Progressive Fatigue Modelling of Open-Hole Glass-Fibre Epoxy Laminates
Abstract
:1. Introduction
2. Model Description
- Microscopic matrix cracking
- Microscopic fibre failure
- Intra-laminar matrix cracking
- Inter-laminar matrix cracking
- Macroscopic fibre failure
2.1. Continuum Damage Mechanics
- Fibre failure (FF):
- Matrix failure (MF):
- No failure: In the case of exposure factors below 0.8, no reduction in the material properties is applied:
- Fibre failure only: In the case of fibre failure, both the fibre and matrix properties are degraded equally.In the case of partial failure:In the case of full failure:
- Matrix failure only: In the case of matrix failure, the matrix-dominated properties are degraded down to 10% of their initial values, but the fibre-dominated properties are only degraded to an empirical value of 60%:In the case of partial failure:In the case of full failure:
- Mixed failure: In the case where both the fibres and the matrix are damaged, and are calculated independently, as previously, and the minimum material properties resulting from the fibre and the matrix failures are taken.
2.2. Cohesive Failure Model
2.3. Cycle-Jump Numerical Procedure
3. Experiments and FEA Model Assessment
3.1. Experimental Setup
3.2. FEA Implementation
3.2.1. Mesh Description
3.2.2. Numerical Implementation
3.2.3. Material Properties
4. Results and Discussion
4.1. Model Behaviour
- Along the segment [AB], in the width of the specimen,
- Along the segment [AC], along the split band.
- The number and location of the conducted loading steps and cycle jumps are predefined. The cycle-jump scheme is not able to reproduce a very sharp drop in stiffness because the jumps between the loading steps are too big for the fast degradation and the damage cannot propagate faster than the damage process zone during each cycle jump. This is a compromise between computation time and fidelity in the final failure description.
- For the sake of numerical stability, the stiffness in the failed elements is reduced to 10% of the initial values. The residual stiffness in these elements is obviously not insignificant and a part of the load will still be carried by this region. This artificial effect is particularly pronounced when a large part of the cross-section has developed damage.
4.2. Numerical Fatigue Life
4.3. Split Growth
4.3.1. Numerical Prediction of the Split Length
4.3.2. Influence of the Split on the Predicted Fatigue Life
4.4. Delamination
5. Conclusions
- A set of matrix strength and fibre-dominated S-N curve parameters were calibrated on a first cyclic fatigue experiment at one given load level. After this step, the model was able to describe the fatigue life at other load levels with good agreement: the S-N curve slopes obtained were −0.11 experimentally and −0.10 numerically. It was able to reproduce the S-N curve slope successfully.
- The smeared CDM and the simplistic softening law used for matrix damage make it challenging to reproduce the gradual stiffness degradation with high fidelity. The stiffness drop at an early stage in the model was more sudden than gradual. However, the amount of stiffness loss at catastrophic failure agreed well with the value observed experimentally.
- The description of the split growth during the first stage of the lifetime was satisfying, but the FEA was not able to reproduce the fast split growth at the last stage of the lifetime. This might be due to the simplified softening law and the remaining stiffness in the failed elements. This remaining stiffness was required to achieve convergence but maintained an artificial load bearing capacity in the plies, reducing the shear solicitation on the split band.
