Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers
Abstract
:1. Introduction
1.1. Brief Introduction to the Earth’s Atmosphere
1.2. Brief Introduction to the Earth’s Orbits
- Low Earth orbit (LEO): This orbit is closest to the Earth at an altitude of 160 km (thermosphere) to 1000 km. The International Space Station (ISS) is at 400 km, which is also a part of the thermosphere. The time period of a satellite for one circumnavigation of the earth in this orbit is approximately 90 min. Satellites in this orbit generally perform tasks like telecommunication, science exploration etc.
- Geostationary orbit (GEO): Satellites in GEO revolve around the earth from west to east above the equator. The time period of the satellite is 24 h—the same as the time period of the earth’s rotation. Due to this reason, these satellites appear fixed at a particular earth position. They perform tasks like telecommunication, weather forecasting, human trafficking, etc. The orbit exists at an altitude of 35,786 km.
- Medium Earth orbit (MEO): The orbits between LEO and GEO are considered MEO. Satellites in this orbit generally perform tasks like navigation, etc. They are also used for constellations of multiple satellites.
- Sun-synchronous orbit (SSO): This is a polar orbit where the satellites orbit from north to south poles, and the position of the satellite is synchronous to the sun. The orbiting speed of the satellite is in such a way that the position of the satellite is always fixed relative to the sun. It visits the same location at the same local time. These satellites are used for weather forecasting or monitoring emergencies at a particular position.
- Geostationary transfer orbit (GTO): These are the orbits used to launch the satellites from one orbit to another orbit. It takes external energy for these maneuvers.
2. Effect of LEO Environment on Composite Materials
2.1. High Proximity to the Earth
2.2. Residual Atmosphere
2.3. High Vacuum
2.4. High Thermal Cycling
- Direct sunlight;
- Reflected sunlight from earth (Albedo);
- Infrared radiation from Earth;
- Internal heat produced by satellite component.
- Its view to the sun, i.e., sun side or shadow side;
- Position of the earth with respect to the sun, i.e., aphelion or perihelion and position of the satellite with respect to the earth, i.e., perigee and apogee;
- Its view to the earth, i.e., earth’s shadow or earth-facing.
2.5. Ultra-Violet and Ionization Radiation
- Material discoloration occurs due to the absorption of UV rays. The surface color of the material gets yellowed or dark. The polymer absorbs UV rays and undergoes several chemical reactions, such as dissociation of bonds, isomerization, free radical polymerization and contamination or recombination with other free radicals. This changes the mechanical properties of the structure.
- It erodes the surface, which increases the surface roughness. Discoloration, in addition to surface roughness, deteriorates the thermo-optical properties, which decreases the efficiency of the thermal control surface. Hence, low solar absorption and high thermal emittance are required in the material to reduce this phenomenon.
- The polymeric chain is de- and re-associated. Such cross-linking modifies the chemical structure of the polymer. Such modification leads to loss of mechanical, optical and chemical properties [47,57,58,59,60,61,62,63]. The polymeric chain with aromatic rings or phenyl rings may have higher erosion compared to polymers having long polymeric chains [64]. Aromatic rings or phenyl groups have more C=C bonds, which makes them stronger UV absorbents. Thus, there is a higher chance of chain scissioning and polymer fragmentation.
- Polymers undergo embrittlement or chain scission in which polymeric bonds de-associate from polymeric chains and perform bonds with free ions. This free radical polymerization creates volatiles, which sublimate in the space. This phenomenon erodes the surface. The presence of a high vacuum increases this erosion even further. Reactive functional groups in the polymer chain sublimate faster in the environment [64].
- Changes in the chemical structure of the polymer degrades the viscoelastic properties. UV radiation increases the glass transition temperature of epoxy-based shape memory polymer by 2.9% after exposition to UV radiation with a wavelength of 250–400 nm for 80 h [47]. It also increases the stiffness of the material by 41% after 80 hours of exposure. However, 80 h of exposure is too short to conclude the variation of glass transition temperature and stiffness. Hence, more polymers and longer exposure times are required for the investigation.
2.6. Atomic Oxygen
- Change in the chemical composition of the polymer, which leads to loss of mechanical properties;
- Embrittlement and chain scission of polymeric chains;
- Material erosion, which leads to loss of material, hence creates dimensional instability;
- Loss of thermo-optical properties of the material (i.e., absorptance and emittance) due to material discoloration.
2.7. Space Debris
3. Design Requirements for Space Structure
- Dimensional stability;
- Thermal stability;
- Material resistance to environmental degradation;
- Mechanical properties;
- Joining capabilities;
- Damage resistance and repair capabilities;
- Weight saving;
- Resistance to vibration.
3.1. Design Characteristics of Satellite Structure
3.1.1. Coefficient of Thermal Expansion
3.1.2. Coefficient of Moisture Expansion
- Water evolves out in space, causing a change in dimension.
- Water molecules can contaminate other chilled optics or instruments of the satellite.
- Prediction of the final dimension in the space after desorption of moisture from the structure is very tough and expensive.
