An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design
Abstract
:1. Introduction
2. Different Types of Hydrogen Storage
2.1. Physical Storage
2.1.1. Compressed Hydrogen Storage (CGH2)
2.1.2. Cryogenic Hydrogen Storage (LH2)
2.1.3. Cryo-Compressed Hydrogen Storage (CcH2)
2.2. Chemical Storage
3. Hydrogen Storage Vessels Design
3.1. Design Procedure
3.2. Numerical Analysis of Composite Hydrogen Storage Vessels
4. Composite Materials for Hydrogen Storage Vessels
5. Finite Element Analysis
- A democratized tool with a comprehensive and standalone user interface.
- User interface short time response, which accelerates design duration.
- Comprehensive and well-chosen design parameters allow a quick variation of the layers’ shape.
- Fully automated FEA model generation, allowing performing simulations with minimum FE knowledge.
- Winding problems anticipation.
- Smart layup rendering allows layer selection and intersection detection.
- Design of experiment capabilities for parametric design optimization.
- Full compatibility with ABAQUS software and no need for a FORTRAN compiler to post-process specific material outputs.
- Compatibility with filament winding software.
- Models calibration and correlation with produced reservoir measurements.
5.1. Multi-Scale Modeling of Composite Hydrogen Storage Vessels
5.2. Development of Test Procedures for C-H2 Vessels: Impact Test/Static Fatigue
- Internal pressure: The internal pressure of a hydrogen storage vessel can vary due to the filling and emptying of the vessel, as well as changes in temperature and ambient pressure.
- Thermal loading: The temperature of a hydrogen storage vessel can vary due to the ambient temperature, heat generated during the filling and emptying, and the exothermic reactions of hydrogen.
- Cyclic loading: The filling and emptying of a hydrogen storage vessel can result in cyclic loading, which can cause fatigue damage and reduce the vessel’s lifespan.
- Impact loading: Sudden impacts or loads, such as a drop or impact from a falling object, can cause damage to a hydrogen storage vessel.
- External loads: External loads, such as the vessel’s weight and any additional equipment or materials, can affect the structural performance of a hydrogen storage vessel.
- Corrosion: The presence of moisture or other corrosive agents can cause corrosion and weaken the structural integrity of a hydrogen storage vessel.
- Vibration: Vibration can cause fatigue damage and reduce the lifespan of a hydrogen storage vessel.
- Thermal expansion: Temperature changes can cause the composite material of a hydrogen storage vessel to expand or contract, affecting the vessel’s structural performance.
6. Artificial Intelligence and Optimization Models for Hydrogen Storage Vessels Design
7. Discusion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
M4H2 | Multi-scale modeling, Multi-physics, Multi-scale experiments; and Machine learning for hydrogen storage vessel design |
AGA: | Adaptive Genetic Algorithm |
AI: | Artificial Intelligence |
AIS: | Artificial Immune System |
AM: | Additive Manufacturing |
AMMC: | Aluminum Metal Matrix Composite |
ANN: | Artificial Neural Network |
CcH2: | Cryo-Compressed Hydrogen Storage |
CDM: | Continuum Damage Mechanics |
CE: | Cohesive Element |
CFD: | Computational Fluid Dynamics |
CFRP: | Carbon Fiber Reinforced Plastic |
CGH2: | Compressed Hydrogen Storage |
CLT: | Classical Laminate Theory |
CNN: | Convolutional Neural Network |
CNT: | Carbon Nanotube |
COPV: | Composite Overwrapped Pressure Vessel |
DNN: | Deep Neural Network |
