Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review
Abstract
:1. Introduction
Method | Advantages | Disadvantages |
---|---|---|
Physico-chemical methods | ||
Membrane filtration | High removal capacity. | Sludge generation. |
Requires less physical space. | High cost. | |
Low generation of solid wastes. | Specific range of pH. | |
Good performance at lower pressure and high rejection rate. | Membrane fouling. | |
Bacteria easily damage the filter. | ||
Performance depends on the material composition and pore size of the filters. | ||
Multi-component pollutants lead to low flow rates and bad performance. | ||
Coagulation/flocculation | Settling of solutions requires less time. | Sludge generation, high chemical consumption. |
Higher capacity for dewatering. | High cost because of the need to clean the generated sludge. | |
Low cost. | ||
Solvent extraction | Rapid recovery of metal. | Need for specific solvents. |
Short duration. | High cost. | |
Ion exchange | Good removal efficiency, achieves high selection. | Chromium ions removal is problematic due to multi-components in soil. |
Less production of sludge and relatively low emissions. | Chemical reagents used in regeneration process generate secondary pollutants. | |
Rapid procedures and regeneration options. | Solids foul the resin. | |
High-cost investment required to remove low concentration metal from wastewater. | ||
Chemical precipitation | Simple and safe design and operation. | Generation of toxic sludge derived from the chemicals used for the precipitation. |
Low energy consumption, low cost. | Massive generation of sludge that exceeds the disposal standards. | |
Adsorption | Simple design. | Regeneration of adsorbate from the adsorbent. |
Good performance. | Activation and modification of the materials has a high cost. | |
Regeneration and recyclability options. | Disposal problems for loaded absorbents. | |
Low sensitivity to high concentration of chromium. | ||
Effective removal of low concentrations. | ||
Zero-cost and low-cost precursor. | ||
Electro-chemical methods | ||
Electrocoagulation | Simple method capable of treating chromium co-existing with other pollutants. | Electrode requirements, unorganized design. |
Electrode corrosion problems, high cost. | ||
Requirement of electricity for large scale application. | ||
Electrochemical reduction | Low cost, no need for reagents, effective with high capacity. | High cost related to the type of electrode and its characteristics. |
Need for further separation of Cr(III). | ||
Electrosorption | High specific surface area with mesopores and micropores increasing the removal of chromium ions. | The structure of electrical double-layer superimposed within the electrode affects the adsorption performance for chromium. |
Minimum energy consumption, low cost. | ||
Regeneration options. | ||
Operates at low pressure and within small space. | ||
Electrodialysis | Low energy consumption, low cost. | Limitation associated with electrode costs and maintenance costs of membrane. |
Biological methods | ||
Biosorption and bioaccumulation | High chromium concentrations poison live microbes. | |
Green technology. | Media requirements. | |
Various types of biomass can be used. | Fluctuating performance. | |
Complex mechanisms. | ||
Biosorbent regeneration requires chemical usage. | ||
Biosorbent loaded with chromium. | ||
Advanced methods | ||
Nanotechnology | Various functional nanomaterials available with excellent removal rates. | Residual effects of nanoparticles after application in the environment. |
Small generation of waste and specific chromium removal. |
2. Biochar for Arsenic (As) Removal
2.1. Sorption Studies of Biochar Derived from Rice by-Products for As Remediation
2.1.1. Fe-Coated Rice Husk Biochar
2.1.2. Rice Husk Biochar (RH)
2.1.3. Rice Husk Biochar (BC-RH)
2.1.4. Ca- and Fe-Modified Biochars
2.1.5. Fe (III)-Modified Rice Straw Biochar (RS)
2.1.6. Red-Mud-Modified Biochar (RM-BC)
2.1.7. Fe and Cu Biochar Composites
2.1.8. Al- and/or Mg-Oxide-Modified Magnetic Biochar Adsorbents