3.1.3. Porosity or Voids
3.1.4. Erosion Yield
3.1.5. Polymer Susceptibility to AO
3.1.6. Glass Transition Region of Polymer
3.1.7. Mirco-Crack Density
3.1.8. Damage Resistance and Repair
3.1.9. Strength and Stiffness
3.1.10. Random Vibration
3.1.11. Manufacturing Method
4. Testing Facilities Available
5. Few Suggested Composite Materials
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Devapal, D.; Packirisamy, S.; Korulla, R.M.; Ninan, K.N. Atomic oxygen resistant coating from poly(tetramethyldisilylene-co-styrene). J. Appl. Polym. Sci. 2004, 94, 2368–2375. [Google Scholar] [CrossRef]
- de Groh, K.K.; Banks, B.A.; Miller, K.R.S.; Jaworske, D.A.; Dever, J.A.; Sechkar, E.A.; Panko, S.R. NASA Glenn Research Center’s Materials International Space Station Experiments (MISSE 1–7). In Proceedings of the International Symposium on SM/MPAC and SEED Experiments, Tsukuba, Japan, 10–11 March 2008; p. 46. [Google Scholar]
- Son, G.; Kim, C.-G. Protective effect of nanocomposite film from the low earth orbit environment. J. Compos. Mater. 2015, 49, 2297–2306. [Google Scholar] [CrossRef]
- Gordo, P.; Frederico, T.; Melicio, R.; Duzellier, S.; Amorim, A. System for space materials evaluation in LEO environment. Adv. Space Res. 2020, 66, 307–320. [Google Scholar] [CrossRef]
- Gouzman, I.; Girshevitz, O.; Grossman, E.; Eliaz, N.; Sukenik, C.N. Thin Film Oxide Barrier Layers: Protection of Kapton from Space Environment by Liquid Phase Deposition of Titanium Oxide. ACS Appl. Mater. Interfaces 2010, 2, 1835–1843. [Google Scholar] [CrossRef]
- Kawasaki, H.; Okazaki, S.; Murakami, M. Temperature Dependence of Thermal Performance of Space Using Multilayer Insulation. In Proceedings of the 42nd International Conference on Environmental Systems, San Diego, CA, USA, 15–19 July 2012; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012; Volume AIAA 2012-3407, p. 10. [Google Scholar]
- Garvey, R.E. Potential for Advanced Thermoplastic Composites in Space Systems; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1990; p. 17. [Google Scholar]
- Leipold, M.; Eiden, M.; Garner, C.E.; Herbeck, L.; Kassing, D.; Niederstadt, T.; Krüger, T.; Pagel, G.; Rezazad, M.; Rozemeijer, H.; et al. Solar sail technology development and demonstration. Acta Astronaut. 2003, 52, 317–326. [Google Scholar] [CrossRef]
- Chandra, A.; Wilburn, G.; Thangavelautham, J. Advanced inflatable de-orbit solutions for derelict satellites and orbital debris. arXiv 2019, 9. [Google Scholar] [CrossRef]
- Santoni, F.; Piergentili, F.; Donati, S.; Perelli, M.; Negri, A.; Marino, M. An innovative deployable solar panel system for Cubesats. Acta Astronaut. 2014, 95, 210–217. [Google Scholar] [CrossRef]
- Wen, L.Z.Z.Y.; Kan, M.Q.Y.Y.Z. Cubesat Brake Sail De-Orbit Device. CN105799956A, 12 December 2018. [Google Scholar]
- Harkness, P.; McRobb, M.; Lützkendorf, P.; Milligan, R.; Feeney, A.; Clark, C. Development status of AEOLDOS—A deorbit module for small satellites. Adv. Space Res. 2014, 54, 82–91. [Google Scholar] [CrossRef]
- Mason, C.; Tilton, G.; Vazirani, N.; Spinazola, J.; Guglielmo, D.; Robinson, S.; Bevilacqua, R.; Samuel, J. Origami-Based Drag Sail for Cubesat Propellant-Free Maneuvering. In Proceedings of the 5th Nano-Satellite Symposium, Troy, NY, USA, 22 November 2013. [Google Scholar]
- Mazzio, V.; Bixler, C. Optimized design and fabrication processes for advanced composite spacecraft structures. In Proceedings of the 17th Aerospace Sciences Meeting, New Orleans, LA, USA, 15–17 January 1979; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1979. [Google Scholar]
- Mayer, N.J. Carbon composite in space vehicle structures. In Proceedings of the International Conference on Carbon Fibres, Their Place in Modern Technology, London, UK, 18–20 February 1974; Volume 39. [Google Scholar]
- Jamison, R.D.; Griffin, O.H.; Ecker, J.A.; Skullney, W.E. Use of Graphite/Epoxy Composite in Spacecraft Structures: A Case Study. Johns Hopkins APL Tech. Dig. 1986, 7, 290–294. [Google Scholar]
- Sandvik, K. Development of Composite and Polymer Material CubeSat Structure with Focus on Materials; Norwegian University of Science and Technology: Trondheim, Norway, 2012; TMM 4501 Specialization report; p. 90. [Google Scholar]
- European Cooperation for Space Standardization. Space Engineering, Structural Material Handbook—Part 1; ESA Requirements and Standards Division: Noordwijk, The Netherlands, 2011; Volume 1. [Google Scholar]