- The inter-laminar delamination was described with high fidelity above the split. The interaction between the split and the delamination is well-reproduced by the two cohesive layers inserted in the FEA. However, the smeared CDM modelling of the transverse matrix cracks in the ply fails to capture the delamination induced by those cracks. This leads to a significant underestimation of the delamination extent and growth along the lifetime.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDM | Continuum Damage Mechanics |
CZM | Cohesive Zone Model/Cohesive Zone Modelling |
DCB | Double Cantilever Beam |
DIC | Digital Image Correlation |
FE | Finite Element |
FEA | Finite Element Analysis |
FF | Fibre Failure |
GFRP | Glass Fibre Reinforced Polymer |
MF | Matrix Failure |
MMB | Mixed-Mode Bending |
MPC | Multi-Point Constraint |
PFM | Progressive Fatigue Model |
SDV | State-Dependent Variable (Abaqus) |
SDVINI | State-Dependent Variable Initialisation (Abaqus subroutine) |
UMAT | User Material (Abaqus subroutine) |
References
- Degrieck, J.; Paepegem, W.V. Fatigue damage modelling of fibre-reinforced composite materials: Review. Appl. Mech. Rev. 2001, 54, 279–300. [Google Scholar] [CrossRef]
- DNVGL. ST-C501 Composite Components; Technical Report; DNV: Høvik, Norway, 2017. [Google Scholar]
- Basquin, O.H. The exponential law of endurance tests. Proc. Am. Soc. Test Mater. 1910, 10, 625–630. [Google Scholar]
- Adam, T.; Gathercole, N.; Reiter, H.; Harris, B. Fatigue Life Prediction for Carbon Fibre Composites. Adv. Compos. Lett. 1992, 1, 096369359200100. [Google Scholar] [CrossRef]
- Palmgren, A.G. Die Lebensdauer von Kugellagern (Life Length of Roller Bearings or Durability of Ball Bearings). Z. Des Vereines Dtsch. Ingenieure 1924, 14, 339–341. [Google Scholar]
- Miner, M.A. Cumulative Damage in Fatigue. J. Appl. Mech. 1945, 12, A159–A164. [Google Scholar] [CrossRef]
- Vassilopoulos, A.P.; Maier, J.; Pinter, G.; Gaier, C. Computational tools for the fatigue life modeling and prediction of composite materials and structures. In Fatigue Life Prediction of Composites and Composite Structures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 635–680. [Google Scholar] [CrossRef]
- Brunbauer, J.; Gaier, C.; Pinter, G. Computational fatigue life prediction of continuously fibre reinforced multiaxial composites. Compos. Part B Eng. 2015, 80, 269–277. [Google Scholar] [CrossRef]
- Gaier, C.; Fischmeister, S.; Maier, J.; Pinter, G. Fatigue Analysis of Continuously Carbon Fiber Reinforced Laminates. SAE Int. J. Engines 2017, 10, 305–315. [Google Scholar] [CrossRef]
- Hashin, Z. Cumulative damage theory for composite materials: Residual life and residual strength methods. Compos. Sci. Technol. 1985, 23, 1–19. [Google Scholar] [CrossRef]
- Adam, T.; Dickson, R.; Femando, G.; Harris, B.; Reiter, H. The Fatigue Behaviour of Kevlar/Carbon Hybrid Composites. Proc. Imeche Conf. Publ. 1986, 2, 329–335. [Google Scholar]
- Adam, T.; Dickson, R.F.; Jones, C.J.; Reiter, H.; Harris, B. A Power Law Fatigue Damage Model for Fibre-Reinforced Plastic Laminates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1986, 200, 155–166. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Lessard, L.B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—I. Modelling. Int. J. Fatigue 1997, 19, 201–207. [Google Scholar] [CrossRef]
- Whitworth, H. Evaluation of the residual strength degradation in composite laminates under fatigue loading. Compos. Struct. 2000, 48, 261–264. [Google Scholar] [CrossRef]
- Maimí, P.; Camanho, P.; Mayugo, J.; Dávila, C. A continuum damage model for composite laminates: Part I—Constitutive model. Mech. Mater. 2007, 39, 897–908. [Google Scholar] [CrossRef]
- Maimí, P.; Camanho, P.; Mayugo, J.; Dávila, C. A continuum damage model for composite laminates: Part II—Computational implementation and validation. Mech. Mater. 2007, 39, 909–919. [Google Scholar] [CrossRef]
- Herman, M.; Leon-Dufour, J.L.; Peters, P.; Laurin, F.; Turon, A.; Arteiro, A.; Kaminski, M.; Fagiano, C. Evaluation of Advanced Approaches Based on Continuum Damage Mechanics for Composite Failure Analysis: Status and Way Forward; Technical Report; Airbus Operations: Blagnac, France, 2022. [Google Scholar]
- Travesa, A.T. Simulation of Delamination in Composites under Quasi-Static and Fatigue Loading Using Cohesive Zone Models; Universitat de Girona: Girona, Spain, 2006. [Google Scholar]
- Turon, A.; González, E.; Sarrado, C.; Guillamet, G.; Maimí, P. Accurate simulation of delamination under mixed-mode loading using a cohesive model with a mode-dependent penalty stiffness. Compos. Struct. 2018, 184, 506–511. [Google Scholar] [CrossRef]
- Wysmulski, P. Numerical and Experimental Study of Crack Propagation in the Tensile Composite Plate with the Open Hole. Adv. Sci. Technol. Res. J. 2023, 17, 249–261. [Google Scholar] [CrossRef]
- Wysmulski, P. Failure Mechanism of Tensile CFRP Composite Plates with Variable Hole Diameter. Materials 2023, 16, 4714. [Google Scholar] [CrossRef]
- Schapery, R. Nonlinear viscoelastic solids. Int. J. Solids Struct. 2000, 37, 359–366. [Google Scholar] [CrossRef]
- Leone, F.A.; Bergan, A.C.; Dávila, C.G. CompDam—Deformation Gradient Decomposition (DGD), v2.5.0. 2019. Available online: https://github.com/nasa/CompDam_DGD (accessed on 1 November 2023).