2.1.9. MnO2/Rice Husk Biochar
2.1.10. Fe–Al Bimetallic Oxide/Biochar
2.2. Discussion
2.3. Improved As Adsorption Capacity of Biochar
3. Biochar for Chromium (Cr(VI)) Removal
3.1. Biochar for the Remediation of Soil Cr Pollution
3.2. Biochar for Remediation of Cr Polluted Water
3.3. Modification of Biochar for Improved Cr Adsorption Efficiency
3.3.1. Physical Activation of Biochars for Improving Cr Adsorption
3.3.2. Sonication of Biochars for Improving Cr Adsorption
3.3.3. Chemical Modification of Biochars for Improving Cr Adsorption
Biochar Magnetization
Biochar Supported Reductant Materials
Enrichment of Active Functional Groups on Biochar Surfaces
Nanocomposites of Biochar Matrix
Heteroatom Dopants Incorporation
Acid and Alkali Treatment of Biochars
3.3.4. Activation of Biochars by Microorganisms and Their Metabolites
3.4. Mechanisms of Cr Adsorption
3.5. Biochar Regeneration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasool, A.; Xiao, T.; Farooqi, A.; Shafeeque, M.; Liu, Y.; Kamran, M.A.; Katsoyiannis, I.A.; Eqani, S.A.M.A.S. Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environ. Geochem. Health 2017, 39, 847–863. [Google Scholar] [CrossRef] [PubMed]
- Katsoyiannis, I.A.; Mitrakas, M.; Zouboulis, A. Arsenic occurrence in Europe: Emphasis in Greece and description of the applied full-scale treatment plants. Desalination Water Treat. 2015, 54, 2100–2107. [Google Scholar] [CrossRef]
- Kaprara, E.; Kazakis, N.; Simeonidis, K.; Coles, S.; Zouboulis, A.; Samaras, P.; Mitrakas, M. Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background. J. Hazard. Mater. 2015, 281, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef] [PubMed]
- Laskaridis, A.; Sarakatsianos, I.; Tzollas, N.; Katsoyiannis, I. Simultaneous Removal of Arsenate and Chromate from Ground- and Surface- Waters by Iron-Based Redox Assisted Coagulation. Sustainability 2020, 12, 5394. [Google Scholar] [CrossRef]
- Flora, S.J.S. Handbook of Arsenic Toxicology; Academic Press: Oxford, UK, 2015; pp. 1–49. [Google Scholar]
- ATSDR. Agency for Toxic Substances and Disease Registry Justification of Appropriation Estimates for Appropriations Committees Fiscal Year 2021; Agency for Toxic Substances and Disease Registry (ATSDR), Department of Health and Human Services: Atlanta, GA, USA, 2020. Available online: https://stacks.cdc.gov/view/cdc/109265 (accessed on 6 November 2022).
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- The Council of the European Union. Council Directive 98/83/on EC of 3 November 1998 the Quality of Water Intended for Human Consumption; Cambridge University Press: Cambridge, UK, 2010; pp. 32–54. [Google Scholar]
- Pal, P. Groundwater Arsenic Remediation: Treatment Technology and Scale Up. Elsevier: Oxford, UK, 2015. [Google Scholar]
- Choppala, G.; Kunhikrishnan, A.; Seshadri, B.; Park, J.H.; Bush, R.; Bolan, N. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J. Geochem. Explor. 2018, 184, 255–260. [Google Scholar] [CrossRef]
- Enya, O.; Lin, C.; Qin, J. Heavy metal contamination status in soil-plant system in the Upper Mersey Estuarine Floodplain, Northwest England. Mar. Pollut. Bull. 2019, 146, 292–304. [Google Scholar] [CrossRef]
- EPA, U. Chromium compounds: Hazard summary. Natl. Cent. Environ. Assess. 1973, 639–700. [Google Scholar]
- WHO. World Health Organization European Standards for Drinking-Water. Am. J. Med. Sci. 1970, 242, 56. [Google Scholar]
- Kumar, R.; Patel, M.; Singh, P.; Bundschuh, J.; Pittman, C.U., Jr.; Trakal, L.; Mohan, D. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Sci. Total Environ. 2019, 694, 133427. [Google Scholar] [CrossRef]
- Baskan, M.B.; Pala, A. Removal of arsenic from drinking water using modified natural zeolite. Desalination 2011, 281, 396–403. [Google Scholar] [CrossRef]
- Losev, V.N.; Didukh-Shadrina, S.L.; Orobyeva, A.S.; Metelitsa, S.I.; Borodina, E.V.; Ondar, U.V.; Nesterenko, P.N.; Maznyak, N.V. A new method for highly efficient separation and determination of arsenic species in natural water using silica modified with polyamines. Anal. Chim. Acta 2021, 1178, 338824. [Google Scholar] [CrossRef]