- Ampatzoglou, A.G. Design, Analysis and Optimization of a Micro-Satellite for the Study of Lower Thermosphere and Re-Entry Conditions. Ph.D Thesis, University of Patras, Patras, Greece, 2017. [Google Scholar]
- Abdullah, F.; Okuyama, K.; Tapia, I.F. In-Situ Monitoring of Carbon Fiber/Polyether Ether Ketone (CF/PEEK) Composite Thermal Expansion in Low Earth Orbit. In Proceedings of the 8th International Symposium on Space Technology and Science, Tokyo, Japan, 17–21 June 2019. [Google Scholar]
- Fernandez, J.M.; Schenk, M.; Prassinos, G.; Lappas, V.J.; Erb, S.O. Deployment mechanisms of a Gossamer satellite deorbiter. In Proceedings of the ESMATS 2013, Noordwijk, The Netherlands, 25–27 September 2013; Volume 15, p. 8. [Google Scholar]
- Young, P.R.; Slemp, W.S. The performance of selected polymeric materials exposed to low earth orbit. Polym. Adv. Technol. 1998, 9, 20–23. [Google Scholar] [CrossRef]
- Czechowicz, A.; Razaei, F.; Bach, A.; Schummer, F.; Zhu, Z.; Langer, M. New Space New Manufacturing—Injection Molding of Satellite Structures. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–11. [Google Scholar]
- Lukez, R. The Use of Graphite/Epoxy Composite Structures in Space Applications; DigitalCommons@USU: Logan, UT, USA, 1987; p. 11. [Google Scholar]
- EuroConsult. Prospects for Small Satellite Market Forecasts to 2029; EuroConsult: Washington, DC, USA, 2020; p. 7. [Google Scholar]
- EuroConsult. Prospects for the Small Satellite Market Forecasts to 2028; EuroConsult: Washington, DC, USA, 2019. [Google Scholar]
- EuroConsult. A Satellites to Be Built & Launched by 2028; EuroConsult: Washington, DC, USA, 2019; p. 15. [Google Scholar]
- EuroConsult. Satellites to be Built & Launched by 2030; EuroConsult: Washington, DC, USA, 2021. [Google Scholar]
- Sweeting, M.N. Modern Small Satellites—Changing the Economics of Space. Proc. IEEE 2018, 106, 343–361. [Google Scholar] [CrossRef]
- Palla, C.; Kingston, J. Forecast analysis on satellites that need de-orbit technologies: Future scenarios for passive de-orbit devices. CEAS Space J 2016, 8, 191–200. [Google Scholar] [CrossRef]
- Haneveer, M.R. Orbital Lifetime Predictions: An Assessment of Model-Based Ballistic Coefficient Estimations and Adjustment for Temporal Drag Coefficient Variations. Master’s Thesis, University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
- Zell, H. Earth’s Atmospheric Layers. NASA 2015. Available online: http://www.nasa.gov/mission_pages/sunearth/science/atmosphere-layers2.html (accessed on 7 December 2021).
- McDowell, J.C. The edge of space: Revisiting the Karman Line. Acta Astronaut. 2018, 151, 668–677. [Google Scholar] [CrossRef]
- ESA/NASA Astronaut’s Glory 2018. Available online: https://www.esa.int/ESA_Multimedia/Images/2018/11/Astronaut_s_glory (accessed on 7 December 2021).
- Vallado, D.A.; McClain, W.D. Fundamentals of Astrodynamics and Applications, 3rd ed.; Microcosm Press: Hawthorne, CA, USA, 2007; ISBN 978-0-387-71831-6. [Google Scholar]
- ESA. Types of Orbits 2020. Available online: https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits (accessed on 7 December 2021).
- Finckenor, M.M.; Groh, K.K.D. Reseacher’s Guide to ISS: Space Environmental Effects; NASA: Washington, DC, USA, 2015.
- Sarantinos, N.; Loginos, P.; Charlaftis, P.; Argyropoulos, A.; Filinis, A.; Vrettos, K.; Adamos, L.; Kostopoulos, V. Behavior of photopolymer fiber structures in microgravity. SN Appl. Sci. 2019, 1, 1693. [Google Scholar] [CrossRef]
- Banks, B.A.; Miller, K.R.S. Overview of Space Environment Effects on Materials and GRC’s Test Capabilities. In Proceedings of the 2005 NASA Seal/Secondary Air System Workshop, Cleveland, OH, USA, 8–9 November 2005; Glenn Research Center: Sandusky, OH, USA NASA/CP—2006-214383/VOL1. [Google Scholar]
- Banks, B.A. Atomic Oxygen. In Proceedings of the LDEF Materials Data Analysis Workshop, Merritt Island, FL, USA, 13–14 February 1990; p. 290. [Google Scholar]
- Samwel, S.W. Low Earth Orbital Atomic Oxygen Erosion Effect on Spacecraft Materials. Space Res. J. 2014, 7, 1–13. [Google Scholar] [CrossRef]
- Walter, N.A.; Scialdone, J. Outgassing Data for Selecting Spacecraft Materials; NASA Reference Publication 1124; NASA: Washington, DC, USA, 1997; 444p.