- Nguyen, M.H.; Waas, A.M. Detailed experimental and numerical investigation of single-edge notched tensile cross-ply laminates. Compos. Struct. 2022, 279, 114731. [Google Scholar] [CrossRef]
- Turon, A.; Costa, J.; Camanho, P.P.; Maimí, P. Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite Materials. In Computational Methods in Applied Sciences; Springer: Dordrecht, The Netherlands, 2008; pp. 77–97. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Waas, A.M. Efficient and Validated Framework for Probabilistic Progressive Failure Analysis of Composite Laminates. AIAA J. 2022, 60, 5500–5520. [Google Scholar] [CrossRef]
- Yashiro, S.; Okabe, T. Numerical Prediction of Fatigue Damage Progress in Holed CFRP Laminates Using Cohesive Elements. J. Solid Mech. Mater. Eng. 2009, 3, 1212–1221. [Google Scholar] [CrossRef]
- Perillo, G.; Vedivik, N.; Echtermeyer, A. Damage development in stitch bonded GFRP composite plates under low velocity impact: Experimental and numerical results. J. Compos. Mater. 2014, 49, 601–615. [Google Scholar] [CrossRef]
- Perillo, G.; Vedivik, N.; Echtermeyer, A. Numerical and experimental investigation of impact on filament wound glass reinforced epoxy pipe. J. Compos. Mater. 2014, 49, 723–738. [Google Scholar] [CrossRef]
- McElroy, M.; Leone, F.; Ratcliffe, J.; Czabaj, M.; Yuan, F. Simulation of delamination–migration and core crushing in a CFRP sandwich structure. Compos. Part A Appl. Sci. Manuf. 2015, 79, 192–202. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Lessard, L.B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—II. Experimental evaluation. Int. J. Fatigue 1997, 19, 209–217. [Google Scholar] [CrossRef]
- Koch, I.; Zscheyge, M.; Tittmann, K.; Gude, M. Numerical fatigue analysis of CFRP components. Compos. Struct. 2017, 168, 392–401. [Google Scholar] [CrossRef]
- Van Paepegem, W.; Degrieck, J. A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites. Int. J. Fatigue 2002, 24, 747–762. [Google Scholar] [CrossRef]
- Samareh-Mousavi, S.S.; Mandegarian, S.; Taheri-Behrooz, F. A nonlinear FE analysis to model progressive fatigue damage of cross-ply laminates under pin-loaded conditions. Int. J. Fatigue 2019, 119, 290–301. [Google Scholar] [CrossRef]
- Hashin, Z. A Reinterpretation of the Palmgren-Miner Rule for Fatigue Life Prediction. J. Appl. Mech. 1980, 47, 324–328. [Google Scholar] [CrossRef]
- Pfanner, D. Zur Degradation von Stahlbetonbauteilen unterErmüdungsbeanspruchung. Ph.D. Thesis, Institut für Stahlbeton-undSpannbetonbau, Ruhr-Universität Bochum, Germany, 2003. [Google Scholar]