- Jacobson, A.T.; Fan, M. Evaluation of natural goethite on the removal of arsenate and selenite from water. J. Environ. Sci. 2019, 76, 133–141. [Google Scholar] [CrossRef]
- Sø, H.U.; Postma, D.; Jakobsen, R.; Larsen, F. Sorption and desorption of arsenate and arsenite on calcite. Geochim. Et Cosmochim. Acta 2008, 72, 5871–5884. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Y.; Wu, X.; Wang, H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 2009, 172, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Liu, Z.; Shi, Z. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J. Environ. Health Sci. Eng. 2014, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, M.B.; Niazi, N.K.; Bibi, I.; Murtaza, G.; Kunhikrishnan, A.; Seshadri, B.; Shahid, M.; Ali, S.; Bolan, N.S.; Ok, Y.S.; et al. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit. Rev. Environ. Sci. Technol. 2016, 46, 467–499. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Xu, L.; Buyong, F.; Chay, T.C.; Li, Z.; Cai, Y.; Hu, B.; Zhu, Y.; Wang, X. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Res. 2022, 1, 8. [Google Scholar] [CrossRef]
- Andjelkovic, I.; Jovic, B.; Jovic, M.; Markovic, M.; Stankovic, D.; Manojlovic, D.; Roglic, G. Microwave-hydrothermal method for the synthesis of composite materials for removal of arsenic from water. Environ. Sci. Pollut. Res. 2015, 23, 469–476. [Google Scholar] [CrossRef]
- Khan, S.A.; Imteaz, M.A. Batch experiments on arsenic removal efficiencies through adsorption using synthetic and natural sand samples. Int. J. Environ. Sci. Technol. 2021, 18, 2357–2364. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Katsoyiannis, I.A.; Zouboulis, A.I. Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments. Appl. Sci. 2020, 10, 3241. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Kyzas, G.Z.; Katsoyiannis, I.A. Arsenic(III) and Arsenic(V) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments. Sustainability 2022, 14, 5222. [Google Scholar] [CrossRef]
- Koutzaris, S.; Xanthopoulou, M.; Laskaridis, A.; Katsoyiannis, I.A. H2O2-Enhanced As(III) Removal from Natural Waters by Fe(III) Coagulation at Neutral pH Values and Comparison with the Conventional Fe(II)-H2O2 Fenton Process. Sustainability 2022, 14, 16306. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Beiyuan, J.; Gupta, S.; Hou, D.; Karakoti, A.; Joseph, S.; Jung, S.; Kim, K.-H.; Kirkham, M.; et al. Multifunctional applications of biochar beyond carbon storage. Int. Mater. Rev. 2022, 67, 150–200. [Google Scholar] [CrossRef]
- Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 2018, 207, 255–266. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Trikalioti, S.; Makrogianni, O.; Xanthopoulou, M.; Deliyanni, E.A.; Katsoyiannis, I.A.; Kyzas, G.Z. Chromium(VI) Removal from Water by Lanthanum Hybrid Modified Activated Carbon Produced from Coconut Shells. Nanomaterials 2022, 12, 1067. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Vaclavikova, M.; Gallios, G.P. Impregnated Activated Carbons with Binary Oxides of Iron-Manganese for Efficient Cr(VI) Removal from Water. Water Air Soil Pollut. 2022, 233, 343. [Google Scholar] [CrossRef]
- Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2020, 312, 123614. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Song, K.; Lv, W. Potential of biochar derived from three biomass wastes as an electrode catalyzing oxygen reduction reaction. Environ. Pollut. Bioavailab. 2022, 34, 42–50. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Alam, S.; Chen, N.; Alessi, D.S.; Igalavithana, A.D.; Tsang, D.C.; Ok, Y.S. Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. Sci. Total Environ. 2018, 625, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, P.; Qiu, F.; Zhang, T.; Xu, J. The Application of Eco-Friendly Fe-Al Bimetallic Oxide/Biochar Adsorbent Composites with Waste Rice Husk for Removal of Arsenic at Low Concentration. J. Inorg. Organomet. Polym. Mater. 2022, 32, 122–133. [Google Scholar] [CrossRef]