- Anwar, A.; Elfiky, D.; Hassan, G.; Albona, M.; Marchetti, M. Outgassing Effect on Spacecraft Structure Materials. Int. J. Astron. Astrophys. Space Sci. 2015, 2, 34–38. [Google Scholar]
- Tribble, A.C. Designing for the space environment. Aerosp. Am. 1993, 31, 26–29. [Google Scholar]
- Maini, A.K.; Agrawal, V. Satellite Technology: Principles and Applications, 3rd ed.; Wiley: Chichester, WS, USA, 2014; ISBN 978-1-118-63647-3. [Google Scholar]
- Gao, Y.; He, S.; Yang, D.; Liu, Y.; Li, Z. Effect of vacuum thermo-cycling on physical properties of unidirectional M40J/AG-80 composites. Compos. Part B: Eng. 2005, 36, 351–358. [Google Scholar] [CrossRef]
- Tan, Q.; Li, F.; Liu, L.; Liu, Y.; Yan, X.; Leng, J. Study of low earth orbit ultraviolet radiation and vacuum thermal cycling environment effects on epoxy-based shape memory polymer. J. Intell. Mater. Syst. Struct. 2019, 30, 2688–2696. [Google Scholar] [CrossRef]
- Mahdavi, S. Thermal Cycling of Out-of-Autoclave Thermosetting Composite Materials. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2017. [Google Scholar]
- Hegde, S.R.; Hojjati, M. Effect of Thermal Cycling on Composite Honeycomb Sandwich Structures for Space Applications; ASTRO Cancadian Aeronautics and Space Institute: Montréal, QC, Canada, 2018; p. 7. [Google Scholar]
- Gao, Y.; Dong, S.L.; Wang, H.S.; Lu, S.W.; Bao, J.W. Effect of Vacuum Thermal Cycling on Mechanical and Physical Properties of an Epoxy Matrix Composite. Adv. Mater. Res. 2011, 415–417, 2236–2239. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, H.S.; Choi, W.J.; Kwon, H. Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications. Compos. Part B Eng. 2012, 43, 726–738. [Google Scholar] [CrossRef]
- Shimokawa, T.; Katoh, H.; Hamaguchi, Y.; Sanbongi, S.; Mizuno, H.; Nakamura, H.; Asagumo, R.; Tamura, H. Effect of Thermal Cycling on Microcracking and Strength Degradation of High-Temperature Polymer Composite Materials for Use in Next-Generation SST Structures. J. Compos. Mater. 2002, 36, 885–895. [Google Scholar] [CrossRef]
- The Extraterrestrial (AM0) Solar Spectrum. Available online: https://www2.pvlighthouse.com.au/resources/courses/altermatt/The%20Solar%20Spectrum/The%20extraterrestrial%20%28AM0%29%20solar%20spectrum.aspx (accessed on 22 March 2023).
- ASTM E490-00a(2019); E21 Committee Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Yu-Ran Luo Bond Dissociation Energies 2010. Available online: http://staff.ustc.edu.cn/~luo971/2010-91-CRC-BDEs-Tables.pdf (accessed on 22 April 2021).
- ASTM E512-94(2020); E21 Committee ASTM E512 Practice for Combined, Simulated Space Environment Testing of Thermal Control Materials with Electromagnetic and Particulate Radiation. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Dever, J.; Bruckner, E.; Rodriguez, E. Synergistic effects of ultraviolet radiation, thermal cycling and atomic oxygen on altered and coated Kapton surfaces. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1992. [Google Scholar] [CrossRef]
- Liau, W.B.; Tseng, F.P. The effect of long-term ultraviolet light irradiation on polymer matrix composites. Polym. Compos. 1998, 19, 440–445. [Google Scholar] [CrossRef]
- Groh, K.K.D.; Smith, D.C. Investigation of Teflon FEP Embrittlement on Spacecraft in Low Earth Orbit; NASA Lewis Research Center: Cleveland, OH, USA, 1997. [Google Scholar]
- Ishizawa, J.; Mori, K. Space Environment Effects on Cross-linked ETFE Polymer. In Proceedings of the International Symposium on Materials in a Space Environment, Aix-en-Provence, France, 15–18 September 2009; p. 5. [Google Scholar]
- Grossman, E.; Gouzman, I. Space environment effects on polymers in low earth orbit. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 208, 48–57. [Google Scholar] [CrossRef]
- Awaja, F.; Moon, J.B.; Zhang, S.; Gilbert, M.; Kim, C.G.; Pigram, P.J. Surface molecular degradation of 3D glass polymer composite under low earth orbit simulated space environment. Polym. Degrad. Stab. 2010, 95, 987–996. [Google Scholar] [CrossRef]
- Sznajder, M.; Renger, T.; Witzke, A.; Geppert, U.; Thornagel, R. Design and performance of a vacuum-UV simulator for material testing under space conditions. Adv. Space Res. 2013, 52, 1993–2005. [Google Scholar] [CrossRef]
- Suliga, A. Resistance of CFRP Structures to Environmental Degradation in Low Earth Orbit. Ph.D. Thesis, University of Surrey, Guildford, UK, 2017. [Google Scholar]
- Bitetti, G.; Marchetti, M.; Mileti, S.; Valente, F.; Scaglione, S. Degradation of the surfaces exposed to the space environment. Acta Astronaut. 2007, 60, 166–174. [Google Scholar] [CrossRef]
- De Groh, K.K.; Banks, B.A.; Mccarthy, C.E.; Rucker, R.N.; Roberts, L.M.; Berger, L.A. MISSE 2 PEACE Polymers Atomic Oxygen Erosion Experiment on the International Space Station. High Perform. Polym. 2008, 20, 388–409. [Google Scholar] [CrossRef]
- Dooling, D.; Finckenor, M.M. Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces; NASA Marshall Space Flight Center: Huntsville, AL, USA, 1999; p. 50. Available online: https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/19990064119.pdf (accessed on 7 December 2021).