- Gerendt, C.; Dean, A.; Mahrholz, T.; Rolfes, R. On the progressive failure simulation and experimental validation of fiber metal laminate bolted joints. Compos. Struct. 2019, 229, 111368. [Google Scholar] [CrossRef]
- Gerendt, C.; Dean, A.; Mahrholz, T.; Englisch, N.; Krause, S.; Rolfes, R. On the progressive fatigue failure of mechanical composite joints: Numerical simulation and experimental validation. Compos. Struct. 2020, 248, 112488. [Google Scholar] [CrossRef]
- Gerendt, C.; Hematipour, M.; Englisch, N.; Scheffler, S.; Rolfes, R. A finite element-based continuum damage model for mechanical joints in fiber metal laminates under static and fatigue loading. Compos. Struct. 2023, 312, 116797. [Google Scholar] [CrossRef]
- Ha, D.; Kim, T.; Kim, J.H.; Joo, Y.S.; Yun, G. Fatigue life prediction of CFRP laminates with stress concentration lamina level failure criteria. Adv. Compos. Mater. 2022, 32, 792–812. [Google Scholar] [CrossRef]
- Ha, D.; Kim, J.H.; Kim, T.; Joo, Y.S.; Yun, G.J. Multiscale fatigue damage model for CFRP laminates considering the effect of progressive interface debonding. Mech. Adv. Mater. Struct. 2022, 1–13. [Google Scholar] [CrossRef]
- Kolasangiani, K.; Oguamanam, D.; Bougherara, H. Strain-controlled fatigue life prediction of Flax-epoxy laminates using a progressive fatigue damage model. Compos. Struct. 2021, 266, 113797. [Google Scholar] [CrossRef]
- Llobet, J.; Maimí, P.; Essa, Y.; de la Escalera, F.M. A continuum damage model for composite laminates: Part III—Fatigue. Mech. Mater. 2021, 153, 103659. [Google Scholar] [CrossRef]
- Llobet, J.; Maimí, P.; Turon, A.; Bak, B.; Lindgaard, E.; Carreras, L.; Essa, Y.; de la Escalera, F.M. A continuum damage model for composite laminates: Part IV—Experimental and numerical tests. Mech. Mater. 2021, 154, 103686. [Google Scholar] [CrossRef]
- Joki, R.; Grytten, F.; Hayman, B.; Sørensen, B. A mixed mode cohesive model for FRP laminates incorporating large scale bridging behaviour. Eng. Fract. Mech. 2020, 239, 107274. [Google Scholar] [CrossRef]
- Ghabezi, P.; Farahani, M. Characterization of cohesive model and bridging laws in mode I and II fracture in nano composite laminates. J. Mech. Eng. Sci. 2018, 12, 4329–4355. [Google Scholar] [CrossRef]
- Ghabezi, P.; Farahani, M. Effects of Nanoparticles on Nanocomposites Mode I and II Fracture: A Critical Review. 2018. Prog. Adhes. Adhes. 2018, 3, 391–411. [Google Scholar] [CrossRef]
- Dávila, C.G.; Rose, C.A.; Murri, G.B.; Jackson, W.C.; Johnston, W.M. Evaluation of Fatigue Damage Accumulation Functions for Delamination Initiation and Propagation; Technical Report; NASA—National Aeronautics and Space Administration: Washington, DC, USA, 2020.