- Lee, J.; Sarmah, A.K.; Kwon, E.E. Production and Formation of Biochar. In Biochar from Biomass and Waste; Ok, Y.S., Tsang, D.C.W., Bolan, N., Novak, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–18. [Google Scholar] [CrossRef]
- Vithanage, M.; Herath, I.; Joseph, S.; Bundschuh, J.; Bolan, N.; Ok, Y.S.; Kirkham, M.; Rinklebe, J. Interaction of arsenic with biochar in soil and water: A critical review. Carbon 2017, 113, 219–230. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, N.; Liu, D.; Xu, J.; Sha, J.; Yin, J.; Tan, X.; Yang, H.; Lu, H.; Lin, H. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 2017, 128, 618–625. [Google Scholar] [CrossRef]
- Shinogi, Y.; Kanri, Y. Pyrolysis of plant, animal and human waste; physical and chemical characterization of pyrolytic products. Bioresour. Technol. 2003, 90, 241–247. [Google Scholar] [CrossRef]
- Samsuri, A.W.; Sadegh-Zadeh, F.; Seh-Bardan, B.J. Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. J. Environ. Chem. Eng. 2013, 1, 981–988. [Google Scholar] [CrossRef]
- Abu Sari, N.; Ishak, C.F.; Abu Bakar, R. Characterization of Oil Palm Empty Fruit Bunch and Rice Husk Biochars and Their Potential to Adsorb Arsenic and Cadmium. Am. J. Agric. Biol. Sci. 2014, 9, 450–456. [Google Scholar] [CrossRef]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manag. 2014, 133, 309–314. [Google Scholar] [CrossRef]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. J. Environ. Manag. 2014, 146, 444–450. [Google Scholar] [CrossRef]
- Pan, J.-J.; Jiang, J.; Qian, W.; Xu, R.-K. Arsenate Adsorption from Aqueous Solution onto Fe(III)-Modified Crop Straw Biochars. Environ. Eng. Sci. 2015, 32, 922–929. [Google Scholar] [CrossRef]
- Wu, C.; Huang, L.; Xue, S.-G.; Huang, Y.-Y.; Hartley, W.; Cui, M.-Q.; Wong, M.-H. Arsenic sorption by red mud-modified biochar produced from rice straw. Environ. Sci. Pollut. Res. 2017, 24, 18168–18178. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshni, N.; Nath, P.; Nagahanumaiah; Chanda, N. Sustainable removal of arsenate, arsenite and bacterial contamination from water using biochar stabilized iron and copper oxide nanoparticles and associated mechanism of the remediation process. J. Water Process Eng. 2020, 37, 101495. [Google Scholar] [CrossRef]
- Shen, Z.; Jin, J.; Fu, J.; Yang, M.; Li, F. Anchoring Al- and/or Mg-oxides to magnetic biochars for Co-uptake of arsenate and fluoride from water. J. Environ. Manag. 2021, 293, 112898. [Google Scholar] [CrossRef] [PubMed]
- Cuong, D.V.; Wu, P.-C.; Chen, L.-I.; Hou, C.-H. Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Res. 2021, 188, 116495. [Google Scholar] [CrossRef] [PubMed]
- Benis, K.Z.; Damuchali, A.M.; Soltan, J.; McPhedran, K.N. Treatment of aqueous arsenic—A review of biochar modification methods. Sci. Total Environ. 2020, 739, 139750. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cho, Y.; Vithanage, M.; Shaheen, S.M.; Rinklebe, J.; Alessi, D.S.; Hou, C.-H.; Hashimoto, Y.; Withana, P.A.; Ok, Y.S. Arsenic removal from water and soils using pristine and modified biochars. Biochar 2022, 4, 55. [Google Scholar] [CrossRef]
- Jian, X.; Li, S.; Feng, Y.; Chen, X.; Kuang, R.; Li, B.; Sun, Y. Influence of Synthesis Methods on the High-Efficiency Removal of Cr(VI) from Aqueous Solution by Fe-Modified Magnetic Biochars. ACS Omega 2020, 5, 31234–31243. [Google Scholar] [CrossRef]
- An, Q.; Li, X.-Q.; Nan, H.-Y.; Yu, Y.; Jiang, J.-N. The potential adsorption mechanism of the biochars with different modification processes to Cr(VI). Environ. Sci. Pollut. Res. 2018, 25, 31346–31357. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, M.-H.; Hur, J.; Lee, Y.H.; Igalavithana, A.D.; Shaheen, S.M.; Ryu, C.; Rinklebe, J.; Tsang, D.C.; Ok, Y.S. Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. Sci. Total Environ. 2020, 698, 134112. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, S.; Laird, D.A.; Wang, X.; Meng, Z. Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems. Chemosphere 2019, 218, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-L.; Li, F.; Xie, X.J.; Li, Z.; Chen, L. Nanoscale Zero-Valent Iron and Chitosan Functionalized Eichhornia crassipes Biochar for Efficient Hexavalent Chromium Removal. Int. J. Environ. Res. Public Health 2019, 16, 3046. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Sarkar, B.; Bolan, N.; Ok, Y.S.; Naidu, R. Enhancement of chromate reduction in soils by surface modified biochar. J. Environ. Manag. 2017, 186, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Ambika, S.; Kumar, M.; Pisharody, L.; Malhotra, M.; Kumar, G.; Sreedharan, V.; Singh, L.; Nidheesh, P.; Bhatnagar, A. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects. Chem. Eng. J. 2022, 439, 135716. [Google Scholar] [CrossRef]
- Wang, B.; Gao, B.; Fang, J. Recent advances in engineered biochar productions and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2158–2207. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Sun, Y.; Yu, I.K.M.; Tsang, D.C.W.; Hou, D.; Gupta, J.; Bhaskar, T.; Pandey, A. Critical Review on Biochar-Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. Adv. Sustain. Syst. 2020, 4, 1900149. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, Z.; Si, M.; Zhu, F.; Yang, W.; Zhao, F.; Shi, Y. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species. J. Hazard. Mater. 2021, 407, 124376. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Wu, Y.; Yin, X.-A.; Zhang, G. Effects of surface-modified biochars and activated carbon on the transformation of soil inorganic nitrogen and growth of maize under chromium stress. Chemosphere 2019, 227, 124–132. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, W.-J.; Zhang, N.; Li, Y.-S.; Jiang, H.; Sheng, G.-P. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour. Technol. 2014, 169, 403–408. [Google Scholar] [CrossRef]
- Nguyen, Q.A.; Kim, B.; Chung, H.Y.; Nguyen, A.Q.K.; Kim, J.; Kim, K. Reductive transformation of hexavalent chromium by ferrous ions in a frozen environment: Mechanism, kinetics, and environmental implications. Ecotoxicol. Environ. Saf. 2021, 208, 111735. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Qiao, K.; Tian, W.; Bai, J.; Zhao, J.; Du, Z.; Song, T.; Chu, M.; Wang, L.; Xie, W. Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ. Technol. Innov. 2020, 19, 100907. [Google Scholar] [CrossRef]
- Wu, H.; Wei, W.; Xu, C.; Meng, Y.; Bai, W.; Yang, W.; Lin, A. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI). Ecotoxicol. Environ. Saf. 2020, 188, 109902. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Yadav, K.K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M.M.; Rezania, S.; Radwan, N.; Alam, J. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. J. Environ. Manag. 2021, 285, 112174. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Zhitkovich, A. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef]
- Dong, X.; Ma, L.Q.; Li, Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 2011, 190, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, V.; Das, P. Synthesis of nano-silica-coated biochar from thermal conversion of sawdust and its application for Cr removal: Kinetic modelling using linear and nonlinear method and modelling using artificial neural network analysis. Biomass Convers. Biorefinery 2020, 13, 821–831. [Google Scholar] [CrossRef]
- Tian, X.; Liu, M.; Iqbal, K.; Ye, W.; Chang, Y. Facile synthesis of nitrogen-doped carbon coated Fe3O4/Pd nanoparticles as a high-performance catalyst for Cr (VI) reduction. J. Alloys Compd. 2020, 826, 154059. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Theologou, E.; Bompoti, N.; Dermatas, D.; Panagiotakis, I. Occurrence, Origin and Transformation Processes of Geogenic Chromium in Soils and Sediments. Curr. Pollut. Rep. 2016, 2, 224–235. [Google Scholar] [CrossRef]