- Miller, S.K.R.; Banks, B. Degradation of Spacecraft Materials in the Space Environment. MRS Bull. 2010, 35, 20–24. [Google Scholar] [CrossRef]
- Cool, G.R. Atomic Oxygen Erosion Resistance of Organic Polymers for Low Earth Orbit Spacecraft; National Library of Canada-Bibliothèque Nationale du Canada: Ottawa, ON, Canada, 1996. [Google Scholar]
- Banks, B.A.; Backus, J.A.; Manno, M.V.; Waters, D.L.; Cameron, K.C.; Groh, K.K.D. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit. In Proceedings of the 11th International Symposium on Materials in a Space Environment (ISMSE) 2009, Symposium and Exhibition NASA/TM--2002-211360, Aix en Provence, France, 15–18 September 2009. [Google Scholar]
- Banks, B.A.; Demko, R. Atomic Oxygen Protection of Materials in Low Earth Orbit. In Proceedings of the 2002 Symposium and Exhibition NASA/TM--2002-211360; Long Beach, CA, USA, 12–16 May 2002. Available online: http://gltrs.grc.nasa.gov/GLTRS (accessed on 5 June 2023).
- Kessler, D.J.; Johnson, N.L. The Kessler Syndrome: Implications to Future Space Operations. In Proceedings of the 33rd Annual AAS Guidance and Control Conference, Breckenridge, CO, USA, 6–10 February 2010. [Google Scholar]
- ESA UNOOSA ESA and UNOOSA Illustrate Space Debris Problem. Available online: https://www.esa.int/Safety_Security/Space_Debris/ESA_and_UNOOSA_illustrate_space_debris_problem (accessed on 18 May 2022).
- Self-cremating Satellite: A solution to reduce lifetime of space debris. In Proceedings of the European Interparliamentary Space Conference (EISC), Paris, France, 16 September 2022.
- TEC-QI, ESA. ESA Requirements on_End of Life to De-orbit. In Proceedings of the Technical Day on De-Orbit Strategies, Noordwijk, The Netherlands, 17 March 2015.
- ESA. ESA Technology Strategy 2019+; European Space Agency: Paris, France, 2019; p. 74. [Google Scholar]
- ESA Space Debris Office. ESA’s Annual Space Environment Report; ESA Space Debris Office; European Space Agency: Paris, France, 2020; GEN-DB-LOG-00288-OPS-SD. [Google Scholar]
- Flegel, S.K. Multi-layer insulation model for MASTER-2009. Acta Astronaut. 2011, 69, 911–922. [Google Scholar] [CrossRef]
- Mejía-Kaiser, M. Collision Course: The 2009 Iridium -Cosmos Crash. In Proceedings of the 52nd Colloquium on the Law if Outer Space, Daejeon, Korea, 12 October 2009; Volume E8.3.9, p. 11. Available online: https://ssrn.com/abstract=3350010 (accessed on 7 December 2021).
- Walker, R.; Martin, C.; Strokes, H.; Wilkinson, J.; Sdunnus, H.; Hauptmann, S.; Beltrami, P.; Klinkrad, H. Update of the ESA Space Debris Mitigation Handbook; ESA: Paris, France, 2002. [Google Scholar]
- Dorey, G.; Bishop, S.M.; Curtis, P.T. On the Impact Performance of Carbon Fibre Laminates with Epoxy and PEEK Matrices. Compos. Sci. Technol. 1985, 23, 221–237. [Google Scholar] [CrossRef]
- Graves, M.; Koontz, J. Initiation and extent of impact damage in graphite/epoxy and graphite/PEEK composites. In Proceedings of the 29th Structures, Structural Dynamics and Materials Conference, Williamsburg, VA, USA, 18–20 April 1988; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1988. [Google Scholar] [CrossRef]
- Braid-Enhanced Composite Overwrapped Pressure Vessels |A&P Technology. Available online: https://www.braider.com/Case-Studies/Braid-Enhanced-Composite-Overwrapped-Pressure-Vessels.aspx (accessed on 7 December 2021).
- Kelkar, A.D.; Whitcomb, J.D. Characterization and Structural Behavior of Braided Composites; U.S. Department of Transportation: Washington, DC, USA, 2009. [Google Scholar]
- Malhotra, A.; Guild, F.J. Impact Damage to Composite Laminates: Effect of Impact Location. Appl. Compos. Mater. 2014, 21, 165–177. [Google Scholar] [CrossRef]
- Metzner, C.; Gessler, A.; Weimer, C.; Beier, U.; Middendorf, P. Performance assessment on unidirectional braided CFRP materials. In Proceedings of the Low cost Composite Processing, from Aerospace OOA to Automotive Thermoplastics, Paris, France, 10–11 March 2014; SAMPE Europe: Paris, France, 2014. [Google Scholar]
- Han, J.-H.; Kim, C.-G. Low earth orbit space environment simulation and its effects on graphite/epoxy composites. Compos. Struct. 2006, 72, 218–226. [Google Scholar] [CrossRef]
- Klein, T.F.; Lesieutre, G.A. Space Environment Effects on Damping of Polymer Matrix Carbon Fiber Composites. J. Spacecr. Rocket. 2000, 37, 519–525. [Google Scholar] [CrossRef]
- George, P. Space environmental effects on LDEF low earth orbit exposed graphite reinforced polymer matrix composites. In Proceedings of the NASA, Langley Research Center, LDEF Materials Workshop 1991, Part 2, Washington, DC, USA, 19–22 November 1992; pp. 543–570. [Google Scholar]
- Çengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals & Applications, 5th ed.; McGraw Hill Education: New York, NY, USA, 2015; ISBN 978-0-07-339818-1. [Google Scholar]
- The Fiber_CompositesWorld.pdf. 2016. Available online: https://www.compositesworld.com/articles/the-fiber (accessed on 22 April 2021).
