strategy for Light-Triggered Reversible Enzyme Immobilization and Reuse of Support. Alex. Eng. J. 2022, 61, 6949–6957. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Kim, M. An Overview of Techniques in Enzyme Immobilization. Appl. Sci. Converg. Technol. 2017, 26, 157–163. [Google Scholar] [CrossRef]
- Pinto Brito, M.J.; Bauer, L.C.; Flores Santos, M.P.; Santos, L.S.; Ferreira Bonomo, R.C.; da Costa Ilhéu Fontan, R.; Veloso, C.M. Lipase Immobilization on Activated and Functionalized Carbon for the Aroma Ester Synthesis. Microporous Mesoporous Mater. 2020, 309, 110576. [Google Scholar] [CrossRef]
- Al-sareji, O.J.; Meiczinger, M.; Somogyi, V.; Al-Juboori, R.A.; Grmasha, R.A.; Stenger-Kovács, C.; Jakab, M.; Hashim, K.S. Removal of Emerging Pollutants from Water Using Enzyme-Immobilized Activated Carbon from Coconut Shell. J. Environ. Chem. Eng. 2023, 11, 109803. [Google Scholar] [CrossRef]
- Ribeiro, E.S.; de Farias, B.S.; Sant’Anna Cadaval Junior, T.R.; de Almeida Pinto, L.A.; Diaz, P.S. Chitosan–Based Nanofibers for Enzyme Immobilization. Int. J. Biol. Macromol. 2021, 183, 1959–1970. [Google Scholar] [CrossRef]
- Khataminezhad, E.S.; Hajihassan, Z.; Razi Astaraei, F. Magnetically Purification/Immobilization of Poly Histidine-Tagged Proteins by PEGylated Magnetic Graphene Oxide Nanocomposites. Protein Expr. Purif. 2023, 207, 106264. [Google Scholar] [CrossRef]
- Ge, H.; Liu, X.; Yuan, H.; Zhang, G. Biomimetic One-Pot Preparation of Surface Biofunctionalized Silica-Coated Magnetic Composites for Dual Enzyme Oriented Immobilization without Pre-Purification. Enzym. Microb. Technol. 2023, 164, 110169. [Google Scholar] [CrossRef]
- Ganonyan, N.; Bar, G.; Gvishi, R.; Avnir, D. Gradual Hydrophobization of Silica Aerogel for Controlled Drug Release. RSC Adv. 2021, 11, 7824–7838. [Google Scholar] [CrossRef]
- Keshta, B.E.; Gemeay, A.H.; Khamis, A.A. Impacts of Horseradish Peroxidase Immobilization onto Functionalized Superparamagnetic Iron Oxide Nanoparticles as a Biocatalyst for Dye Degradation. Environ. Sci. Pollut. Res. 2022, 29, 6633–6645. [Google Scholar] [CrossRef]
- Baruch-Shpigler, Y.; Avnir, D. Entrapment of Glucose Oxidase within Gold Converts It to a General Monosaccharide-Oxidase. Sci. Rep. 2021, 11, 10737. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Abdel-karim, A. Environmental Nanotechnology, Monitoring & Management Dual-Functional Ultrafiltration Biocatalytic Membrane Containing Laccase / Nanoparticle for Removal of Pollutants: A Review. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100852. [Google Scholar] [CrossRef]
- Pacheco, E.; Tavares, E.; De Vasconcelos, L.; Júlia, E.; De Souza, D.; Martins, L.; Avila, E.; Zavareze, R.; Renato, A.; Dias, G. Food Hydrocolloids Use of Red Onion Skin (Allium cepa L.) in the Production of Bioactive Extract and Application in Water-Absorbing Cryogels Based on Corn Starch. Food Hydrocoll. 2023, 145, 109133. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is Enzyme Immobilization a Mature Discipline? Some Critical Considerations to Capitalize on the Benefits of Immobilization. Chem. Soc. Rev. 2022, 51, 6251–6290. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of Enzymes via Immobilization: Multipoint Covalent Attachment and Other Stabilization Strategies. Biotechnol. Adv. 2021, 52, 107821. [Google Scholar] [CrossRef]
- Kujawa, J.; Głodek, M.; Li, G.; Al-Gharabli, S.; Knozowska, K.; Kujawski, W. Highly Effective Enzymes Immobilization on Ceramics: Requirements for Supports and Enzymes. Sci. Total Environ. 2021, 801, 149647. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. Multi-Faceted Strategy Based on Enzyme Immobilization with Reactant Adsorption and Membrane Technology for Biocatalytic Removal of Pollutants: A Critical Review. Biotechnol. Adv. 2019, 37, 107401. [Google Scholar] [CrossRef]
- Das, J.; Mishra, H.N. Electrochemical Biosensor for Monitoring Fish Spoilage Based on Nanocellulose as Enzyme Immobilization Matrix. J. Food Meas. Charact. 2023, 17, 3827–3844. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Z.; Cai, Y.; Liu, X.; Niu, L.; Liu, A. Sensors and Actuators: B. Chemical Selective and Sensitive Colorimetric Sensing of Iodine Ions Based on Porous MoS 2 Particles with Excellent Haloperoxidase-like Activity. Sens. Actuators B Chem. 2023, 392, 134127. [Google Scholar] [CrossRef]
- Rahman, R.A.; Md Shaarani, S. Enzyme Immobilization for Bioprocessing; UTM Press: Skudai, Malaysia, 2022. [Google Scholar]
- Abdel-Hameed, S.A.M.; Ahmed, S.A.; Mostafa, F.A.; Almasarawi, O.N.; Abdel Wahab, W.A. Preparation and Characterization of Sugilite Glass from Basalt for α-Amylase Immobilization, Statistical Optimization of the Immobilization Process and Description of Free and Immobilized Enzyme. Heliyon 2022, 8, e09960. [Google Scholar] [CrossRef]
- Yang, D.; Yang, G.; Liang, G.; Guo, Q.; Li, Y.; Li, J. High-Surface-Area Disperse Silica Nanoparticles Prepared via Sol-Gel Method Using L-Lysine Catalyst and Methanol/Water Co-Solvent. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125700. [Google Scholar] [CrossRef]
- Sampaio, C.S.; Angelotti, J.A.F.; Fernandez-Lafuente, R.; Hirata, D.B. Lipase Immobilization via Cross-Linked Enzyme Aggregates: Problems and Prospects—A Review. Int. J. Biol. Macromol. 2022, 215, 434–449. [Google Scholar] [CrossRef]
- Cowan, D.A.; Fernandez-Lafuente, R. Enhancing the Functional Properties of Thermophilic Enzymes by Chemical Modification and Immobilization. Enzym. Microb. Technol. 2011, 49, 326–346. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Lock, S.S.M.; Yap, P.S.; Cheah, K.W.; Chan, Y.H.; Yiin, C.L.; Ku, A.Z.E.; Loy, A.C.M.; Chin, B.L.F.; Chai, Y.H. Immobilized Enzyme/Microorganism Complexes for Degradation of Microplastics: A Review of Recent Advances, Feasibility and Future Prospects. Sci. Total Environ. 2022, 832, 154868. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, E.X.; de Castro, R.J.S. Covalent Bonding Immobilization of a Bacillus Licheniformis Protease on Chitosan and Its Application in Protein Hydrolysis. Biocatal. Agric. Biotechnol. 2023, 50, 102713. [Google Scholar] [CrossRef]
- Kharazmi, S.; Taheri-Kafrani, A. Bi-Enzymatic Nanobiocatalyst Based on Immobilization of Xylanase and Pectinase onto Functionalized Magnetic Nanoparticles for Efficient Fruit Juice Clarification. LWT 2023, 183, 114914. [Google Scholar] [CrossRef]
- Kumar, N.; Upadhyay, L.S.B. Enzyme Immobilization over Polystyrene Surface Using Cysteine Functionalized Copper Nanoparticle as a Linker Molecule. Appl. Biochem. Biotechnol. 2020, 191, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Goodge, K.; Delaney, M.; Struzyk, A.; Tansey, N.; Frey, M. A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. Nanomaterials 2020, 10, 2142. [Google Scholar] [CrossRef]
- Feng, L.; Han, Y.; Niu, J.; Guo, J.; Zhang, J.; Li, H.; Hou, Y. Synergistic Removal Performance and Mechanism in Denitrification System under Phenol Stress. J. Environ. Chem. Eng. 2023, 11, 110767. [Google Scholar] [CrossRef]