DOE: | Department Of Energy |
FEA: | Finite Element Analysis |
FEM: | Finite Element Method |
GA: | Genetic Algorithm |
GFRP: | Glass Fiber Reinforced Plastic |
HSV: | Hydrogen Storage Vessel |
LH2: | Cryogenic Hydrogen Storage |
ML: | Machine Learning |
MMC: | Magnesium Metal Matrix Composite |
PEG: | Polyethylene Glycol |
PEM: | Proton Exchange Membrane |
PSO: | Particle Swarm Optimization |
RVE: | Representative Volume Elements |
SA: | Simulated Annealing |
SSC: | Stainless Steel Composite |
SVM: | Support Vector Machines |
TMMC: | Titanium Metal Matrix Composite |
References
- Nachtane, M.; Tarfaoui, M.; Goda, I.; Rouway, M. A review on the technologies, design considerations and numerical models of tidal current turbines. Renew. Energy 2020, 157, 1274–1288. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Saifaoui, D.; El Moumen, A.; Hassoon, O.; Benyahia, H. Evaluation of durability of composite materials applied to renewable marine energy: Case of ducted tidal turbine. Energy Rep. 2018, 4, 31–40. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Mohammed, M.A.; Saifaoui, D.; El Moumen, A. Effects of environmental exposure on the mechanical properties of composite tidal current turbine. Renew. Energy 2020, 156, 1132–1145. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Weger, L.B.; Leitão, J.; Lawrence, M.G. Expected impacts on greenhouse gas and air pollutant emissions due to a possible transition towards a hydrogen economy in German road transport. Int. J. Hydrogen Energy 2021, 46, 5875–5890. [Google Scholar] [CrossRef]
- Foorginezhad, S.; Mohseni-Dargah, M.; Falahati, Z.; Abbassi, R.; Razmjou, A.; Asadnia, M. Sensing advancement towards safety assessment of hydrogen fuel cell vehicles. J. Power Sources 2021, 489, 229450. [Google Scholar] [CrossRef]
- IEA. The Future of Hydrogen, Report Prepared by the IEA for the G20, Japan; Seizing Today’s Opportunities; IEA: Paris, France, 2019. [Google Scholar]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- İnci, M. Future vision of hydrogen fuel cells: A statistical review and research on applications, socio-economic impacts and forecasting prospects. Sustain. Energy Technol. Assess. 2022, 53, 102739. [Google Scholar] [CrossRef]
- Li, M.; Bai, Y.; Zhang, C.; Song, Y.; Jiang, S.; Grouset, D.; Zhang, M. Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. Int. J. Hydrogen Energy 2019, 44, 10677–10693. [Google Scholar] [CrossRef] [Green Version]
- Kommula, N.D.S. Analysis of Performance and Features of Hydrogen as an Energy Carrier. Master’s Thesis, Universita Politechnica delle Marche, Ancona, Italy, 2022. [Google Scholar]
- Nachtane, M.; Meraghni, F.; Chatzigeorgiou, G.; Harper, L.; Pelascini, F. Multiscale viscoplastic modeling of recycled glass fiber-reinforced thermoplastic composites: Experimental and numerical investigations. Compos. Part B Eng. 2022, 242, 110087. [Google Scholar] [CrossRef]
- Lagdani, O.; Tarfaoui, M.; Rouway, M.; Laaouidi, H.; Sbai, S.J.; Dabachi, M.A.; Aamir, A.; Nachtane, M. Influence of Moisture Diffusion on the Dynamic Compressive Behavior of Glass/Polyester Composite Joints for Marine Engineering Applications. J. Compos. Sci. 2022, 6, 94. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Sassi, S.; Lagdani, O.; Nachtane, M. Strain rate effects on the thermomechanical behavior of glass/polyester composite joints. Polym. Compos. 2021, 43, 36–51. [Google Scholar] [CrossRef]