- Geng, G.; Ma, X.; Geng, H.; Wu, Y. Effect of Thermal Cycles on the Thermal Expansion Behavior of T700 Carbon Fiber Bundles. Chem. Res. Chin. Univ. 2018, 34, 451–456. [Google Scholar] [CrossRef]
- Shin, K.-B.; Kim, C.-G.; Hong, C.-S.; Lee, H.-H. Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments. Compos. Part B Eng. 2000, 31, 223–235. [Google Scholar] [CrossRef]
- Poenninger, A.; Defoort, B. (Eds.) Determination of the coefficient of moisture expansion (CME). In Proceedings of the 9th International Symposium on Materials in a Space Environment, Noordwijk, The Netherlands, 16–20 June 2003; ESA Publications Division: Brussels, Belgium, 2003; pp. 567–572. [Google Scholar]
- Bhat, B.N. (Ed.) Aerospace Materials and Applications; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2018; Volume 225. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- D2734; Standard Test Methods for Void Content of Reinforced Plastics. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- D792; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- D1505; Standard Test Method for Density of Plastics by the Density-Gradient Technique. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- E595; Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Flanagan, M.; Grogan, D.M.; Goggins, J.; Appel, S.; Doyle, K.; Leen, S.B.; Ó Brádaigh, C.M. Permeability of carbon fibre PEEK composites for cryogenic storage tanks of future space launchers. Compos. Part A Appl. Sci. Manuf. 2017, 101, 173–184. [Google Scholar] [CrossRef]
- Jeff Salon. Out-of-Autoclave Processing: <1% Void Content? 2015. Available online: https://www.compositesworld.com/articles/out-of-autoclave-processing-1-void-content (accessed on 7 July 2023).
- Ralph, R.R. Spacecraft Polymer Atomic Oxygen Durability Handbook; NASA Technical Handbook; NASA: Washington, DC, USA, 2014; p. 207.
- Wei, Z.; Weiping, L.; Huicong, L.; Liqun, Z. Erosion of a Polyimide Material Exposed to Simulated Atomic Oxygen Environment. Chin. J. Aeronaut. 2010, 23, 268–273. [Google Scholar] [CrossRef]
- Smith, C.T.G.; Delkowki, M.; Anguita, J.V.; Cox, D.C.; Haas, C.; Silva, S.R.P. Complete Atomic Oxygen and UV Protection for Polymer and Composite Materials in a Low Earth Orbit. ACS Appl. Mater. Interfaces 2021, 13, 6670–6677. [Google Scholar] [CrossRef]
- Skurat, V.E. Polymers in Space. In Chapter Material Technology of Book Encyclopedia of Aerospace Engineering; Blockley, R., Shyy, W., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 15 June 2012; ISBN 978-0-470-75440-5 978-0-470-68665-2. [Google Scholar] [CrossRef]
- Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Gokan, H.; Esho, S.; Ohnishi, Y. Dry Etch Resistance of Organic Materials. J. Electrochem. Soc. 1983, 130, 143. [Google Scholar] [CrossRef]
- Report—Investigation of the Challenger Accident 99-1016; US Government: Washington, DC, USA, 1986; p. 450.
- TA Instruments. Effect of Frequency on the Modulus and Glass Transition Temperature of PET; TS-62. Available online: http://www.tainst.com (accessed on 6 June 2023).
- Naresh, K.; Khan, K.A.; Umer, R.; Vasudevan, A. Temperature-Frequency–Dependent Viscoelastic Properties of Neat Epoxy and Fiber Reinforced Polymer Composites: Experimental Characterization and Theoretical Predictions. Polymers 2020, 12, 1700. [Google Scholar] [CrossRef] [PubMed]
- Esha; Hausmann, J. Development of an analytical model to predict storage modulus with four independent parameters. In Proceedings of the SAMPE Europe Conference 2021: Innovation towards Perfection, Baden, Switzerland, 29–30 September 2021; p. 8. [Google Scholar]
- Esha; Hausmann, J. Development of an analytical model to predict Stress-Strain curve of Short fiber reinforced Polymer with Six-independent Parameters. J. Compos. Sci. 2022, 6, 140. [Google Scholar] [CrossRef]
- Dupont. Kapton® HN polyimide Film. p4. Available online: electronics.dupont.com (accessed on 28 March 2022).
- Misri, Z.; Wan Ibrahim, M.H.; Abdulah, A.H.; Awal, A.S.M.; Shahidan, S.; Arshad, M.F.; Ramadhansyah, P.J. Dynamic Mechanical Analysis of Waste Polyethylene Terephthalate Bottle. Int. J. Integr. Eng. 2018, 10, 125–129. [Google Scholar] [CrossRef]
- CROW Poly(methyl methacrylate). Available online: https://polymerdatabase.com/polymers/polymethylmethacrylate.html (accessed on 28 March 2022).
- SubsTech. Thermoplastic Polytetrafluoroethylene (PTFE). Available online: http://substech.com/dokuwiki/doku.php?id=thermoplastic_polytetrafluoroethylene_ptfe (accessed on 29 March 2022).