- Aghabeigi, F.; Nikkhah, H.; Zilouei, H.; Bazarganipour, M. Immobilization of Lipase on the Graphene Oxides Magnetized with NiFe2O4 Nanoparticles for Biodiesel Production from Microalgae Lipids. Process Biochem. 2023, 126, 171–185. [Google Scholar] [CrossRef]
- Mohamed Nageib, A.; Tariq Jameel, A.; Ahmad, F.B. Immobilization of Alpha-Naphthyl Acetate Esterase (ANAE) on k-Carrageenan for Potential Biosensor Application in Pesticide Detection. Mater. Today Proc. 2022, 57, 1296–1300. [Google Scholar] [CrossRef]
- Moosavi, F.; Ahrari, F.; Ahmadian, G.; Mohammadi, M. Sortase-Mediated Immobilization of Candida Antarctica Lipase B (CalB) on Graphene Oxide; Comparison with Chemical Approach. Biotechnol. Rep. 2022, 34, e00733. [Google Scholar] [CrossRef] [PubMed]
- Paiva, M.T.P.; Otávio, J.; Jaquellyne, F.K.; Janaina, B.M.D.S.; Franciely, M. Crosslinking Methods in Polysaccharide-Based Hydrogels for Drug Delivery Systems. Biomed. Mater. Devices 2023. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, Y.; Liu, S.; Wu, D.; Su, Z.; Chen, G.; Liu, J.; Li, G. Recent Advances in Enzyme Immobilization Based on Novel Porous Framework Materials and Its Applications in Biosensing. Coord. Chem. Rev. 2022, 459, 214414. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Han, S.S. Peptide Ligases: A Novel and Potential Enzyme Toolbox for Catalytic Cross-Linking of Protein/Peptide-Based Biomaterial Scaffolds for Tissue Engineering. Enzym. Microb. Technol. 2022, 155, 109990. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hu, W.X.; Lu, H.Y.; Liu, S.; Rao, S.Q.; Yang, Z.Q.; Jiao, X.A. Glycosylated Cross-Linked Ovalbumin by Transglutaminase in the Presence of Oligochitosan: Effect of Enzyme Action Time and Enhanced Functional Properties. Food Hydrocoll. 2023, 138, 108462. [Google Scholar] [CrossRef]
- Jaafar, N.R.; Jailani, N.; Rahman, R.A.; Öner, E.T.; Murad, A.M.A.; Illias, R.M. Protein Surface Engineering and Interaction Studies of Maltogenic Amylase towards Improved Enzyme Immobilisation. Int. J. Biol. Macromol. 2022, 213, 70–82. [Google Scholar] [CrossRef]
- Shaarani, S.M.; Jahim, J.M.; Rahman, R.A.; Idris, A.; Murad, A.M.A.; Illias, R.M. Silanized Maghemite for Cross-Linked Enzyme Aggregates of Recombinant Xylanase from Trichoderma Reesei. J. Mol. Catal. B Enzym. 2016, 133, 65–76. [Google Scholar] [CrossRef]
- Liu, S.; Bilal, M.; Rizwan, K.; Gul, I.; Rasheed, T.; Iqbal, H.M.N. Smart Chemistry of Enzyme Immobilization Using Various Support Matrices—A Review. Int. J. Biol. Macromol. 2021, 190, 396–408. [Google Scholar] [CrossRef]
- Li, W.; Huo, Z.; Zhang, X.; Zhao, H.; Cui, Z.; Fu, P.; Liu, M.; Qiao, X.; Fan, W.; Pang, X. New Sight for In-Situ Monitoring of Silica Growth Process: The Incorporation of Stöber Process and Aggregation-Induced Emission (AIE) Technique. Dye Pigment. 2020, 182, 108637. [Google Scholar] [CrossRef]
- Reshmy, R.; Philip, E.; Sirohi, R.; Tarafdar, A.; Arun, K.B.; Madhavan, A.; Binod, P.; Kumar Awasthi, M.; Varjani, S.; Szakacs, G.; et al. Nanobiocatalysts: Advancements and Applications in Enzyme Technology. Bioresour. Technol. 2021, 337, 125491. [Google Scholar] [CrossRef]
- Tavernini, L.; Ottone, C.; Illanes, A.; Wilson, L. Entrapment of Enzyme Aggregates in Chitosan Beads for Aroma Release in White Wines. Int. J. Biol. Macromol. 2020, 154, 1082–1090. [Google Scholar] [CrossRef]
- Xing, M.; Chen, Y.; Li, B.; Tian, S. Highly Efficient Removal of Patulin Using Immobilized Enzymes of Pseudomonas Aeruginosa TF-06 Entrapped in Calcium Alginate Beads. Food Chem. 2022, 377, 131973. [Google Scholar] [CrossRef]
- Abbasi, Y.F.; Bera, H.; Cun, D.; Yang, M. Recent Advances in PH/Enzyme-Responsive Polysaccharide-Small-Molecule Drug Conjugates as Nanotherapeutics. Carbohydr. Polym. 2023, 312, 120797. [Google Scholar] [CrossRef]
- Rashid, M.U.; Wan Daud, W.M.A.; Mohidem, N.A.; Mohamad, M.B.; Akhtar, J.; Azam, M.; Miran, W. Methane Dry Reforming with CO2 over Ceria Supported Ni Catalyst Prepared by Reverse Microemulsion Synthesis. Fuel 2022, 317, 2021–2022. [Google Scholar] [CrossRef]
- Ganonyan, N.; Benmelech, N.; Bar, G.; Gvishi, R.; Avnir, D. Entrapment of Enzymes in Silica Aerogels. Mater. Today 2020, 33, 24–35. [Google Scholar] [CrossRef]
- Duan, F.; Sun, T.; Zhang, J.; Wang, K.; Wen, Y.; Lu, L. Recent Innovations in Immobilization of β-Galactosidases for Industrial and Therapeutic Applications. Biotechnol. Adv. 2022, 61, 108053. [Google Scholar] [CrossRef]
- Rivero Berti, I.; Islan, G.A.; Castro, G.R. Enzymes and Biopolymers. The Opportunity for the Smart Design of Molecular Delivery Systems. Bioresour. Technol. 2021, 322, 124546. [Google Scholar] [CrossRef]
- Datta, S.; Veena, R.; Samuel, M.S.; Selvarajan, E. Immobilization of Laccases and Applications for the Detection and Remediation of Pollutants: A Review. Environ. Chem. Lett. 2021, 19, 521–538. [Google Scholar] [CrossRef]
- Gill, J.; Orsat, V.; Kermasha, S. Optimization of Encapsulation of a Microbial Laccase Enzymatic Extract Using Selected Matrices. Process Biochem. 2018, 65, 55–61. [Google Scholar] [CrossRef]
- Hwang, E.T.; Gu, M.B. Enzyme Stabilization by Nano/Microsized Hybrid Materials. Eng. Life Sci. 2013, 13, 49–61. [Google Scholar] [CrossRef]
- Caresani, J.R.F.; Dallegrave, A.; Santos, J.H.Z. Dos. Amylases Encapsulated in Organosilane-Modified Silicas Prepared by Sol–Gel: Evaluation of Starch Saccharification. J. Sol-Gel Sci. Technol. 2021, 97, 340–350. [Google Scholar] [CrossRef]
- Meng, X.; Hare, D.O.; Ladame, S. Biosensors and Bioelectronics Surface Immobilization Strategies for the Development of Electrochemical Nucleic Acid Sensors. Biosens. Bioelectron. 2023, 237, 115440. [Google Scholar] [CrossRef]
- Guisan, J.M.; Fernandez-lorente, G.; Rocha-martin, J.; Moreno-gamero, D. Enzyme Immobilization Strategies for the Design of Robust and Efficient Biocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 35, 100593. [Google Scholar] [CrossRef]
- Parmegiani Marcucci, S.M.; Zanin, G.M.; Arroyo, P.A. Synthesis of SBA-15 and Pore-Expanded SBA-15 and Surface Modification with Tin for Covalent Lipase Immobilization. Microporous Mesoporous Mater. 2022, 337, 111951. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Yang, Y.; Zhu, W.; Li, P.; Wang, S. Analytica Chimica Acta Site-Specific, Covalent Immobilization of PNGase F on Magnetic Particles Mediated by Microbial Transglutaminase. Anal. Chim. Acta 2023, 1250, 340972. [Google Scholar] [CrossRef]
- Tvorynska, S. Bioelectrochemistry Influence of Different Covalent Immobilization Protocols on Electroanalytical Performance of Laccase-Based Biosensors. Bioelectrochemistry 2022, 148, 108223. [Google Scholar] [CrossRef]
- Zhang, Y.; Piao, M.; He, L.; Yao, L.; Piao, T.; Liu, Z.; Piao, Y. Immobilization of Laccase on Magnetically Separable Biochar for Highly Efficient Removal of Bisphenol A in Water. RSC Adv. 2020, 10, 4795–4804. [Google Scholar] [CrossRef]
