Effect of Doping on Phase Formation in YBCO Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.1.1. Initial Green Components
2.1.2. Sample Preparation
2.1.3. Preliminarily Mechanical Activation
2.1.4. Chemical Doping
2.2. Methods of Research and Analysis
3. Results and Discussion
3.1. Pure (Undoped) Sample
3.2. Samples Doped with Aluminum
- Mass changes (TG): There was some decrease in sample mass with increasing temperature. This may be due to the processes of desorption or decomposition of some components in the YBCO structure.
- Differential thermal analysis (DTA): During the heating of the sample, peaks of 920–960 °C of endothermic reactions were detected. This may indicate phase transitions or chemical reactions occurring in the material.
- Changes with doping: Comparison of results with undoped and aluminum doped YBCO samples showed significant differences in the TG-DTA curves. This confirms that aluminum doping affects the thermal behavior of the material due to its good reactivity. Consequently, it might be able to speed up the chemical reaction of the whole mixture. Pure samples have higher energy activation values than aluminum doped samples. This means that pure samples require much more energy to initiate a chemical reaction process.
3.3. Samples Doped with Iron Microparticles
3.4. Samples Doped with Nickel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antipov, E.V.; Abakumov, A.M. Structural design of superconductors based on complex copper oxides. UFN 2008, 178, 190–202. [Google Scholar]
- Blatter, G.; Fogelman, M.V.; Geshkenbein, V.B. Vortices in high temperature superconductors. Rev. Mod. Phys. 1994, 66, 1125–1380. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.; Wimbush, S. Future Directions for Cuprate Conductors. IEEE Trans Appl. Supercond. 2011, 21, 2495–2500. [Google Scholar] [CrossRef]
- Sahoo, B.; Routray, K.L.; Mirdha, G.C.; Karmakar, S.; Singh, A.K.; Samal, D.; Behera, D. Investigation of microhardness and superconducting parameters of CNTs blended YBCO superconductor. Ceram Int. 2019, 45, 22055–22066. [Google Scholar] [CrossRef]
- Hamideh, S.; Hosseini, S.S.; Ghotb, S.S.; Sichani, B.H.; Sepideh, P. Magnetic doping effects on the superconductivity of Y1-xMxBa2Cu3O7-δ (M = Fe Co, Ni). Ceram Int. 2021, 47, 10635–10642. [Google Scholar]
- Alotaibi, S.A.; Slimani, Y.; Hannachi, E.; Almessiere, M.E.; Yasin, G.; Al-Qwairi, F.O.; Iqbal, M.; Ben Azzouz, F. Intergranular properties of polycrystalline YBa2Cu3O7−δ superconductor added with nanoparticles of WO3 and BaTiO3 as artificial pinning centers. Ceram Int. 2021, 47, 34260–34268. [Google Scholar] [CrossRef]
- Huhtinen, H.; Awana, V.P.; Gupta, A.; Kishan, H.; Laiho, R.; Narlikar, A.V. Pinning centers and enhancement of critical current density in YBCO doped with Pr, Ca, and Ni. Supercond. Sci. Technol. 2007, 20, 159–166. [Google Scholar] [CrossRef]
- Volokhova, D.; Piovarchi, S.; Hospodowska, M.; Antal, V.; Kovacs, J.; Jurek, K.; Yirsa, M.; Diko, P. YBCO bulk superconductors doped with gadolinium and samarium. Phys. C Supercond. 2013, 494, 36–40. [Google Scholar] [CrossRef]