- Jang, J.-H.; Hong, S.-B.; Kim, J.-G.; Goo, N.-S.; Yu, W.-R. Accelerated Testing Method for Predicting Long-Term Properties of Carbon Fiber-Reinforced Shape Memory Polymer Composites in a Low Earth Orbit Environment. Polymers 2021, 13, 1628. [Google Scholar] [CrossRef] [PubMed]
- Funk, J.G.; Sykes, G.F. The Effects of Simulated Space Environmental Parameters on Six Commercially Available Composite Materials. NASA 1989, 2906, 33. [Google Scholar]
- Timmerman, J.F.; Tillman, M.S.; Hayes, B.S.; Seferis, J.C. Matrix and fiber infuences on the cryogenic microcracking of carbon fiber/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 323–329. [Google Scholar] [CrossRef]
- Pang, J.W.C.; Bond, I.P. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 2005, 65, 1791–1799. [Google Scholar] [CrossRef]
- Maiti, S.; Geubelle, P.H. Cohesive modeling of fatigue crack retardation in polymers: Crack closure effect. Eng. Fract. Mech. 2006, 73, 22–41. [Google Scholar] [CrossRef]
- Ho, C.-T. Reactive Two-Part Polyurethane Compositions and Optionally Self-Healable and Scratch-Resistant Coatings Prepared Therefrom. US5798409A, 25 August 1998. [Google Scholar]
- Pernigoni, L.; Lafont, U.; Grande, A.M. Self-healing polymers for space: A study on autonomous repair performance and response to space radiation. Acta Astronaut. 2023, 210, 627–634. [Google Scholar] [CrossRef]
- Pernigoni, L.; Lafont, U.; Grande, A.M. Self-healing materials for space applications: Overview of present development and major limitations. CEAS Space J. 2021, 13, 341–352. [Google Scholar] [CrossRef]
- Miller, S.K.R.; Dever, J.A. MISSE 6 Polymer Film Tensile Experiment. In Proceedings of the 2010 National Space and Missile Materials Symposium (NSMMS), Scottsdale, AZ, USA, 28 June–1 July 2010. NASA/TM—2012-217688. [Google Scholar]
- Ampatzoglou, A.; Kostopoulos, V. Design, Analysis, Optimization, Manufacturing, and Testing of a 2U Cubesat. Int. J. Aerosp. Eng. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Stevens, C.L. Design, Analysis, Fabrication, and Testing of a Nanosatellite Structure. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2002. [Google Scholar]
- Zhang, D.; Heider, D.; Advani, S.G.; Gillespie, J.W. Out of Autoclave Consolidation of Voids in Continuous Fiber Reinforced Thermoplastic Composites. In Proceedings of the SAMPE 2013, Long Beach, CA, USA, 6–9 May 2013. [Google Scholar] [CrossRef]
- Tompkins, S.S. Effects of Thermal Cycling on Composite Materials for Space Structures; NASA: Washington, DC, USA, 1989.
- Murray, J.J.; Robert, C.; Gleich, K.; McCarthy, E.D.; Ó Brádaigh, C.M. Manufacturing of unidirectional stitched glass fabric reinforced polyamide 6 by thermoplastic resin transfer moulding. Mater. Des. 2020, 189, 108512. [Google Scholar] [CrossRef]
- Fernandez, J.M.; Viquerat, A.; Lappas, V.J.; Daton-Lovett, A.J. Bistable Over the Whole Length (BOWL) CFRP Booms for Solar Sails. In Advances in Solar Sailing; Macdonald, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 609–628. ISBN 978-3-642-34906-5. [Google Scholar]
- Torres, J.J.; Simmons, M.; Sket, F.; González, C. An analysis of void formation mechanisms in out-of-autoclave prepregs by means of X-ray computed tomography. Compos. Part A Appl. Sci. Manuf. 2019, 117, 230–242. [Google Scholar] [CrossRef]
- Kay, J.; Fahrang, L.; Hsiao, K.; Fernlund, G. Effect of Process Conditions on Porosity in Out-of Autoclave Prepreg Laminates. In Proceedings of the 18th International Conference on Composite Materials, Jeju, Korea, 21–26 August 2011; p. 5. [Google Scholar]
- Massey, L.K. Permeability Properties of Plastics and Elastomers: A Guide to Packaging and Barrier Materials, 2nd ed.; Plastics Design Library/William Andrew Pub: Norwich, NY, USA, 2003; ISBN 978-1-884207-97-6. [Google Scholar]
- Windform 3D Printed Satellite OreSat0 with 3D Printed Parts and Subsystems. Windform Materials. Available online: https://www.windform.com/case-studies/3d-printed-satellite-oresat0-3d-printed-parts-subsystems/ (accessed on 4 July 2023).
- ECSS Secretariat Space Engineering: Structural Finite Element Models; ESA-ESTEC: Noordwijk, The Netherlands, 2008.
- Han, J.H.; Kim, C.G. LEO Space Environment Simulation. Korea-Japan Joint Symposium on Composite Materials. 2003, pp. 103–105. Available online: http://hdl.handle.net/10203/5904 (accessed on 7 December 2021).
- Inseto. Technical Datasheet of Plasma Asher PE75 Plasma Etch. Available online: https://www.inseto.co.uk/equipment/plasma-cleaning-and-etching-by-plasma-etch/benchtop-plasma-cleaners-and-etchers/plasma-asher-plasma-cleaner-pe-75/ (accessed on 7 April 2022).