- Sharifi, M.; Robatjazi, S.M.; Sadri, M.; Mosaabadi, J.M. Immobilization of Organophosphorus Hydrolase Enzyme by Covalent Attachment on Modified Cellulose Microfibers Using Different Chemical Activation Strategies: Characterization and Stability Studies. Chin. J. Chem. Eng. 2019, 27, 191–199. [Google Scholar] [CrossRef]
- Costa-Silva, T.A.; Carvalho, A.K.F.; Souza, C.R.F.; Freitas, L.; De Castro, H.F.; Oliveira, W.P. Highly Effective Candida Rugosa Lipase Immobilization on Renewable Carriers: Integrated Drying and Immobilization Process to Improve Enzyme Performance. Chem. Eng. Res. Des. 2022, 183, 41–55. [Google Scholar] [CrossRef]
- Wilson, L.; Illanes, A.; Ottone, C.; Romero, O. Co-Immobilized Carrier-Free Enzymes for Lactose Upgrading. Curr. Opin. Green Sustain. Chem. 2022, 33, 100553. [Google Scholar] [CrossRef]
- Cacciotti, I.; Lombardelli, C.; Benucci, I.; Esti, M. Clay/Chitosan Biocomposite Systems as Novel Green Carriers for Covalent Immobilization of Food Enzymes. J. Mater. Res. Technol. 2019, 8, 3644–3652. [Google Scholar] [CrossRef]
- Tu, H.; Zhang, B.; Zhang, X.; Zhao, C.; Li, L.; Wang, J.; Chen, Z.; Wang, P.; Li, Z. Magnetic Thermosensitive Polymer Composite Carrier with Target Spacing for Enhancing Immobilized Enzyme Performance. Enzym. Microb. Technol. 2021, 150, 109896. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Liu, W.; Su, S.; Gan, C.; Jia, C. Chitosan Derivative Functionalized Carbon Nanotubes as Carriers for Enzyme Immobilization to Improve Synthetic Efficiency of Ethyl Caproate. LWT 2021, 149, 111897. [Google Scholar] [CrossRef]
- Luo, J.; Song, S.; Zhang, H.; Zhang, H.; Zhang, J.; Wan, Y. Biocatalytic Membrane: Go Far beyond Enzyme Immobilization. Eng. Life Sci. 2020, 20, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Filippovich, S.Y.; Isakova, E.P.; Gessler, N.N.; Deryabina, Y.I. Advances in Immobilization of Phytases and Their Application. Bioresour. Technol. 2023, 379, 129030. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Ramaswamy, H.S. Characterization of Caseinate—Carboxymethyl Chitosan-Based Edible Films Formulated with and without Transglutaminase Enzyme. J. Compos. Sci. 2022, 6, 216. [Google Scholar] [CrossRef]
- Du, X.; Wang, L.; Li, Y.; Wu, J.; Chen, G.; Liang, H.; Gao, D. Cooperative Adsorption-Degradation of Benzo[a]Pyrene by Extracellular Enzymes of White Rot Fungi Immobilized on Macroporous Adsorption Resin. Int. Biodeterior. Biodegrad. 2023, 178, 105564. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, K.; Yang, X.; Xiao, K.; Shen, Y. Facile and Moderate Immobilization of Proteases on SPS Nanospheres for the Active Collagen Peptides. Food Chem. 2021, 335, 127610. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Gu, Z.; Ban, X.; Hong, Y.; Cheng, L.; Li, C. Immobilization of β-Cyclodextrin Glycosyltransferase on Gelatin Enhances β-Cyclodextrin Production. Process Biochem. 2022, 113, 216–223. [Google Scholar] [CrossRef]
- Askaripour, H.; Vossoughi, M.; Khajeh, K.; Alemzadeh, I. Examination of Chondroitinase ABC I Immobilization onto Dextran-Coated Fe3O4 Nanoparticles and Its in-Vitro Release. J. Biotechnol. 2020, 309, 131–141. [Google Scholar] [CrossRef]
- Dong, T.; Zhou, X.; Dai, Y.; Yang, X.; Zhang, W.; Yu, D.; Liu, T. Application of Magnetic Immobilized Enzyme of Nano Dialdehyde Starch in Deacidification of Rice Bran Oil. Enzym. Microb. Technol. 2022, 161, 110116. [Google Scholar] [CrossRef]
- da Silva, R.M.; Gonçalves, L.R.B.; Rodrigues, S. Different Strategies to Co-Immobilize Dextransucrase and Dextranase onto Agarose Based Supports: Operational Stability Study. Int. J. Biol. Macromol. 2020, 156, 411–419. [Google Scholar] [CrossRef]
- Atiroğlu, V.; Atiroğlu, A.; Özacar, M. Immobilization of α-Amylase Enzyme on a Protein @metal–Organic Framework Nanocomposite: A New Strategy to Develop the Reusability and Stability of the Enzyme. Food Chem. 2021, 349, 129127. [Google Scholar] [CrossRef] [PubMed]
- Gennari, A.; Führ, A.J.; Volpato, G.; Volken de Souza, C.F. Magnetic Cellulose: Versatile Support for Enzyme Immobilization—A Review. Carbohydr. Polym. 2020, 246, 116646. [Google Scholar] [CrossRef] [PubMed]
- Aslan, Y.; Sharif, Y.M.; Şahin, Ö. Covalent Immobilization of Aspergillus Niger Amyloglucosidase (ANAG) with Ethylenediamine-Functionalized and Glutaraldehyde-Activated Active Carbon (EFGAAC) Obtained from Sesame Seed Shell. Int. J. Biol. Macromol. 2020, 142, 222–231. [Google Scholar] [CrossRef]
- Yilmaz, N.; Ay, S.B. Immobilization of Amylases via Adsorption on Agar-Coated Magnetic Nanoparticles. Eur. J. Sci. Technol. 2022, 34, 496–500. [Google Scholar] [CrossRef]
- Haro-Mares, N.B.; Meza-Contreras, J.C.; López-Dellamary, F.A.; Richaud, A.; Méndez, F.; Curiel-Olague, B.G.; Buntkowsky, G.; Manríquez-González, R. Lysine Functionalized Cellulose for a Zwitterion-Based Immobilization of Laccase Enzyme and Removal of Commercial Dyes from Aqueous Media. Surf. Interfaces 2022, 35, 102412. [Google Scholar] [CrossRef]
- Yue, C.; Wang, J.; Wu, D.; Wang, Z.; Wang, G. Immobilization of Phospholipase A1 on Polyvinyl Alcohol Microspheres to Develop a Time-Temperature Indicator for Freshness Monitoring of Pork. J. Food Eng. 2023, 357, 111640. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Cerqueira Pinto, M.C.; Lorente, G.F.; Manoel, E.A.; Guisán, J.M.; Ninow, J.L.; de Oliveira, D.; Pessela, B.C. Production of New Nanobiocatalysts via Immobilization of Lipase B from C. Antarctica on Polyurethane Nanosupports for Application on Food and Pharmaceutical Industries. Int. J. Biol. Macromol. 2020, 165, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Al Angari, Y.M.; Almulaiky, Y.Q.; Alotaibi, M.M.; Hussein, M.A.; El-Shishtawy, R.M. Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability. Int. J. Mol. Sci. 2023, 24, 1970. [Google Scholar] [CrossRef]
- Bai, X.; Sun, X.; Yu, Y.; Guo, Y.; Nian, L.; Cao, C.; Cheng, S. Immobilization of α-Galactosidase in Polyvinyl Alcohol-Chitosan-Glycidyl Methacrylate Hydrogels Based on Directional Freezing-Assisted Salting-out Strategy for Hydrolysis of RFOs. Int. J. Biol. Macromol. 2023, 242, 124808. [Google Scholar] [CrossRef]
- Sahin, S.; Ozmen, I. Covalent Immobilization of Trypsin on Polyvinyl Alcohol-Coated Magnetic Nanoparticles Activated with Glutaraldehyde. J. Pharm. Biomed. Anal. 2020, 184, 113195. [Google Scholar] [CrossRef]