- Frick, H.; Tardif, S.; Kandeler, E.; Holm, P.E.; Brandt, K.K. Assessment of biochar and zero-valent iron for in-situ remediation of chromated copper arsenate contaminated soil. Sci. Total Environ. 2019, 655, 414–422. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Mohamed, A.K.; Salam, M.A. Self-decoration of N-doped graphene oxide 3-D hydrogel onto magnetic shrimp shell biochar for enhanced removal of hexavalent chromium. J. Hazard. Mater. 2020, 408, 124951. [Google Scholar] [CrossRef]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Ye, X.; Yang, X.; Li, T.; Zhao, S.; Zhang, Q. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotoxicol. Environ. Saf. 2015, 113, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Kaewsichan, L.; Tohdee, K. Adsorption of hexavalent chromium onto alkali-modified biochar derived from Lepironia articulata: A kinetic, equilibrium, and thermodynamic study. Water Environ. Res. 2019, 91, 1433–1446. [Google Scholar] [CrossRef]
- Maharlouei, Z.D.; Fekri, M.; Mahmoodabadi, M.; Saljooqi, A.; Hejazi, M. Chromium desorption kinetics influenced by the rice husk and almond soft husk modified biochar in a calcareous soil. Arab. J. Geosci. 2021, 14, 38. [Google Scholar] [CrossRef]
- Shan, R.; Shi, Y.; Gu, J.; Bi, J.; Yuan, H.; Luo, B.; Chen, Y. Aqueous Cr(VI) removal by biochar derived from waste mangosteen shells: Role of pyrolysis and modification on its absorption process. J. Environ. Chem. Eng. 2020, 8, 103885. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.; Xu, C.; Liu, P.; Lv, J.; Liu, Y.; Wang, Q. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study. J. Hazard. Mater. 2020, 384, 121371. [Google Scholar] [CrossRef]
- Batool, S.; Idrees, M.; Al-Wabel, M.I.; Ahmad, M.; Hina, K.; Ullah, H.; Cui, L.; Hussain, Q. Sorption of Cr(III) from aqueous media via naturally functionalized microporous biochar: Mechanistic study. Microchem. J. 2019, 144, 242–253. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, W.; Yin, Y.; Chen, Z.; Qiu, R.; Simonnot, M.-O.; Wang, X. Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies. Bioresour. Technol. 2018, 268, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Pap, S.; Bezanovic, V.; Radonic, J.; Babic, A.; Saric, S.; Adamovic, D.; Sekulic, M.T. Synthesis of highly-efficient functionalized biochars from fruit industry waste biomass for the removal of chromium and lead. J. Mol. Liq. 2018, 268, 315–325. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, T.; Ren, H.; Kruse, A.; Cui, R. Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresour. Technol. 2018, 247, 370–379. [Google Scholar] [CrossRef]
- Zhao, N.; Yin, Z.; Liu, F.; Zhang, M.; Lv, Y.; Hao, Z.; Pan, G.; Zhang, J. Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. Bioresour. Technol. 2018, 260, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Gupta, B.; Kumar, N.; Singh, R.; Varma, A.; Thakur, I.S. Synthesis of calcite-based bio-composite biochar for enhanced biosorption and detoxification of chromium Cr (VI) by Zhihengliuella sp. ISTPL4. Bioresour. Technol. 2020, 307, 123262. [Google Scholar] [CrossRef]
- Matern, K.; Mansfeldt, T. Chromium Release from a COPR-Contaminated Soil at Varying Water Content and Redox Conditions. J. Environ. Qual. 2016, 45, 1259–1267. [Google Scholar] [CrossRef]
- Xu, T.; Nan, F.; Jiang, X.; Tang, Y.; Zeng, Y.; Zhang, W.; Shi, B. Effect of soil pH on the transport, fractionation, and oxidation of chromium(III). Ecotoxicol. Environ. Saf. 2020, 195, 110459. [Google Scholar] [CrossRef]
- Pei, G.; Zhu, Y.; Wen, J.; Pei, Y.; Li, H. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil. Environ. Pollut. 2019, 256, 113407. [Google Scholar] [CrossRef]
- Liu, W.; Jin, L.; Xu, J.; Liu, J.; Li, Y.; Zhou, P.; Wang, C.; Dahlgren, R.A.; Wang, X. Insight into pH dependent Cr(VI) removal with magnetic Fe3S4. Chem. Eng. J. 2019, 359, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Jiang, J.; Xu, R. Adsorption of Cr(III) from acidic solutions by crop straw derived biochars. J. Environ. Sci. 2013, 25, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Bavaresco, J.; Fink, J.R.; Rodrigues, M.L.K.; Gianello, C.; Barrón, V.; Torrent, J. Chromium Displacement in Subtropical Soils Fertilized with Hydrolysed Leather: A Laboratory Study. Bull. Environ. Contam. Toxicol. 2016, 97, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Vo, A.T.; Nguyen, V.P.; Ouakouak, A.; Nieva, A.; Doma, J.B.T.; Tran, H.N.; Chao, H.-P. Efficient Removal of Cr(VI) from Water by Biochar and Activated Carbon Prepared through Hydrothermal Carbonization and Pyrolysis: Adsorption-Coupled Reduction Mechanism. Water 2019, 11, 1164. [Google Scholar] [CrossRef]