- Goda, I.; Nachtane, M.; Qureshi, Y.; Benyahia, H.; Tarfaoui, M. COVID-19: Current challenges regarding medical healthcare supplies and their implications on the global additive manufacturing industry. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2022, 236, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Lagdani, O.; Tarfaoui, M.; Nachtane, M.; Trihi, M.; Laaouidi, H. A numerical investigation of the effects of ice accretion on the aerodynamic and structural behavior of offshore wind turbine blade. Wind. Eng. 2021, 45, 1433–1446. [Google Scholar] [CrossRef]
- Rouway, M.; Nachtane, M.; Tarfaoui, M.; Chakhchaoui, N.; Omari, L.E.H.; Fraija, F.; Cherkaoui, O. 3D printing: Rapid manufacturing of a new small-scale tidal turbine blade. Int. J. Adv. Manuf. Technol. 2021, 115, 61–76. [Google Scholar] [CrossRef]
- Maziz, A.; Tarfaoui, M.; Rechak, S.; Nachtane, M.; Gemi, L. Finite Element Analysis of Impact-Induced Damage in Pressurized Hybrid Composites Pipes. Int. J. Appl. Mech. 2021, 13, 2150074. [Google Scholar] [CrossRef]
- Boudounit, H.; Tarfaoui, M.; Saifaoui, D.; Nachtane, M. Structural analysis of offshore wind turbine blades using finite element method. Wind Eng. 2020, 44, 168–180. [Google Scholar]
- Laaouidi, H.; Tarfaoui, M.; Nachtane, M.; Trihi, M. Energy absorption characteristics in hybrid composite materials for marine applications under impact loading: Case of tidal current turbine. Int. J. Energy Res. 2021, 45, 5894–5911. [Google Scholar] [CrossRef]
- Laaouidi, H.; Tarfaoui, M.; Nachtane, M.; Trihi, M.; Lagdani, O. A Comprehensive Numerical Investigation on the Mechanical Performance of Hybrid Composite Tidal Current Turbine under Accidental Impact. Int. J. Automot. Mech. Eng. 2020, 17, 8338–8350. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Ledoux, Y.; Khammassi, S.; Leneveu, E.; Pelleter, J. Experimental investigation on the dynamic behavior of 3D printed CF-PEKK composite under cyclic uniaxial compression. Compos. Struct. 2020, 247, 112474. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; El Moumen, A.; Saifaoui, D. Numerical investigation of damage progressive in composite tidal turbine for renewable marine energy. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016; pp. 559–563. [Google Scholar]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Tarfaoui, M.; El Moumen, A.; Lafdi, K.; Hassoon, O.; Nachtane, M. Inter laminar failure behavior in laminate carbon nanotubes-based polymer composites. J. Compos. Mater. 2018, 52, 3655–3667. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Nachtane, M.; Khadimallah, H.; Saifaoui, D. Simulation of Mechanical Behavior and Damage of a Large Composite Wind Turbine Blade under Critical Loads. Appl. Compos. Mater. 2018, 25, 237–254. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Pan, Z.-B.; Liu, J.; Ma, L.-H.; Zhou, J.-Y.; Su, Y.-F. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel. Int. J. Hydrogen Energy 2022, 47, 38862–38883. [Google Scholar] [CrossRef]
- Tong, L.; Yuan, Y.; Yang, T.; Bénard, P.; Yuan, C.; Xiao, J. Hydrogen release from a metal hydride tank with phase change material jacket and coiled-tube heat exchanger. Int. J. Hydrogen Energy 2021, 46, 32135–32148. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, present and future prospective of global carbon fibre composite developments and applications. Compos. Part B Eng. 2023, 250, 110463. [Google Scholar] [CrossRef]
- Wanniarachchi, S.; Hewage, K.; Wirasinghe, C.; Chhipi-Shrestha, G.; Karunathilake, H.; Sadiq, R. Transforming road freight transportation from fossils to hydrogen: Opportunities and challenges. Int. J. Sustain. Transp. 2022, 1–21. [Google Scholar] [CrossRef]