- Jun, L.Y.; Karri, R.R.; Yon, L.S.; Mubarak, N.M.; Bing, C.H.; Mohammad, K.; Jagadish, P.; Abdullah, E.C. Modeling and Optimization by Particle Swarm Embedded Neural Network for Adsorption of Methylene Blue by Jicama Peroxidase Immobilized on Buckypaper/Polyvinyl Alcohol Membrane. Environ. Res. 2020, 183, 109158. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Cheng, H.; Chen, G.; Ju, F.; Fernández-Lucas, J.; Zdarta, J.; Jesionowski, T.; Bilal, M. Designing Multifunctional Biocatalytic Cascade System by Multi-Enzyme Co-Immobilization on Biopolymers and Nanostructured Materials. Int. J. Biol. Macromol. 2023, 227, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Pudlarz, A.M.; Ranoszek-Soliwoda, K.; Karbownik, M.S.; Czechowska, E.; Tomaszewska, E.; Celichowski, G.; Grobelny, J.; Chabielska, E.; Gromotowicz-Popławska, A.; Szemraj, J. Antioxidant Enzymes Immobilized on Gold and Silver Nanoparticles Enhance DNA Repairing Systems of Rat Skin after Exposure to Ultraviolet Radiation. Nanomed. Nanotechnol. Biol. Med. 2022, 43, 102558. [Google Scholar] [CrossRef] [PubMed]
- Sanjana, S.; Medha, M.U.; Meghna, M.R.; Shruthi, T.S.; Srinivas, S.P.; Madhyastha, H.; Navya, P.N.; Daima, H.K. Enzyme Immobilization on Quercetin Capped Gold and Silver Nanoparticles for Improved Performance. Mater. Today Proc. 2019, 10, 92–99. [Google Scholar] [CrossRef]
- Abouelkheir, S.S.; Ibrahim, H.A.H.; Beltagy, E.A. Functionalized Maghemite Superparamagnetic Iron Oxide Nanoparticles (γ-Fe2O3-SPIONs)-Amylase Enzyme Hybrid in Biofuel Production. Sci. Rep. 2023, 13, 11117. [Google Scholar] [CrossRef]
- Degórska, O.; Zdarta, J.; Synoradzki, K.; Zgola-Grzeskowiak, A.; Ciesielczyk, F.; Jesionowski, T. From Core-Shell like Structured Zirconia/Magnetite Hybrid towards Novel Biocatalytic Systems for Tetracycline Removal: Synthesis, Enzyme Immobilization, Degradation and Toxicity Study. J. Environ. Chem. Eng. 2021, 9, 105701. [Google Scholar] [CrossRef]
- Deng, X.; Zheng, X.; Jia, F.; Cao, C.; Song, H.; Jiang, Y.; Liu, Y.; Liu, G.; Li, S.; Wang, L. Unspecific Peroxygenases Immobilized on Pd-Loaded Three-Dimensional Ordered Macroporous (3DOM) Titania Photocatalyst for Photo-Enzyme Integrated Catalysis. Appl. Catal. B Environ. 2023, 330, 122622. [Google Scholar] [CrossRef]
- Lee, M.K.; Lee, Y.J.; Kang, J.Y.; Lee, S.H. Strong Enzyme Immobilization Associated by Anatase TiO2 Sputtered on Platinum Black Nanoclusters to Improve Sensitivity and Long-Term Stability of Electrochemical Cholesterol Sensor. Sens. Actuators B Chem. 2021, 334, 129617. [Google Scholar] [CrossRef]
- Iriarte-Mesa, C.; Pretzler, M.; von Baeckmann, C.; Kählig, H.; Krachler, R.; Rompel, A.; Kleitz, F. Immobilization of Agaricus Bisporus Polyphenol Oxidase 4 on Mesoporous Silica: Towards Mimicking Key Enzymatic Processes in Peat Soils. J. Colloid Interface Sci. 2023, 646, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiang, Z.; Xia, Q.; Zhou, D. Progress and Perspective of Enzyme Immobilization on Zeolite Crystal Materials. Biochem. Eng. J. 2021, 172, 108033. [Google Scholar] [CrossRef]
- Lopes, M.M.; Coutinho, T.C.; Malafatti, J.O.D.; Paris, E.C.; de Sousa, C.P.; Farinas, C.S. Immobilization of Phytase on Zeolite Modified with Iron(II) for Use in the Animal Feed and Food Industry Sectors. Process Biochem. 2021, 100, 260–271. [Google Scholar] [CrossRef]
- Xin, C.; Wang, X.; Liu, L.L.; Yang, J.; Wang, S.; Yan, Y. Rational Design of Monodisperse Mesoporous Silica Nanoparticles for Phytase Immobilization. ACS Omega 2020, 5, 30237–30242. [Google Scholar] [CrossRef]
- Rex, A.; dos Santos, J.H.Z. The Use of Sol–Gel Processes in the Development of Supported Catalysts. J. Sol-Gel Sci. Technol. 2023, 105, 30–49. [Google Scholar] [CrossRef]
- Kamarudin, D.; Awanis Hashim, N.; Ong, B.H.; Kakihana, Y.; Higa, M.; Matsuyama, H. Multiple Effect of Thermal Treatment Approach on PVDF Membranes: Permeability Enhancement and Silver Nanoparticles Immobilization. J. Environ. Chem. Eng. 2021, 9, 105769. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, R.; Lang, S.; Yan, H.; Liu, G.; Peng, B. Mussel-Inspired Immobilization of Zwitterionic Silver Nanoparticles toward Antibacterial Cotton Gauze for Promoting Wound Healing. Chem. Eng. J. 2021, 409, 128291. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Dong, Y.; Li, B.; Liu, C.; Zhang, L.; Lu, Y.; Jin, Q. Enhanced Simultaneous Removal of Sulfamethoxazole and Zinc (II) in the Biochar-Immobilized Bioreactor: Performance, Microbial Structures and Gene Functions. Chemosphere 2023, 338, 139466. [Google Scholar] [CrossRef]
- Mulinari, J.; Ambrosi, A.; Feng, Y.; He, Z.; Huang, X.; Li, Q.; Di Luccio, M.; Hotza, D.; Oliveira, J.V. Polydopamine-Assisted One-Step Immobilization of Lipase on α-Alumina Membrane for Fouling Control in the Treatment of Oily Wastewater. Chem. Eng. J. 2023, 459, 141516. [Google Scholar] [CrossRef]
- Dash, A.; Banerjee, R. Exploring Indigenously Produced Celite-Immobilized Rhizopus Oryzae NRRL 3562-Lipase for Biodiesel Production. Energy 2021, 222, 119950. [Google Scholar] [CrossRef]
- Edama, N.A.; Sulaiman, A.; Abd-Rahim, S.N.; Ku Hamid, K.H.; Busu, Z. Characterization of Waste Clay from Palm Oil Mill Effluent and Enzyme Immobilization Study for Cassava Saccharification Process. BioResources 2014, 9, 7278–7287. [Google Scholar] [CrossRef]
- Ameri, A.; Shakibaie, M.; Khoobi, M.; Faramarzi, M.A.; Gholibegloo, E.; Ameri, A.; Forootanfar, H. Optimization of Immobilization Conditions of Bacillus Atrophaeus FSHM2 Lipase on Maleic Copolymer Coated Amine-Modified Graphene Oxide Nanosheets and Its Application for Valeric Acid Esterification. Int. J. Biol. Macromol. 2020, 162, 1790–1806. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Lau, S.Y.; Danquah, M.; Chiong, T.; Takeo, M. Advances in Graphene Oxide Based Nanobiocatalytic Technology for Wastewater Treatment. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100647. [Google Scholar] [CrossRef]
- Wang, K.; Yu, A.; Gao, Y.; Chen, M.; Yuan, H.; Zhang, S.; Ouyang, G. A Nitrogen-Doped Graphene Tube Composite Based on Immobilized Metal Affinity Chromatography for the Capture of Phosphopeptides. Talanta 2023, 261, 124617. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Du, Y.; Du, Z.; Tang, X.; Li, P.; Cheng, J.; Yan, R.; Cui, J. Construction of Enzyme@glutathione Hybrid Metal-Organic Frameworks: Glutathione-Boosted Microenvironment Fine-Tuning of Biomimetic Immobilization for Improving Catalytic Performance. Mater. Today Chem. 2023, 27, 101326. [Google Scholar] [CrossRef]
- Tocco, D.; Chelazzi, D.; Mastrangelo, R.; Casini, A.; Salis, A.; Fratini, E.; Baglioni, P. Conformational Changes and Location of BSA upon Immobilization on Zeolitic Imidazolate Frameworks. J. Colloid Interface Sci. 2023, 641, 685–694. [Google Scholar] [CrossRef]
- Sun, C.; Wu, S.; Wu, Y.; Sun, B.; Zhang, P.; Tang, K. Lipase AK from Pseudomonas Fluorescens Immobilized on Metal Organic Frameworks for Efficient Biosynthesis of Enantiopure (S)−1-(4-Bromophenyl) Ethanol. Process Biochem. 2023, 124, 132–139. [Google Scholar] [CrossRef]
- Wu, Z.; Shan, H.; Jiao, Y.; Huang, S.; Wang, X.; Liang, K.; Shi, J. Covalent Organic Networks for in Situ Entrapment of Enzymes with Superior Robustness and Durability. Chem. Eng. J. 2022, 450, 138446. [Google Scholar] [CrossRef]