- Tolendiuly, S.; Alipbayev, K.; Fomenko, S.; Sovet, A.; Zhauyt, A. Properties of high-temperature superconductors (HTS) and synthesis technology. Metalurgija 2021, 60, 137–140. [Google Scholar]
- Rao, C.N.R.; Nagarajan, R.; Vijayaraghavan, R. Synthesis of Cuprate Superconductors. Supercond. Sci. Technol. 1993, 6, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Li, M.; Sun, B.; Qi, Y.; Zhang, Y.; Yang, H.; Li, M.; Sun, B.; Qi, Y. Improvement of multiple oxide properties: Effect of gel processes on the quality of Bi2Sr2CaCu2O8+δ superconducting powders. Cryst. Eng. Comm. 2010, 12, 3046. [Google Scholar] [CrossRef]
- Keyson, D.; Longo, E.; Vasconcelos, J.S.; Varela, J.A.; Éber, S.; Der Maderosian, A. Synthesis, and ceramics processing by domestic microwave oven. Cerâmica 2006, 52, 50–56. [Google Scholar] [CrossRef]
- Tolendiuly, S.; Fomenko, S.M.; Abdulkarimova, R.G.; Akishev, A. Synthesis and superconducting properties of the MgB2@BaO composites. Inorg. Nano-Met. Chem. 2020, 50, 349–353. [Google Scholar] [CrossRef]
Name | Doping Element |
---|---|
YBa2Cu3O7−x (Y123) | 0% |
Y123@Al0.1 | Al (0.1%) |
Y123@Al0.3 | Al (0.3%) |
Y123@Al0.5 | Al (0.5%) |
Y123@Al0.7 | Al (0.7%) |
Y123@Al1 | Al (1%) |
Y123@Ni0.1 | Ni (0.1%) |
Y123@Ni0.3 | Ni (0.3%) |
Y123@Ni0.5 | Ni (0.5%) |
Y123@Ni0.7 | Ni (0.7%) |
Y123@Ni1 | Ni (1%) |
Y123@Fe0.1 | Fe (0.1%) |
Y123@Fe0.3 | Fe (0.3%) |
Y123@Fe0.5 | Fe (0.5%) |
Y123@Fe0.7 | Fe (0.7%) |
Y123@Fe1 | Fe (1%) |
No. | Phase Name | Content, wt% |
---|---|---|
1 | Yba2Cu3O7.03 (Y123) | 87.6 |
2 | Y2BaCuO5 | 5.3 |
3 | CuO | 7.1 |
Phase Name | Content [wt%] | |||||
---|---|---|---|---|---|---|
Y123@Al0.1 | Y123@Al0.3 | Y123@Al0.5 | Y123@Al0.7 | Y123@Al1 | Y123@Al1.3 | |
YBa2Cu3O7.34 | 36.1 | 59.2 | 69.2 | 89.4 | 80.5 | 40.4 |
Y2BaCuO5 | 16.0 | 14.2 | 11.2 | 10.4 | 10.4 | 11.9 |
CuO | 22.1 | 12.9 | 10.6 | 0.2 | - | 20.3 |
BaCO3 | 14.6 | 2.5 | 1.2 | - | - | 15.7 |
Y2Cu2O5 | 11.2 | 5.8 | 4.6 | - | 9.2 | 11.7 |
Phase Name | Content [wt%] | ||||
---|---|---|---|---|---|
Y123@Fe0.1 | Y123@Fe0.3 | Y123@Fe0.5 | Y123@Fe0.7 | Y123@Fe1 | |
YBa2Cu3O7.34 | 72.3 | 75.2 | 60.0 | 24.8 | 12.4 |
Y2BaCuO5 | 15.3 | 14.1 | 18.8 | 29.8 | 21.9 |
CuO | 12.4 | 10.7 | 16.4 | 24.9 | 24.5 |
Phase Name | Content [wt%] | ||||
---|---|---|---|---|---|
Y123@Ni0.1 | Y123@Ni0.3 | Y123@Ni0.5 | Y123@Ni0.7 | Y123@Ni1 | |
YBa2Cu3O7.34 | 74.0 | 72.2 | 74.7 | 68.3 | 65.9 |
Y2BaCuO5 | 14.5 | 17.1 | 14.8 | 18.7 | 17.8 |
CuO | 11.5 | 10.7 | 10.6 | 13.0 | 14.2 |
BaCO3 | - | - | - | - | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolendiuly, S.; Sovet, A.; Fomenko, S. Effect of Doping on Phase Formation in YBCO Composites. J. Compos. Sci. 2023, 7, 517. https://doi.org/10.3390/jcs7120517
Tolendiuly S, Sovet A, Fomenko S. Effect of Doping on Phase Formation in YBCO Composites. Journal of Composites Science. 2023; 7(12):517. https://doi.org/10.3390/jcs7120517
Chicago/Turabian StyleTolendiuly, Sanat, Aigerim Sovet, and Sergey Fomenko. 2023. "Effect of Doping on Phase Formation in YBCO Composites" Journal of Composites Science 7, no. 12: 517. https://doi.org/10.3390/jcs7120517
APA StyleTolendiuly, S., Sovet, A., & Fomenko, S. (2023). Effect of Doping on Phase Formation in YBCO Composites. Journal of Composites Science, 7(12), 517. https://doi.org/10.3390/jcs7120517