Fire Resistance of Phosphogypsum- and Hemp-Based Bio-Aggregate Composite with Variable Amount of Binder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gypsum-Based Binder and Hemp Shives as Bio-Aggregate
2.2. Mixture Composition
2.3. Testing Methods
3. Results
3.1. Physical and Mechanical Properties
3.2. Reaction to Fire
4. Discussion
5. Conclusions
- Increased amount of gypsum creates a dense BAC structure, which ensures the protection of separate hemp shives, leading to the general fire performance improvement. A char layer on high-gypsum-content BAC was formed which reduced the pHRR because of the limitation of mass and thermal transfer.
- The constituents and impurities present in PG attracted adsorbed moisture during conditioning before the test. Adsorbed water and gypsum dehydration during the test reduced heat release from the material structure. However, no significant improvement for samples with PG was detected.
- The total HRR was significantly affected by gypsum content in the BAC. THR reduction from 1.18 kJ/g to 0.05 kJ/g was achieved. BACs with a density of 400 kg/m3 and high gypsum content (300 kg/m3) reduced MAHRE by 58–64% compared with low-density BACs (200 kg/m3) with gypsum content of 100 kg/m3.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Väisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017, 149, 582–596. [Google Scholar] [CrossRef]
- Torres-Rivas, A.; Pozo, C.; Palumbo, M.; Ewertowska, A.; Jiménez, L.; Boer, D. Systematic combination of insulation biomaterials to enhance energy and environmental efficiency in buildings. Constr. Build. Mater. 2021, 267, 120973. [Google Scholar] [CrossRef]
- Guedri, A.; Yahya, K.; Hamdi, N.; Baeza-urrea, O.; Wagner, J. Properties Evaluation of Composite Materials Based on Gypsum Plaster and Posidonia Oceanica Fibers. Buildings 2023, 13, 177. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Xing, D.; Wang, H.; Wang, F.; Wang, X.M.; Wang, Q. Flammability, thermal stability, and mechanical properties of wood flour/polycarbonate/polyethylene bio-based composites. Ind. Crops Prod. 2021, 169, 113638. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Chen, Z.; Wang, J.; Song, W. Experimental study of the heat flux effect on combustion characteristics of commonly exterior thermal insulation materials. Procedia Eng. 2014, 84, 578–585. [Google Scholar]
- Vijay, P.V.; Gadde, K.T. Evaluation of Old and Historic Buildings Subjected to Fire. J. Archit. Eng. 2021, 27, 05021002. [Google Scholar] [CrossRef]
- Dorez, G.; Ferry, L.; Sonnier, R.; Taguet, A.; Lopez-Cuesta, J.-M.-M.M.; Lopez, J.-M.; Ferry, L.; Sonnier, R.; Lopez-Cuesta, J.-M.-M.M. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis 2014, 107, 323–331. [Google Scholar] [CrossRef]
- EUROCLASS SYSTEM. Available online: http://virtual.vtt.fi/virtual/innofirewood/stateoftheart/database/euroclass/euroclass.html (accessed on 30 April 2021).
- Östman, B.; Mikkola, E. European Classes for the Reaction to Fire Performance of Wood Products (except Floorings); Trätek Jstitutet För Träteknisk Forsknin: Stockholm, Sweden, 2004. [Google Scholar]
- Giancaspro, J.; Papakonstantinou, C.; Balaguru, P. Mechanical behavior of fire-resistant biocomposite. Compos. Part B Eng. 2009, 40, 206–211. [Google Scholar] [CrossRef]
- Dorez, G.; Taguet, A.; Ferry, L.; Lopez-Cuesta, J.M. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym. Degrad. Stab. 2013, 98, 87–95. [Google Scholar] [CrossRef]
- Cone Calorimetry—An Overview | ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/chemistry/cone-calorimetry (accessed on 18 August 2021).
- Why the Cone Calorimeter in Accordance with ISO 5660-1 Is a Lifesaver. Available online: https://ta-netzsch.com/why-the-cone-calorimeter-in-accordance-with-iso-5660-1-is-a-lifesaver (accessed on 30 April 2021).