- Ghorbani-Khosrowshahi, S.; Behnajady, M.A. Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom heteracanthom. Int. J. Environ. Sci. Technol. 2016, 13, 1803–1814. [Google Scholar] [CrossRef]
- Ghiasi, B.; Niksokhan, M.H.; Mazdeh, A.M. Co-transport of chromium(VI) and bentonite colloidal particles in water-saturated porous media: Effect of colloid concentration, sand gradation, and flow velocity. J. Contam. Hydrol. 2020, 234, 103682. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.K.; Vankayala, R.; Kumar, L.U. Speciation of Chromium in Soil and Sludge in the Surrounding Tannery Region, Ranipet, Tamil Nadu. ISRN Toxicol. 2011, 2011, 697980. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A.; et al. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef]
- Kozyatnyk, I.; Yacout, D.M.; Van Caneghem, J.; Jansson, S. Comparative environmental assessment of end-of-life carbonaceous water treatment adsorbents. Bioresour. Technol. 2020, 302, 122866. [Google Scholar] [CrossRef]
Material | Adsorption Capacity, Qm (mg/g) | pH | Biochar Dose (g/L) | Initial Concentration (mg/L) | Reference |
---|---|---|---|---|---|
Commercial rice husk biochar | 19.3 As(III) 7.1 As(V) | 8 6 | 5 | 3–300 | [43] |
Fe-coated rice husk biochar | 31 As(III) 17 As(V) | 8 6 | 5 | 3–300 | [43] |
Rice husk biochar (RH) | 0.35 As(V) | 9.5 | 2 | 0–200 | [44] |
Rice husk biochar (BC-RH) | 0.00259 As(V) | 6.7–7 | 8 | 0.09 | [45] |
RH–Ca2+ biochar | 1 As(V) | 10.8 | 8 | 0.8 | [46] |
RH–Fe0 biochar | - | 7.4 7 | 16 16 | 0.8 | [46] |
RH–Fe3+ biochar | - | 2.4 6.8 | 1 16 | 0.8 | [46] |
Fe(III)-modified rice straw biochar (RS) | 27 As(V) | 5 | 1 | 0.0011–0.0127 | [47] |
Rice straw biochar | 0.552 As(V) 0.447 As(III) | 6 2 | 4 | 1–50 | [48] |
Red-mud-modified rice straw biochar (RM-BC) | 5.92 As(V) 0.52 As(III) | 6 2 | 4 | 1–50 | [48] |
Biochar–Fe/ Biochar–Cu (3:1) | 20.32 As(V) | 7 | 10 | 0.5–128 | [49] |
Magnetic biochar (mBC) | 4.59 As(V) | 5 | 2 | 1–100 | [50] |
Al-magnetic biochar | 15.75 As(V) | 5 | 2 | 1–100 | [50] |
Mg-magnetic biochar | 16.66 As(V) | 5 | 2 | 1–100 | [50] |
MgAl-magnetic biochar | 34.45 As(V) | 5 | 2 | 1–100 | [50] |
Rice husk biochar, BC | 0.14 As(III) 0.42 As(V) | 7 | 2 | 10 | [51] |
MnO2/rice husk biochar composite, MBC-100 | 1.88 As(III) 2.16 As(V) | 7 | 2 | 10 | [51] |
Fe–Al bimetallic oxide/biochar | 8.69 As(III) | 5.5 | - | 2.5–20 | [37] |
pH (1:2.5 H2O) | 10.24 |
EC (dS/m) | 2.90 |
Total carbon % | 7.78 |
Total nitrogen % | 0.23 |
Phosphorus % | 0.36 |
Potassium % | 0.72 |
Calcium % | 0.02 |
Magnesium % | 0.08 |
Arsenic (mg/g) | 0.55 |
Cadmium (mg/g) | 0.45 |
Surface area (m2/g) | 23.22 |
Micropore volume (cm3/g) | 0.009 |
Internal surface area (m2/g) | 1.41 |
Average pore diameter (nm) | 4.34 |
Initial As(V) Concentration (μg/L) | Modification | pH | Biochar | Maximum Removal % | Optimum Adsorbent Dose (g/L) |
---|---|---|---|---|---|
800 | 11.4% Ca or Fe | 10.8 | RH–Ca2+ | >95 | 8 |
7.4 | RH–Fe0 | 58 | 16 | ||
2.4 | RH–Fe3+ | >95 | 1 | ||
2.3% Fe | 7 | RH–Fe0 | 50 | 16 | |
6.8 | RH–Fe3+ | 72 | 16 | ||
90 | Unmodified biochar | 6.7–7 | RH | 25 | 8 |
Parameter (X) | Equation | r | p |
---|---|---|---|
Pyrolysis temperature (°C) | Y = 44.50 + 0.02X | 0.14 | <0.05 |
Pyrolysis residence time (min) | Y = 32.96 − 0.11X | −0.39 | NS |
Biochar pH | Y = −50.45 + 11.53X | 0.39 | <0.05 |
Biochar EC (dS/m) | Y = 18.02 + 0.05X | 0.41 | NS |
Biochar ash (%) | Y = 0.74 + 0.52X | 0.74 | <0.01 |
Biochar C (%) | Y = 21.42 + 0.85X | 0.46 | <0.05 |
Biochar Cr (%) | Y = 29.43 − 0.28X | −0.42 | <0.05 |
Biochar application rate (t/ha) | Y = 44.73 + 0.25X | 0.28 | <0.05 |
Soil pH | Y = −116.74 + 23.09X | 0.65 | <0.05 |
Soil organic C (%) | Y = −283.63 + 149.40X | 0.56 | NS |
Biomass | Production Condition | Modification Type | Pollutant | Maximum Removal | Points Of Interest | Author |
---|---|---|---|---|---|---|