- Nadar, S.S.; O, N.V.; Suresh, S.; Rao, P.; Ahirrao, D.J.; Adsare, S. Recent Progress in Nanostructured Magnetic Framework Composites (MFCs): Synthesis and Applications. J. Taiwan Inst. Chem. Eng. 2018, 91, 653–677. [Google Scholar] [CrossRef]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and Use of Immobilized Lipases in/on Nanomaterials: A Review from the Waste to Biodiesel Production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, W.; Chen, G.; Chen, Y.; Ma, J.; Huang, D.; Zhao, Q.; Wu, B. Visible Light-Driven Oxidation of Non-Native Substrate by Laccase Attached on Ru-Based Metal-Organic Frameworks. J. Environ. Sci. 2024, 137, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Saura-Cayuela, M.; Lara-Torres, S.; Pacheco-Fernández, I.; Trujillo-Rodríguez, M.J.; Ayala, J.H.; Pino, V. Green Materials for Greener Food Sample Preparation: A Review. Green Anal. Chem. 2023, 4, 100053. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Wang, J.; Zhou, X.; Guo, Q.; Yan, J.; Li, Y. Plasma Methods for Preparing Green Catalysts: Current Status and Perspective. Cuihua Xuebao/Chin. J. Catal. 2016, 37, 340–348. [Google Scholar] [CrossRef]
- Gao, R.; Kou, X.; He, R.; Shen, Y.; Guo, L.; Wang, H.; Huang, S.; Chen, G.; Ouyang, G. Protocol for Mechanochemistry-Guided Assembly Strategy for Enzyme Encapsulation Using Covalent Organic Frameworks. STAR Protoc. 2023, 4, 102421. [Google Scholar] [CrossRef]
- Mohan, B.; Kumari, R.; Singh, G.; Singh, K.; Pombeiro, A.J.L.; Yang, X.; Ren, P. Covalent Organic Frameworks (COFs) and Metal–Organic Frameworks (MOFs) as Electrochemical Sensors for the Efficient Detection of Pharmaceutical Residues. Environ. Int. 2023, 175, 107928. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Javed, M.S.; Najam, T.; Nazir, M.A.; ur Rehman, A.; Rauf, A.; Sohail, M.; Verpoort, F.; Bao, S.-J. Covalent Organic Frameworks (COFs) for Heterogeneous Catalysis: Recent Trends in Design and Synthesis with Structure-Activity Relationship. Mater. Today 2023, 67, 229–255. [Google Scholar] [CrossRef]
- Gong, Y.N.; Guan, X.; Jiang, H.L. Covalent Organic Frameworks for Photocatalysis: Synthesis, Structural Features, Fundamentals and Performance. Coord. Chem. Rev. 2023, 475, 214889. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, F.; Li, H.; Su, S.; Gao, H.; Han, X.; Ren, S. Potential Application of the Immobilization of Carbonic Anhydrase Based on Metal Organic Framework Supports. Process Biochem. 2022, 122, 214–223. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Zhou, Y.; Zhang, Q. Journal of Environmental Chemical Engineering Recycling of Fe3O4 Nanomaterial from Coal Fly Ash as Catalyst to Develop Green and Sustainable Bio-Electro Fenton: Characterization, Optimization, and Performance. J. Environ. Chem. Eng. 2023, 11, 110678. [Google Scholar] [CrossRef]
- Moulahoum, H.; Ghorbanizamani, F.; Beduk, T.; Beduk, D.; Ozufuklar, O.; Guler, E.; Timur, S. Journal of Pharmaceutical and Biomedical Analysis Emerging Trends in Nanomaterial Design for the Development of Point-of-Care Platforms and Practical Applications. J. Pharm. Biomed. Anal. 2023, 235, 115623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, H.; Jiang, P.; Xiao, X. Metal-Based Nanomaterials as Antimicrobial Agents: A Novel Driveway to Accelerate the Aggravation of Antibiotic Resistance. J. Hazard. Mater. 2023, 455, 131658. [Google Scholar] [CrossRef]
- Xie, G.; Lin, S.; Wu, F.; Liu, J. Nanomaterial-Based Ophthalmic Drug Delivery. Adv. Drug Deliv. Rev. 2023, 200, 115004. [Google Scholar] [CrossRef]
- Liao, J.; Wang, L.; Ding, S.; Tian, G.; Hu, H.; Wang, Q.; Yin, W. Molybdenum-Based Antimicrobial Nanomaterials: A Comprehensive Review. Nano Today 2023, 50, 101875. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Zhou, H.; Liu, S.; Sun, W.; Zhang, C. Research Advancement on Magnetic Nanomaterial Demulsifier for Oil-Water Separation. J. Environ. Chem. Eng. 2023, 11, 110245. [Google Scholar] [CrossRef]
- Jaiswal, K.S.; Kadamannil, N.N.; Jelinek, R. Carbon Nanomaterials in Microbial Sensing and Bactericidal Applications. Curr. Opin. Colloid Interface Sci. 2023, 66, 101719. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Adeel, M.; Shakoor, N.; Javed, R.; Ishfaq, M.; Peng, Y.; Zain, M.; Azeem, I.; Ali, I.; Usman, M.; et al. Modifying Engineered Nanomaterials to Produce next Generation Agents for Environmental Remediation. Sci. Total Environ. 2023, 894, 164861. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, K.; Olabi, A.G.; Abdel-Wahab, A.; Elkamel, A.; Alami, A.H.; Inayat, A.; Chae, K.J.; Abdelkareem, M.A. Membrane Processes for Environmental Remediation of Nanomaterials: Potentials and Challenges. Sci. Total Environ. 2023, 879, 162569. [Google Scholar] [CrossRef]
- Tan, Z.; Bilal, M.; Li, X.; Ju, F.; Teng, Y.; Iqbal, H.M.N. Nanomaterial-Immobilized Lipases for Sustainable Recovery of Biodiesel—A Review. Fuel 2022, 316, 123429. [Google Scholar] [CrossRef]
- Azizova, L.R.; Kulik, T.V.; Palianytsia, B.B.; Telbiz, G.M.; Kartel, M.T. Secondary Structure of Muramyl Dipeptide Glycoside in Pristine State and Immobilized on Nanosilica Surface. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127724. [Google Scholar] [CrossRef]
- Wu, H.; Mu, W. Application Prospects and Opportunities of Inorganic Nanomaterials for Enzyme Immobilization in the Food-Processing Industry. Curr. Opin. Food Sci. 2022, 47, 100909. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzym. Microb. Technol. 2022, 156, 110006. [Google Scholar] [CrossRef]
- Xu, H.; Liang, H. Chitosan-Regulated Biomimetic Hybrid Nanoflower for Efficiently Immobilizing Enzymes to Enhance Stability and by-Product Tolerance. Int. J. Biol. Macromol. 2022, 220, 124–134. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Liu, Z.; Chu, Z.; Jin, W. Nanomaterial-Based Electrochemical Enzymatic Biosensors for Recognizing Phenolic Compounds in Aqueous Effluents. Environ. Res. 2022, 214, 113858. [Google Scholar] [CrossRef]
- Cao, Y.P.; Zhi, G.Y.; Han, L.; Chen, Q.; Zhang, D.H. Biosynthesis of Benzyl Cinnamate Using an Efficient Immobilized Lipase Entrapped in Nano-Molecular Cages. Food Chem. 2021, 364, 130428. [Google Scholar] [CrossRef]
- Qamar, S.A.; Qamar, M.; Bilal, M.; Bharagava, R.N.; Ferreira, L.F.R.; Sher, F.; Iqbal, H.M.N. Cellulose-Deconstruction Potential of Nano-Biocatalytic Systems: A Strategic Drive from Designing to Sustainable Applications of Immobilized Cellulases. Int. J. Biol. Macromol. 2021, 185, 1–19. [Google Scholar] [CrossRef]
- Tizchang, S.; Khiabani, M.S.; Mokarram, R.R.; Hamishehkar, H. Bacterial Cellulose Nano Crystal as Hydrocolloid Matrix in Immobilized β-Galactosidase onto Silicon Dioxide Nanoparticles. LWT 2020, 123, 109091. [Google Scholar] [CrossRef]
- Wu, J.Q.; Xu, X.M.; Wang, D.L.; Long, N.B.; Zhang, R.F. Immobilization of Phospholipase D on Macroporous SiO2/Cationic Polymer Nano-Composited Support for the Highly Efficient Synthesis of Phosphatidylserine. Enzym. Microb. Technol. 2020, 142, 109696. [Google Scholar] [CrossRef]