- Dávila, C.G.; Joosten, M.W. A cohesive fatigue model for composite delamination based on a new material characterization procedure for the Paris law. Eng. Fract. Mech. 2023, 284, 109232. [Google Scholar] [CrossRef]
- Harper, P.W.; Hallett, S.R. A fatigue degradation law for cohesive interface elements–development and application to composite materials. Int. J. Fatigue 2010, 32, 1774–1787. [Google Scholar] [CrossRef]
- Ladevèze, P. A damage computational method for composite structures. Comput. Struct. 1992, 44, 79–87. [Google Scholar] [CrossRef]
- Ladevèze, P.; Ledantec, E. Damage modelling of the elementary ply for laminated composites. Compos. Sci. Technol. 1992, 43, 257–267. [Google Scholar] [CrossRef]
- Aoki, R.; Higuchi, R.; Yokozeki, T. Fatigue simulation for progressive damage in CFRP laminates using intra-laminar and inter-laminar fatigue damage models. Int. J. Fatigue 2021, 143, 106015. [Google Scholar] [CrossRef]
- Hugaas, E.; Vedvik, N.P.; Echtermeyer, A.T. Progressive Fatigue Failure Analysis of a Filament Wound Ring Specimen with a Hole. J. Compos. Sci. 2021, 5, 251. [Google Scholar] [CrossRef]
- Diel, S.; Huber, O. A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites. Materials 2017, 10, 951. [Google Scholar] [CrossRef]
- Puck, A.; Deuschle, H.M. Progress in the puck failure theory for fibre reinforced composites: Analytical solutions for 3D-stress. Compos. Sci. Technol. 2002, 62, 371–378. [Google Scholar] [CrossRef]
- Davila, C.G.; Camanho, P.P.; Rose, C.A. Failure Criteria for FRP Laminates. J. Compos. Mater. 2005, 39, 323–345. [Google Scholar] [CrossRef]
- Benzeggagh, M.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Kenane, M.; Benzeggagh, M. Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading. Compos. Sci. Technol. 1997, 57, 597–605. [Google Scholar] [CrossRef]
- Leidermark, D.; Simonsson, K. Procedures for handling computationally heavy cyclic load cases with application to a disc alloy material. Mater. High Temp. 2019, 36, 447–458. [Google Scholar] [CrossRef]
- ASTM D7615/D7615M; Open-Hole Fatigue Response of Polymer Matrix Composite Laminates. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D5766/D5766M; Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates. ASTM International: West Conshohocken, PA, USA, 2002.
- Durão, L.M.P.; Matos, J.E.; Loureiro, N.C.; Esteves, J.L.; Fernandes, S.C.F. Damage Propagation by Cyclic Loading in Drilled Carbon/Epoxy Plates. Materials 2023, 16, 2688. [Google Scholar] [CrossRef] [PubMed]
- Leone, F.A.; Davila, C.G.; Mabson, G.E.; Ramnath, M.; Hyder, I. Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Turon, A.; Dávila, C.; Camanho, P.; Costa, J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007, 74, 1665–1682. [Google Scholar] [CrossRef]
- Perillo, G. Numerical and Experimental Investigation of Impact Behaviour of GFRP Composites. Ph.D. Thesis, NTNU—Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Gagani, A.I.; Monsås, A.B.; Krauklis, A.E.; Echtermeyer, A.T. The effect of temperature and water immersion on the interlaminar shear fatigue of glass fiber epoxy composites using the I-beam method. Compos. Sci. Technol. 2019, 181, 107703. [Google Scholar] [CrossRef]
- Gibhardt, D.; Buggisch, C.; Blume-Werry, L.; Fiedler, B. Influence of Sizing Aging on the Strength and Fatigue Life of Composites Using a New Test Method and Tailored Fiber Pre-Treatment: A Comprehensive Analysis. J. Compos. Sci. 2023, 7, 139. [Google Scholar] [CrossRef]