- Rantuch, P.; Martinka, J.; Ház, A. The Evaluation of Torrefied Wood Using a Cone Calorimeter. Polymers 2021, 13, 1748. [Google Scholar] [CrossRef]
- Kremensas, A.; Vaitkus, S.; Vėjelis, S.; Członka, S.; Kairytė, A. Hemp shivs and corn-starch-based biocomposite boards for furniture industry: Improvement of water resistance and reaction to fire. Ind. Crops Prod. 2021, 166, 113477. [Google Scholar] [CrossRef]
- Yu, Y.; Hou, J.; Dong, Z.; Wang, C.; Lu, F.; Song, P. Evaluating the flammability performance of Portland cement-bonded particleboards with different cement–wood ratios using a cone calorimeter. J. Fire Sci. 2016, 34, 199–211. [Google Scholar] [CrossRef]
- McGraw, J.R.; Mowrer, F.W. Flammability and dehydration of painted gypsum wallboard subjected to fire heat fluxes. Fire Saf.Sci. 2000, 6, 1003–1014. [Google Scholar] [CrossRef] [Green Version]
- Singh, M. Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster. Cem. Concr. Res. 2003, 33, 1363–1369. [Google Scholar] [CrossRef]
- Singh, M. Role of phosphogypsum impurities on strength and microstructure of selenite plaster. Constr. Build. Mater. 2005, 19, 480–486. [Google Scholar] [CrossRef]
- Bumanis, G.; Zorica, J.; Bajare, D.; Korjakins, A. Technological properties of phosphogypsum binder obtained from fertilizer production waste. Energy Procedia 2018, 147, 301–308. [Google Scholar] [CrossRef]
- Tupciauskas, R.; Rizhikovs, J. Pre-treatment and Investigation of Wheat Straw and Hemp Shives for Binder-less Fibreboard Production. AGROFOR Int. J. 2020, 5, 80–87. [Google Scholar] [CrossRef]
- Brazdausks, P.; Tupciauskas, R.; Andzs, M.; Rizhikovs, J.; Puke, M.; Paze, A.; Meile, K.; Vedernikovs, N. Preliminary Study of the Biorefinery Concept to Obtain Furfural and Binder-less Panels from Hemp (Cannabis Sativa L.) Shives. Energy Procedia 2015, 72, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Bumanis, G.; Bajare, D. PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings. Environ. Clim. Technol. 2022, 26, 524–534. [Google Scholar] [CrossRef]
- Bumanis, G.; Irbe, I.; Sinka, M.; Bajare, D. Biodeterioration of Sustainable Hemp Shive Biocomposite Based on Gypsum and Phosphogypsum. J. Nat. Fibers 2021, 19, 10550–10563. [Google Scholar] [CrossRef]
- Kybartienė, N.; Nizevičienė, D.; Valančius, Z.; Vaickelionis, G. Influence of dehydration method on the morphology of hemihydrate gypsum crystals. Rev. Rom. Mater. Rom. J. Mater. 2018, 48, 154–161. [Google Scholar]
- Cánovas, C.R.; Macías, F.; Pérez-López, R.; Basallote, M.D.; Millán-Becerro, R. Valorization of wastes from the fertilizer industry: Current status and future trends. J. Clean. Prod. 2018, 174, 678–690. [Google Scholar] [CrossRef]
- Grabas, K.; Pawełczyk, A.; Stręk, W.; Szełęg, E.; Stręk, S. Study on the Properties of Waste Apatite Phosphogypsum as a Raw Material of Prospective Applications. Waste Biomass Valorization 2019, 10, 3143–3155. [Google Scholar] [CrossRef] [Green Version]
- Nizevičienė, D.; Vaičiukynienė, D.; Kielė, A.; Vaičiukynas, V. Mechanical Activation on Phosphogypsum: Hydrosodalite System. Waste Biomass Valorization 2018, 10, 3485–3491. [Google Scholar] [CrossRef]
- Kandare, E.; Luangtriratana, P.; Kandola, B.K. Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Compos. Part B Eng. 2014, 56, 602–610. [Google Scholar] [CrossRef] [Green Version]
- Wade, C.; Whiting, P.; Collier, P. Fire Properties of Wall and Ceiling Linings: Investigation of Fire Test Methods for Use in NZBC Compliance Documents; BRANZ: Judgeford, New Zealand, 2006; p. 160. [Google Scholar]
- Freivalde, L.; Kukle, S.; Andžs, M.; Bukšans, E.; Gravitis, J. Flammability of raw insulation materials made of hemp. Compos. Part B Eng. 2014, 67, 510–514. [Google Scholar] [CrossRef]
- Stevulova, N.; Cigasova, J.; Estokova, A.; Terpakova, E.; Geffert, A.; Kacik, F.; Singovszka, E.; Holub, M. Properties characterization of chemically modified hemp hurds. Materials 2014, 7, 8131–8150. [Google Scholar] [CrossRef]
- ACGIH. Documentation of the TLVs and BEIs with Other Worldwide Occupational Exposure Values, 7th ed.; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2007; ISBN 9781882417568. [Google Scholar]
- Williams, M. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th ed.; O’Neil, M.J., Ed.; Royal Society of Chemistry: Cambridge, UK, 2013; ISBN 9781849736701. [Google Scholar] [CrossRef]
- Fire Dynamics|NIST. Available online: https://www.nist.gov/el/fire-research-division-73300/firegov-fire-service/fire-dynamics (accessed on 30 April 2021).