- Tamaddon, F.; Arab, D.; Ahmadi-AhmadAbadi, E. Urease Immobilization on Magnetic Micro/Nano-Cellulose Dialdehydes: Urease Inhibitory of Biginelli Product in Hantzsch Reaction by Urea. Carbohydr. Polym. 2020, 229, 115471. [Google Scholar] [CrossRef]
- George, J.; Alanazi, A.K.; Senthil Kumar, P.; Venkataraman, S.; Rajendran, D.S.; Athilakshmi, J.K.; Singh, I.; Singh, I.; Sen, P.; Purushothaman, M.; et al. Laccase-Immobilized on Superparamagnetic Iron Oxide Nanoparticles Incorporated Polymeric Ultrafiltration Membrane for the Removal of Toxic Pentachlorophenol. Chemosphere 2023, 331, 138734. [Google Scholar] [CrossRef]
- Li, W.; Shi, J.; Chen, Y.; Liu, X.; Meng, X.; Guo, Z.; Li, S.; Zhang, B.; Jiang, Z. Nano-Sized Mesoporous Hydrogen-Bonded Organic Frameworks for in Situ Enzyme Immobilization. Chem. Eng. J. 2023, 468, 143609. [Google Scholar] [CrossRef]
- Bilal, M.; Rashid, E.U.; Munawar, J.; Iqbal, H.M.N.; Cui, J.; Zdarta, J.; Ashraf, S.S.; Jesionowski, T. Magnetic Metal-Organic Frameworks Immobilized Enzyme-Based Nano-Biocatalytic Systems for Sustainable Biotechnology. Int. J. Biol. Macromol. 2023, 237, 123968. [Google Scholar] [CrossRef]
- Ashwini John, J.; Samuel, M.S.; Selvarajan, E. Immobilized Cellulase on Fe3O4/GO/CS Nanocomposite as a Magnetically Recyclable Catalyst for Biofuel Application. Fuel 2023, 333, 126364. [Google Scholar] [CrossRef]
- Meena, J.; Gupta, A.; Ahuja, R.; Singh, M.; Panda, A.K. Recent Advances in Nano-Engineered Approaches Used for Enzyme Immobilization with Enhanced Activity. J. Mol. Liq. 2021, 338, 116602. [Google Scholar] [CrossRef]
- Ariaeenejad, S.; Jokar, F.; Hadian, P.; Ma’mani, L.; Gharaghani, S.; Fereidoonnezhad, M.; Salekdeh, G.H. An Efficient Nano-Biocatalyst for Lignocellulosic Biomass Hydrolysis: Xylanase Immobilization on Organically Modified Biogenic Mesoporous Silica Nanoparticles. Int. J. Biol. Macromol. 2020, 164, 3462–3473. [Google Scholar] [CrossRef]
- Gkantzou, E.; Chatzikonstantinou, A.V.; Fotiadou, R.; Giannakopoulou, A.; Patila, M.; Stamatis, H. Trends in the Development of Innovative Nanobiocatalysts and Their Application in Biocatalytic Transformations. Biotechnol. Adv. 2021, 51, 107738. [Google Scholar] [CrossRef]
- Roy, S.; Dikshit, P.K.; Sherpa, K.C.; Singh, A.; Jacob, S.; Chandra Rajak, R. Recent Nanobiotechnological Advancements in Lignocellulosic Biomass Valorization: A Review. J. Environ. Manage. 2021, 297, 113422. [Google Scholar] [CrossRef]
- Li, M.; Bai, Y.; Zhuang, W.; Liu, J.; Wang, Z.; Rao, Y.; Li, M.; Ying, H.; Ouyang, P. Sandwich-like Heterostructured Nanomaterials Immobilized Laccase for the Degradation of Phenolic Pollutants and Boosted Enzyme Stability. Colloids Surf. A Physicochem. Eng. Asp. 2023, 660, 130820. [Google Scholar] [CrossRef]
- Jain, P.; Mandal, S.; Minhas, A.K.; Puri, M.; Barrow, C.J. Concentrating Omega-3 Fatty Acids in Nannochloropsis Oceanica Oil by Using Enzyme Immobilized Nano-Silica Systems. J. Clean. Prod. 2023, 406, 137030. [Google Scholar] [CrossRef]
- Peiman, S.; Baharfar, R.; Hosseinzadeh, R. CuI NPs Immobilized on a Ternary Hybrid System of Magnetic Nanosilica, PAMAM Dendrimer and Trypsin, as an Efficient Catalyst for A3-coupling Reaction. Res. Chem. Intermed. 2022, 48, 1365–1382. [Google Scholar] [CrossRef]
- Bilal, M.; Ullah Rashid, E.; Zdarta, J.; Jesionowski, T. Graphene-Based Nanoarchitectures as Ideal Supporting Materials to Develop Multifunctional Nanobiocatalytic Systems for Strengthening the Biotechnology Industry. Chem. Eng. J. 2023, 452, 139509. [Google Scholar] [CrossRef]
- Noreen, S.; Perveen, S.; Shafiq, N.; Aslam, S. Environmental Technology & Innovation Laccase-Loaded Functionalized Graphene Oxide Assemblies with Improved Biocatalytic Properties and Decolorization Performance. Environ. Technol. Innov. 2021, 24, 101884. [Google Scholar] [CrossRef]
- Zhou, W.; Rao, Y.; Zhuang, W.; Ge, L.; Lin, R.; Tang, T. Improved Enzymatic Activity by Oriented Immobilization on Graphene Oxide with Tunable Surface Heterogeneity. Compos. Part B 2021, 216, 108788. [Google Scholar] [CrossRef]
- Zhang, F.; Cai, X.; Cheng, F.; Yu, J.-M.; Wang, B.; Liu, Z.-Q.; Zheng, Y.-G. Immobilization of Sucrose Isomerase from Erwinia Sp. with Graphene Oxide and Its Application in Synthesizing Isomaltulose. Appl. Biochem. Biotechnol. 2022, 194, 709–724. [Google Scholar] [CrossRef]
- Gun, M.; Arslan, H.; Saleh, M.; Yalvac, M.; Dizge, N. Optimization of Silica Extraction from Rice Husk Using Response Surface Methodology and Adsorption of Safranin Dye. Int. J. Environ. Res. 2022, 16, 20. [Google Scholar] [CrossRef]
- Nguyen, X.H.; Tran, N.A.; Nguyen, T.T.H.; Dao, T.T.N.; Nguyen, V.T. Nanosilica Synthesis and Application for Lead Treatment in Water. J. Vietnam. Environ. 2018, 9, 255–263. [Google Scholar] [CrossRef]
- Shrestha, D.; Nayaju, T.; Kandel, M.R.; Pradhananga, R.R.; Park, C.H.; Kim, C.S. Rice Husk-Derived Mesoporous Biogenic Silica Nanoparticles for Gravity Chromatography. Heliyon 2023, 9, e15142. [Google Scholar] [CrossRef]
- Gebretatios, A.G.; Kadiri Kanakka Pillantakath, A.R.; Witoon, T.; Lim, J.W.; Banat, F.; Cheng, C.K. Rice Husk Waste into Various Template-Engineered Mesoporous Silica Materials for Different Applications: A Comprehensive Review on Recent Developments. Chemosphere 2023, 310, 136843. [Google Scholar] [CrossRef]
- Porrang, S.; Rahemi, N.; Davaran, S.; Mahdavi, M.; Hassanzadeh, B. Preparation and In-Vitro Evaluation of Mesoporous Biogenic Silica Nanoparticles Obtained from Rice and Wheat Husk as a Biocompatible Carrier for Anti-Cancer Drug Delivery. Eur. J. Pharm. Sci. 2021, 163, 105866. [Google Scholar] [CrossRef]
- Baker, A.; Dwyer-Joyce, R.S.; Briggs, C.; Brockfeld, M. Effect of Different Rubber Materials on Husking Dynamics of Paddy Rice. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 516–528. [Google Scholar] [CrossRef]
- Dharmegowda, I.Y.; Muniyappa, L.M.; Siddalingaiah, P.; Suresh, A.B.; Gowdru Chandrashekarappa, M.P.; Prakash, C. MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization. Sustainability 2022, 14, 11132. [Google Scholar] [CrossRef]
- Hoo, H.M.; Mohamad, M.; Wannahari, R.; Masri, M.N.; Ter, T.P.; Mohidem, N.A. Optimization Study of Malachite Green Dye Adsorption by Eggshell Using Response Surface Methodology. Key Eng. Mater. 2022, 908, 367–372. [Google Scholar] [CrossRef]
- Goldhahn, C.; Taut, J.A.; Schubert, M.; Burgert, I.; Chanana, M. Enzyme Immobilization inside the Porous Wood Structure: A Natural Scaffold for Continuous-Flow Biocatalysis. RSC Adv. 2020, 10, 20608–20619. [Google Scholar] [CrossRef] [PubMed]
- Sen, K.Y.; Baidurah, S. Renewable Biomass Feedstocks for Production of Sustainable Biodegradable Polymer. Curr. Opin. Green Sustain. Chem. 2021, 27, 100412. [Google Scholar] [CrossRef]
- Adam, F.; Appaturi, J.N.; Iqbal, A. The Utilization of Rice Husk Silica as a Catalyst: Review and Recent Progress. Catal. Today 2012, 190, 2–14. [Google Scholar] [CrossRef]