- Dutton, A.G.; Bonnet, P.A.; Hogg, P.; Lleong, Y.L. Novel materials and modelling for large wind turbine blades. Proc. Inst. Mech. Eng. Part A J. Power Energy 2010, 224, 203–210. [Google Scholar] [CrossRef]
- Boisseau, A.; Davies, P.; Thiebaud, F. Fatigue Behaviour of Glass Fibre Reinforced Composites for Ocean Energy Conversion Systems. Appl. Compos. Mater. 2012, 20, 145–155. [Google Scholar] [CrossRef]
- Wisnom, M. Size effects in the testing of fibre-composite materials. Compos. Sci. Technol. 1999, 59, 1937–1957. [Google Scholar] [CrossRef]
- Carraro, P.A.; Maragoni, L.; Quaresimin, M. Characterisation and analysis of transverse crack-induced delamination in cross-ply composite laminates under fatigue loadings. Int. J. Fatigue 2019, 129, 105217. [Google Scholar] [CrossRef]
- Maragoni, L.; Carraro, P.A.; Simonetto, M.; Quaresimin, M. A novel method to include crack-induced delamination in a fatigue damage predictive procedure for composite laminates. Compos. Sci. Technol. 2023, 238, 110011. [Google Scholar] [CrossRef]
Specimen | Load [kN] | Frequency [Hz] | Fatigue Life [Cycles] |
---|---|---|---|
1 | 22 | 1.85 | Runout 2M |
2 | 26 | 1.54 | 1,060,822 |
3 | 28 | 1.43 | 441,030 |
4 | 30 | 1.33 | 374,169 |
5 | 30 | 1.33 | 205,428 |
6 | 30 | 1.33 | 332,648 |
7 | 32 | 1.25 | 114,051 |
8 | 32 | 1.25 | 169,506 |
9 | 34 | 1.18 | 28,627 |
Property | Units | Values | References |
---|---|---|---|
Ply elastic properties 1,2,3 | |||
GPa | 44.870 | [28] | |
GPa | 12.130 | [28] | |
GPa | 3.380 | [28] | |
GPa | 4.043 | Estimated | |
- | 0.3 | [28] | |
- | 0.5 | Assumed | |
Intra-laminar strength 3,4 | |||
MPa | 1006.30 | [28] | |
MPa | 487.00 | [28] | |
MPa | 45.95 | [28] | |
MPa | 131.9 | [28] | |
MPa | 49.51 | [28] | |
Intra-laminar fatigue properties 1,2,3,4 | |||
MPa | 1006.30 | Assumed | |
MPa | 487.00 | Assumed | |
- | 0.1 | Assumed | |
MPa | 45.95 | Assumed | |
MPa | 131.9 | Assumed | |
- | 0.054 | [67] | |
MPa | 49.51 | Assumed | |
- | 0.054 | [67] | |
Inter-laminar properties | |||
MPa | 45.95 | [28] | |
MPa | 49.51 | [28] | |
N/mm | 0.98 | [28] | |
N/mm | 3.71 | [28] | |
- | 1.40 | Assumed | |
GPa | 12.130 | [28] | |
GPa | 3.720 | [19,48] | |
CF20 CZM parameters | |||
- | 0.44 | Estimated | |
- | [48] | ||
- | 0.95 | [48] | |
p | - | 0.0 | [48] |
Model-fitting parameters | |||
- | 2.0 | Calibrated | |
- | 2.2 | Calibrated |
Property | Unit | Description | Initial Value | Calibrated Value |
---|---|---|---|---|
MPa | SN curve intercept 1 | 1006.30 | ||
MPa | SN curve intercepts 2 | 45.95 | ||
MPa | SN curve intercepts 2 | 131.9 | ||
MPa | SN curve intercepts 3 | 49.51 | ||
MPa | Transverse strength 4 | 45.95 | ||
MPa | Transverse strength 4 | 131.9 | ||
MPa | Shear strengths 3 | 49.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maneval, V.; Vedvik, N.-P.; Echtermeyer, A.T. Progressive Fatigue Modelling of Open-Hole Glass-Fibre Epoxy Laminates. J. Compos. Sci. 2023, 7, 516. https://doi.org/10.3390/jcs7120516
Maneval V, Vedvik N-P, Echtermeyer AT. Progressive Fatigue Modelling of Open-Hole Glass-Fibre Epoxy Laminates. Journal of Composites Science. 2023; 7(12):516. https://doi.org/10.3390/jcs7120516
Chicago/Turabian StyleManeval, Victor, Nils-Petter Vedvik, and Andreas T. Echtermeyer. 2023. "Progressive Fatigue Modelling of Open-Hole Glass-Fibre Epoxy Laminates" Journal of Composites Science 7, no. 12: 516. https://doi.org/10.3390/jcs7120516
APA StyleManeval, V., Vedvik, N. -P., & Echtermeyer, A. T. (2023). Progressive Fatigue Modelling of Open-Hole Glass-Fibre Epoxy Laminates. Journal of Composites Science, 7(12), 516. https://doi.org/10.3390/jcs7120516