- ESA ESTEC; TEC-Q. Brochure ESA Materials and Electrical Component Laboratory; European Space Agency: Paris, France; Available online: https://escies.org/download/webDocumentFile?id=64450 (accessed on 11 October 2022).
- Tighe, A. Atomic Oxygen Testing in the ESTEC Materials and Electrical Components Laboratory; ESA-ESTEC: Noordwijk, The Netherlands, 2019; ESA-TECQE-AO-013375; p. 13. [Google Scholar]
- Finkenor, M.M.; Edwards, D.L.; Vaughn, J.A.; Hovater, M.A.; Hoppe, D.T. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center; NASA: Washington, DC, USA, 2002.
- Tennyson, R.C. Atomic oxygen effects on polymer-based materials. Can. J. Phys. 1991, 69, 1190–1208. [Google Scholar] [CrossRef]
- Nesterin, I.M.; Pichhadze, K.M.; Sysoev, V.K.; Finchenko, V.S.; Firsyuk, S.O.; Yudin, A.D. Proposal for Creating a Device for Deorbiting Low-Earth-Orbit CubeSats. Sol. Syst. Res. 2018, 52, 606–612. [Google Scholar] [CrossRef]
- Moser, M.; Hoidn, W.; Delouard, P.; Tvaruzka, A.; Loche, M.; Lafont, U. Versatile Thermal Insulation for Cryogenic Upper Stages. In Proceedings of the 46th International Conference on Environmental Systems ICES-2016, Vienna, Austria, 10–14 July 2016; Volume 119, p. 11. [Google Scholar]
- Marcy, J.L.; Shalanski, A.C.; Yarmuch, M.A.R.; Patchett, B.M. Material Choices for Mars. J. Mater. Eng. Perform. 2004, 13, 208–217. [Google Scholar] [CrossRef]
- Ishizawa, J.; Baba, N.; Neesch, M.; Minami, S.; Imagawa, Y.; Kurosaki, T.; Maejima, H.; Kojima, Y. Validation on Thermal Cycle Degradation of ADEOS-II Power Supply Harness. In Jaxa Special Publication: Proceedings of the First Spacecraft Environmental Symposium; Japan Aerospace Exploration Agency: Tokyo, Japan, 31 March 2005; Volume 4, pp. 100–106. [Google Scholar]
- K, Y. Windform® Would be the Appropriate Composite Materials for Harsh Applications. 3D ADEPT MEDIA. 2018. Available online: https://3dadept.com/windform-would-be-the-appropriate-composite-materials-for-harsh-applications/ (accessed on 18 March 2022).
- Windform. Windform RS and LX 3.0 Officially Approved for Space Flight. Windform Materials. Available online: https://www.windform.com/news/windorm-rs-lx30-passed-outgassing-tests-esa-specification/ (accessed on 4 July 2023).
- NASA Structure, Mechanism and Material. Available online: https://www.nasa.gov/smallsat-institute/sst-soa/structures-materials-and-mechanisms/ (accessed on 7 December 2021).
- Stevenson, T.; Lightsey, G. Design and Characterization of a 3D-Printed Attitude Control Thruster for an Interplanetary 6U CubeSat; DigitalCommons: Logan, UT, USA, 2016. [Google Scholar]
- 3D System. Accura Bluestone 2020. Available online: https://www.3dsystems.com/materials/accura-bluestone (accessed on 8 January 2023).
- PTFE and High-Radiation Environments: 5 Important Facts. Available online: https://www.tstar.com/blog/ptfe-and-high-radiation-environments-5-important-facts (accessed on 7 July 2023).
Polymer | Erosion Yield by Simulated Testing Ey × 10−24 cm3/Atom [69] | Erosion Yield by In-Space Testing Eyx ×10−24 cm3/Atom [66] | Chemical Formula of Monomer | γ | β |
---|---|---|---|---|---|
PEEK | 2.2 | 2.99 | C19H12O3 | 2.1 | 1.8 |
Kapton 1 | 3.0 | 3 | C22H10O5N2 | 2.3 | 1.8 |
Polyethylene | 3.2 | >3.7 | CH2-CH2 | 3 | 3 |
PET | 3.9 | 3.01 | C10H8O4 | 3.7 | 2.2 |
Polyamide 66 | 4.4 | 1.8 | C12H22O2N2 | 3.8 | 3.2 |
PMMA | 4.8 | >5.6 | C5H8O2 | 5 | 3 |
FEP | 0.2 | C5F10 | 3 | 3 | |
PTFE | 0.14 | C2F4 | 3 | 3 | |
PEO | 5.7 | 1.93 | C2H4O | 2.2 | 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esha; Hausmann, J. Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers. J. Compos. Sci. 2023, 7, 515. https://doi.org/10.3390/jcs7120515
Esha, Hausmann J. Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers. Journal of Composites Science. 2023; 7(12):515. https://doi.org/10.3390/jcs7120515
Chicago/Turabian StyleEsha, and Joachim Hausmann. 2023. "Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers" Journal of Composites Science 7, no. 12: 515. https://doi.org/10.3390/jcs7120515
APA StyleEsha, & Hausmann, J. (2023). Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers. Journal of Composites Science, 7(12), 515. https://doi.org/10.3390/jcs7120515