- Kalsi, A.; Celin, S.M.; Sahai, S. Agro Waste as Immobilization Carrier for in Situ Remediation of 2,4,6-Trinitrotoluene Contaminated Soil. Environ. Technol. Innov. 2022, 27, 102455. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Che Man, H. Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- Wu, J.; Han, J.; Mao, Y.; Wang, L.; Wang, Y.; Li, Y.; Wang, Y. Bionic Mineralization Growth of UIO-66 with Bovine Serum for Facile Synthesis of Zr-MOF with Adjustable Mesopores and Its Application in Enzyme Immobilization. Sep. Purif. Technol. 2022, 297, 121505. [Google Scholar] [CrossRef]
- Spennato, M.; Todea, A.; Corici, L.; Asaro, F.; Cefarin, N.; Savonitto, G.; Deganutti, C.; Gardossi, L. Turning Biomass into Functional Composite Materials: Rice Husk for Fully Renewable Immobilized Biocatalysts. EFB Bioecon. J. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Yassin, M.A.; Gad, A.A.M. Immobilized Enzyme on Modified Polystyrene Foam Waste: A Biocatalyst for Wastewater Decolorization. J. Environ. Chem. Eng. 2020, 8, 104435. [Google Scholar] [CrossRef]
- Budžaki, S.; Velić, N.; Ostojčić, M.; Stjepanović, M.; Rajs, B.B.; Šereš, Z.; Maravić, N.; Stanojev, J.; Hessel, V.; Strelec, I. Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods 2022, 11, 409. [Google Scholar] [CrossRef] [PubMed]
- Kessi, E.; Arias, J.L. Using Natural Waste Material as a Matrix for the Immobilization of Enzymes: Chicken Eggshell Membrane Powder for β-Galactosidase Immobilization. Appl. Biochem. Biotechnol. 2019, 187, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Utomo, Y.; Yuniawati, N.; Wonorahardo, S.; Santoso, A.; Kartika Kusumaningrum, I.; Susanti, E. Preliminary Study of Immobilized of Cellulase in Silica from the Rice Husk Ash to Hydrolysis Sugarcane Bagasse. IOP Conf. Ser. Earth Environ. Sci. 2019, 276, 012018. [Google Scholar] [CrossRef]
- Almeida, L.C.; Barbosa, M.S.; de Jesus, F.A.; Santos, R.M.; Fricks, A.T.; Freitas, L.S.; Pereira, M.M.; Lima, Á.S.; Soares, C.M.F. Enzymatic Transesterification of Coconut Oil by Using Immobilized Lipase on Biochar: An Experimental and Molecular Docking Study. Biotechnol. Appl. Biochem. 2021, 68, 801–808. [Google Scholar] [CrossRef]
- Thiyagarajan, P.; Selvam, K.; Sudhakar, C.; Selvankumar, T. Enhancement of Adsorption of Magenta Dye by Immobilized Laccase on Functionalized Biosynthesized Activated Carbon Nanotubes. Water. Air. Soil Pollut. 2020, 231, 11270. [Google Scholar] [CrossRef]
- Santos, M.P.; Brito, M.J.; Junior, E.C.; Bonomo, R.C.; Veloso, C.M. Pepsin Immobilization on Biochar by Adsorption and Covalent Binding, and Its Application for Hydrolysis of Bovine Casein. J. Chem. Technol. Biotechnol. 2019, 94, 1982–1990. [Google Scholar] [CrossRef]
- Ferreira Gonçalves, G.R.; Ramos Gandolfi, O.R.; Brito, M.J.P.; Bonomo, R.C.F.; da Costa Ilhéu Fontan, R.; Veloso, C.M. Immobilization of Porcine Pancreatic Lipase on Activated Carbon by Adsorption and Covalent Bonding and Its Application in the Synthesis of Butyl Butyrate. Process Biochem. 2021, 111, 114–123. [Google Scholar] [CrossRef]
- De Almeida, L.C.; Andrade, E.L.O.; Santos, J.C.B.; Santos, R.M.; Fricks, A.T.; Freitas, L.d.S.; Lima, Á.S.; Pereira, M.M.; Soares, C.M.F. Novel Nanobiocatalyst Constituted by Lipase from Burkholderia Cepacia Immobilized on Graphene Oxide Derived from Grape Seed Biochar. C 2023, 9, 12. [Google Scholar] [CrossRef]
- Machado, N.B.; Sabi, G.J.; Hirata, D.B.; Mendes, A.A. Enzymatic Production of Wax Esters by Esterification Using Lipase Immobilized via Physical Adsorption on Functionalized Rice Husk Silica as Biocatalyst. Biotechnol. Appl. Biochem. 2023, 70, 1291–1301. [Google Scholar] [CrossRef]
- Fernandez-Sanroman, A.; Acevedo-García, V.; Pazos, M.; Sanromán, M.A.; Rosales, E. Removal of Sulfamethoxazole and Methylparaben Using Hydrocolloid and Fiber Industry Wastes: Comparison with Biochar and Laccase-Biocomposite. J. Clean. Prod. 2020, 271, 122436. [Google Scholar] [CrossRef]
- Zou, M.; Tian, W.; Chu, M.; Lu, Z.; Liu, B.; Xu, D. Magnetically Separable Laccase-Biochar Composite Enable Highly Efficient Adsorption-Degradation of Quinolone Antibiotics: Immobilization, Removal Performance and Mechanisms. Sci. Total Environ. 2023, 879, 163057. [Google Scholar] [CrossRef]
- Borges, J.F.; Nascimento, P.A.; Alves, A.N.; Santos, M.P.F.; Brito, M.J.P.; Bonomo, R.C.F.; Santos, L.S.; Veloso, C.M. Laccase Immobilization on Activated Carbon from Hydrothermal Carbonization of Corn Cob. Waste Biomass Valorization 2023. [Google Scholar] [CrossRef]
- Abed, K.M.; Hayyan, A.; Elgharbawy, A.A.M.; Hizaddin, H.F.; Hashim, M.A.; Hasan, H.A.; Hamid, M.D.; Zuki, F.M.; Saleh, J.; Aldaihani, A.G.H. Palm Raceme as a Promising Biomass Precursor for Activated Carbon to Promote Lipase Activity with the Aid of Eutectic Solvents. Molecules 2022, 27, 8734. [Google Scholar] [CrossRef] [PubMed]
- Araichimani, P.; Prabu, K.M.; Suresh Kumar, G.; Karunakaran, G.; Surendhiran, S.; Shkir, M.; Ali, H.E. Synthesis of Fe3O4-Decorated SiO2 Nanostructure Using Rice Husk as a Source by Microwave Combustion for the Development of a Magnetically Recoverable Adsorbent. Ceram. Int. 2022, 48, 10339–10345. [Google Scholar] [CrossRef]
- Girelli, A.M.; Scuto, F.R. Eggshell Membrane as Feedstock in Enzyme Immobilization. J. Biotechnol. 2021, 325, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kim, J.; Kim, H.; Abeysinghe, S.; Lin, Y.; Baek, K. Chemosphere Covalent Immobilizing Horseradish Peroxidase on Electrochemically-Functionalized Biochar for Phenol Removal. Chemosphere 2023, 312, 137218. [Google Scholar] [CrossRef]
Method | Materials | Advantages | Disadvantages | References |
---|---|---|---|---|
Synthesising magnetic-cross-linked enzyme aggregates (CLEAs) or trapping the CLEAs in particles with superior mechanical qualities. | Glutaraldehyde as a linker; Ammonium sulfate as a precipitating agent; Bovine serum albumin (BSA) and 3-aminopropyltriethoxysilane (APTES) as additive. | It is suggested to tackle substrate diffusion issues by generating more porous CLEAs, among other things. | Diffusion limitation. | [33] |
Immobilisation of protease via covalent bonding on chitosan. | Chitosan as a carrier; glutaraldehyde and ethylenediamine as modification agents and cross-linkers. | The catalytic activity of immobilised enzymes is equivalent to that of free enzyme (pH 9 and 60 °C); however, the immobilisation procedure broadened the optimum temperature range of enzyme activity (50–70 °C). | After three cycles of use, the immobilised enzyme only maintained 47.08% of its initial activity. | [36] |
Laccase was immobilised on a low-cost, nanosized magnetic biochar (L-MBC) via adsorption, precipitation, and cross-linking. | Bagasse biochar as a carrier; ammonium sulfate as a precipitation agent; glutaraldehyde as a cross-linker. | The magnetic biochar could immobilise a substantial quantity of enzymes with increased catalytic activity (2.251 U per mg MBC), better stability, improved storage stability, pH tolerance, and thermal stability over free laccase. | The catalytic activity of immobilised laccase decreased more than 50% of its initial activity at pH 5.5 and 6. | [69] |