Waste mangosteen shells | PT = 350, 700 °C; duration = 0.5 h, 1.5 h; SA = 1.64–1836.46 m2/g; TPV = 0.004–1.058 cm3/g | HCl, KOH and ZnCl2 | Cr(VI) | 212.6 mg/g at pH 2 | The physical/chemical characteristics of the tailored biochar was imitated by the electrostatic interaction, surface complexation, and ion exchange in the elimination of Cr(VI). | [85] |
Apple wood | PT = 700 °C; SA = 0.0921 m2/g; TPV = 0.00108 cm3/g; PS = 1.0487 nm | – | Cr(VI) | 0.10–7.71 mg/g at pH 2 | The electrostatic attraction, Cr(VI) reduction, Cr(III) complexation, and ion exchange were possible mechanisms involved in Cr(VI) removal. | [86] |
Beet tailing | PT = 300 °C; duration = 2 h; SA = 137 m2/g | - | Cr(VI) | 123 mg/g at pH 2 | Cr(VI) removal mechanisms included electrostatic attraction, reduction and complexation. | [75] |
Shrimp shell | SA = 398.1 m2/g | Heteroatom decoration | Cr(VI) | 350.42 mg/g | N2 active contribution in electrostatic attraction, pore filling and reduction mechanisms. | [81] |
Farmyard and poultry manure | PT = 450 °C; duration = 3 h; SA = 9.01, 10.23 m2/g; ash = 31.51, 27.21% | – | Cr(III) | 37.75 and 33.94 mg/g | Removal of Cr(III) was achieved through chemisorption. | [87] |
Tobacco petiole | PT = 300–700 °C; duration = 0.5 h SA = 0.42–7.51 m2/g; ash = 11.6% | – | Cr(VI) and Crtotal | 66.7% (Cr(VI)) and 21.1% (Crtotal) at pH 1. | Increase in pyrolytic temperature reduced Cr(VI) adsorption efficiency. | [88] |
Plum and apricot kernels | PT = 500 °C; duration = 1 h; SA = 146.6, 85.6 m2/g; TPV = 0.09, 0.14 cm3/g; PS = 12.23, 32.85 Å ash = 0.81, 1.12% | – | Cr(III) | >70% at pH 6 and 7 | High adsorption efficiency because of the surface complexation of surface functional groups (S-containing functional groups). | [89] |
Corn cobs | Hydrothermal treatment temperature = 300 °C; duration = 0.5 h | Polyethylene imine (PEI) | Cr(VI) | 33.663 mg/g | Improvement of adsorption of Cr(VI) up to 365%, compared with unmodified hydrochar. | [90] |
Corn straw | PT = 300, 500, 700 °C; duration = 2 h; SA = 5.09, 241.83, 417.83 m2/g; TPV = 0.0036, 0.1472, 0.2391 cm3/g; PS = 35.16, 3.76, 4.63 nm; ash = 0.44, 1.70, 2.56% | HNO3 activation | Cr(VI) | 33.33 mg/g at pH∼7 | EPFRs on biochars played a key role in reduction of Cr(VI) at neutral pH. | [91] |
Blooms of Enteromorpha prolifera | PT = 500 °C | Biochar magnetization | Cr(III), Cr(VI) | 18.24 mg/g, 11.13 mg/g | The beads could selectively adsorb chromium while their magnetic properties allowed them to be easily reclaimable. | [70] |
Rice husk | PT = 775 °C | Polyethylenimine | Cr(VI) | 435.7 mg/g at pH 2 | Modification significantly improved the adsorption performance for Cr(VI) removal. | [66] |
Willow residue | PT = 700 °C; duration = 2 h; SA = 100.6095 m2/g | Ball milling, nanoscale zero valent iron modification | Cr(VI) | 500 mg k/g at pH 6.14 | The increase in Cr(VI) removal by amendments contributed to the increase in the migration of NO3– –N from roots to shoots. | [65] |
Switch grass | PT = 425, 700 °C; duration = 60 s SA = 1.1 m2/g ash = 13.92% | KOH, by Zhihengliuella sp. ISTPL4 | Cr(VI) | 100% | Immobilized enzyme showed maximum adsorption efficiency. | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzimichailidou, S.; Xanthopoulou, M.; Tolkou, A.K.; Katsoyiannis, I.A. Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review. J. Compos. Sci. 2023, 7, 59. https://doi.org/10.3390/jcs7020059
Chatzimichailidou S, Xanthopoulou M, Tolkou AK, Katsoyiannis IA. Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review. Journal of Composites Science. 2023; 7(2):59. https://doi.org/10.3390/jcs7020059
Chicago/Turabian StyleChatzimichailidou, Stella, Maria Xanthopoulou, Athanasia K. Tolkou, and Ioannis A. Katsoyiannis. 2023. "Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review" Journal of Composites Science 7, no. 2: 59. https://doi.org/10.3390/jcs7020059
APA StyleChatzimichailidou, S., Xanthopoulou, M., Tolkou, A. K., & Katsoyiannis, I. A. (2023). Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review. Journal of Composites Science, 7(2), 59. https://doi.org/10.3390/jcs7020059