Component | BG | PG |
---|---|---|
LOI 950 °C | 22.43 | 19.24 |
Na2O | 0.31 | 0.48 |
MgO | 3.92 | 0.21 |
Al2O3 | 1.68 | 0.71 |
SiO2 | 3.73 | 1.07 |
P2O5 | 0 | 0.57 |
SO3 | 30.9 | 37.38 |
CaO | 35.64 | 37.16 |
TiO2 | 0.05 | 0.11 |
Fe2O3 | 0.46 | 0.22 |
As2O3 | 0.07 | 0.09 |
SrO | 0.23 | 2.25 |
CeO2 | 0.01 | 0.24 |
TOTAL | 99.42 | 99.74 |
Composition | Component | |||||
---|---|---|---|---|---|---|
HS | BG | PG | Set Retarder | W | W/B | |
B1 | 120 | 100 | - | - | 180 | 1.90 |
B2 | 200 | - | - | 260 | 1.30 | |
B3 | 300 | - | - | 290 | 1.0 | |
P1 | - | 100 | 0.3 | 180 | 1.90 | |
P2 | - | 200 | 0.6 | 260 | 1.30 | |
P3 | - | 300 | 0.9 | 290 | 1.0 |
Mixture Composition | Density, kg/m3 | Compressive Strength, MPa | Thermal Conductivity, W/(m·K) | Adsorbed Moisture, % |
---|---|---|---|---|
B1 | 190 ± 10 | 0.11 ± 0.05 | 0.058 | 3.8 |
B2 | 300 ± 15 | 0.36 ± 0.05 | 0.070 | 3.6 |
B3 | 395 ± 15 | 0.57 ± 0.08 | 0.086 | 3.5 |
P1 | 210 ± 10 | 0.10 ± 0.03 | 0.070 | 9.3 |
P2 | 320 ± 15 | 0.28 ± 0.08 | 0.072 | 9.2 |
P3 | 400 ± 15 | 0.35 ± 0.08 | 0.101 | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumanis, G.; Andzs, M.; Sinka, M.; Bajare, D. Fire Resistance of Phosphogypsum- and Hemp-Based Bio-Aggregate Composite with Variable Amount of Binder. J. Compos. Sci. 2023, 7, 118. https://doi.org/10.3390/jcs7030118
Bumanis G, Andzs M, Sinka M, Bajare D. Fire Resistance of Phosphogypsum- and Hemp-Based Bio-Aggregate Composite with Variable Amount of Binder. Journal of Composites Science. 2023; 7(3):118. https://doi.org/10.3390/jcs7030118
Chicago/Turabian StyleBumanis, Girts, Martins Andzs, Maris Sinka, and Diana Bajare. 2023. "Fire Resistance of Phosphogypsum- and Hemp-Based Bio-Aggregate Composite with Variable Amount of Binder" Journal of Composites Science 7, no. 3: 118. https://doi.org/10.3390/jcs7030118
APA StyleBumanis, G., Andzs, M., Sinka, M., & Bajare, D. (2023). Fire Resistance of Phosphogypsum- and Hemp-Based Bio-Aggregate Composite with Variable Amount of Binder. Journal of Composites Science, 7(3), 118. https://doi.org/10.3390/jcs7030118