Encapsulation of laccase using alginate, alginate–silica and silica sol–gel. | Tetraethyl orthosilicate (TEOS) and alginate as carriers. | The experimental results showed that incorporating silica into alginate resulted in a better (70%) encapsulation efficiency (EE) for the laccase extract than for the alginate alone (59%). Furthermore, encapsulating the laccase extract in sol–gel resulted in an increase in its catalytic activity, as well as a 90% rise in the EE. The alginate and sol–gel matrices also improved laccase catalytic efficiency compared to free laccase, with kcat values of 89.9 (alginate), 63.7 (alginate-silica), and 56.9 min−1 (silica sol-gel), respectively. | After three reaction cycles, the catalytic activity of immobilised laccase with alginate-silica was decreased by 50%. | [61] |
New enzyme immobilisation ideas via multipoint covalent attachment on support surfaces. | Conventional supports such as cyanates, tosyl chloride and N-hydroxy-succinimide esters as carriers. Polyethylene glycol as modification agent. | The formation of several bonds between each molecule of an immobilised enzyme and the support creates a region of the enzyme in which the residues attached to the support cannot change their position during any distortion of the enzyme molecule caused by heat and organic cosolvents. | Difficult to achieve desired results. | [65] |
Enzymes | Immobilisation Methods | Agrowaste Carriers | Merits | References |
---|---|---|---|---|
Lipase | Cross-linking | Brown onion skins | The catalytic activity of immobilised lipase has retained 63. 6%. It could be reused more than 100 times for 60 days. | [182] |
β-galcatosidase | Adsorption | Egg shell membrane | The results demonstrate a similarity between the bound and free enzymes as well as the stability and reusability of the immobilised β-galcatosidase | [183] |
Cellulase | Adsorption | Nanosilica rice husk | The immobilised cellulase retained its catalytic activity. It could be reused many times, with catalytic activity decreasing from 75.5 to 58.8% in the third cycle. | [184] |
Lipase | Adsorption | Guava seed biochar | The optimal BCL loading was found to be 0.15 g enzyme/g support with 260 U/g of hydrolytic activity and 54% immobilisation yield. Under numerous reaction conditions, the highest yield of transesterification products was achieved at 40 °C. | [185] |
Lipase | Adsorption | Activated carbon derived from Prosopis juliflora bark | The parameters were optimised using response surface methods, and the maximum magenta dye adsorption using immobilised lipase was about 95% at 120 min. | [186] |
Pepsin | Adsorption and Covalent Bonding | Biochar derived from pupunha palm waste | The immobilised enzyme retains its biological activity up to seven times. | [187] |
Lipase | Adsorption | Activated carbon derived from tamarin seed | It can retain 86% of its catalytic activity after five times reuse. | [188] |
Lipase | Adsorption | Graphene oxide grape seed biochar | It can retain 60% of its catalytic activity for more than five times reuse. | [189] |
Lipase | Adsorption | Nanosilica rice husk | It can retain 85% to 90% of its initial activity after nine cycles. | [190] |
Laccase | Adsorption, Covalent Bonding | Hydrocolloid and fibre industry waste | The adsorption capacity for removal of organic pollutants was enhanced using immobilised laccase compared to without laccase. | [191] |
Laccase | Adsorption | Microporous biochar derived from apple branches | The biodegradation rate of immobilised laccase for norfloxacin, enrofloxacin and moxifloxaci after a 48-h reaction were 93.7%, 65.4%, and 77.0% at pH 4 and 40 °C, respectively. These values were 1.2, 1.3, and 1.3 times higher than those of MBC under the same experimental condition. | [192] |
Laccase | Adsorption | Biochar derived from agrowaste | The immobilised laccase demonstrated enhanced pH tolerance, and thermal and storage stability compared to free laccase. | [192] |
Laccase | Adsorption | Biochar derived from corn cob | The optimum catalytic activity of immobilised enzyme was found at pH 4.0 and 25 °C. The immobilised enzyme retained 50% of its initial activity after 30 days of storage duration. | [193] |
Lipase | Adsorption | Palm waste-activated carbon | The catalytic activity of immobilised lipase was enhanced compared to free lipase. The optimum condition of immobilised lipase was 0.5 (NaOH (g)/palm raceme (g)), 150 min, and 400 °C for carbonisation. | [194] |
Laccase | Adsorption | Activated biochar derived from agrowaste | Immobilised laccase had significantly higher catalytic activity than free laccase throughout a pH range of 3.5 to 6.5 and a temperature range of 30 to 60 °C. After 5 h at 55 °C, the immobilised laccase retained 50% of its catalytic activity. It could be reused 6 times with and kept above 60% of its catalytic activity, compared to free laccase at about 40%. | [195] |
Laccase | Covalent bonding and adsorption | Eggshell | The study found that immobilising periodate-oxidised laccase on NiCl2-pretreated eggshell membrane was the best method with an immobilised activity of 1300 U/Kg and a 30% residual activity after 6 reuses. The covalent method with glutaraldehyde was the best for the enzyme-dropping protocol, with an immobilised activity of 3500 U/Kg and a 45% residual activity after 6 reuses. | [196] |
Peroxidase | Covalent bonding | Rice straw biochar | Peroxidase immobilisation on functionalised biochar demonstrated three times higher catalytic activity and improved stability against extreme pH and temperature. | [197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohidem, N.A.; Mohamad, M.; Rashid, M.U.; Norizan, M.N.; Hamzah, F.; Mat, H.b. Recent Advances in Enzyme Immobilisation Strategies: An Overview of Techniques and Composite Carriers. J. Compos. Sci. 2023, 7, 488. https://doi.org/10.3390/jcs7120488
Mohidem NA, Mohamad M, Rashid MU, Norizan MN, Hamzah F, Mat Hb. Recent Advances in Enzyme Immobilisation Strategies: An Overview of Techniques and Composite Carriers. Journal of Composites Science. 2023; 7(12):488. https://doi.org/10.3390/jcs7120488
Chicago/Turabian StyleMohidem, Nur Atikah, Mardawani Mohamad, Muhammad Usman Rashid, Mohd Nurazzi Norizan, Fazlena Hamzah, and Hanapi bin Mat. 2023. "Recent Advances in Enzyme Immobilisation Strategies: An Overview of Techniques and Composite Carriers" Journal of Composites Science 7, no. 12: 488. https://doi.org/10.3390/jcs7120488
APA StyleMohidem, N. A., Mohamad, M., Rashid, M. U., Norizan, M. N., Hamzah, F., & Mat, H. b. (2023). Recent Advances in Enzyme Immobilisation Strategies: An Overview of Techniques and Composite Carriers. Journal of Composites Science, 7(12), 488. https://doi.org/10.3390/jcs7120488