- Alves, M.P.; Gul, W.; Junior, C.A.C.; Ha, S.K. A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector. Energies 2022, 15, 5152. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Omran, A.A.B.; Singh, J.; Ilyas, R.A. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers 2021, 13, 2898. [Google Scholar] [CrossRef]
- Khan, Z.I.; Habib, U.; Mohamad, Z.B.; Bin Rahmat, A.R.; Abdullah, N.A.S.B. Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: A comprehensive review. Alex. Eng. J. 2022, 61, 975–990. [Google Scholar] [CrossRef]
- El Bahi, A.; Rouway, M.; Tarfaoui, M.; El Moumen, A.; Chakhchaoui, N.; Cherkaoui, O.; Omari, L.E.H. Mechanical Homogenization of Transversely Isotropic CNT/GNP Reinforced Biocomposite for Wind Turbine Blades: Numerical and Analytical Study. J. Compos. Sci. 2023, 7, 29. [Google Scholar] [CrossRef]
- Guo, K.; Yang, Z.; Yu, C.-H.; Buehler, M.J. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 2021, 8, 1153–1172. [Google Scholar] [CrossRef] [PubMed]
- Hrehova, S.; Knapcikova, L. The Study of Machine Learning Assisted the Design of Selected Composites Properties. Appl. Sci. 2022, 12, 10863. [Google Scholar] [CrossRef]
- Kaur, M.; Pal, K. Review on hydrogen storage materials and methods from an electrochemical viewpoint. J. Energy Storage 2019, 23, 234–249. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, H.; Kang, H.; Zhou, W.; Zhang, C. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks. Int. J. Hydrogen Energy 2019, 44, 25777–25799. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Afshan, S.; Hjalmarsson, J. A review of metallic tanks for H2 storage with a view to application in future green shipping. Int. J. Hydrogen Energy 2021, 46, 6151–6179. [Google Scholar] [CrossRef]
- Reddi, K.; Elgowainy, A.; Rustagi, N.; Gupta, E. Techno-economic analysis of conventional and advanced high-pressure tube trailer configurations for compressed hydrogen gas transportation and refueling. Int. J. Hydrogen Energy 2018, 43, 4428–4438. [Google Scholar] [CrossRef]
- Corgnale, C.; Sulic, M. High pressure thermal hydrogen compression employing Ti1.1CrMn metal hydride material. J. Phys. Energy 2019, 2, 014003. [Google Scholar] [CrossRef]
- Azeem, M.; Ya, H.H.; Alam, M.A.; Kumar, M.; Stabla, P.; Smolnicki, M.; Gemi, L.; Khan, R.; Ahmed, T.; Ma, Q.; et al. Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review. J. Energy Storage 2022, 49, 103468. [Google Scholar] [CrossRef]
- Condé-Wolter, J.; Ruf, M.G.; Liebsch, A.; Lebelt, T.; Koch, I.; Drechsler, K.; Gude, M. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107446. [Google Scholar] [CrossRef]
- Langmi, H.W.; Engelbrecht, N.; Modisha, P.M.; Bessarabov, D. Chapter 13—Hydrogen storage. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Smolinka, T., Garche, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 455–486. [Google Scholar] [CrossRef]
- Bossel, U.; Eliasson, B.; Taylor, G. The Future of the Hydrogen Economy: Bright or Bleak? Cogener. Distrib. Gener. J. 2003, 18, 29–70. [Google Scholar] [CrossRef]
- Al Ghafri, S.Z.; Munro, S.; Cardella, U.; Funke, T.; Notardonato, W.; Trusler, J.P.M.; Leachman, J.; Span, R.; Kamiya, S.; Pearce, G.; et al. Hydrogen liquefaction: A review of the fundamental physics, engineering practice and future opportunities. Energy Environ. Sci. 2022, 15, 2690–2731. [Google Scholar] [CrossRef]
- Shinde, B.J.; Karunamurthy, K. Recent progress in hydrogen fuelled internal combustion engine (H2ICE)—A comprehensive outlook. Mater. Today Proc. 2022, 51, 1568–1579. [Google Scholar] [CrossRef]
- Nazir, H.; Muthuswamy, N.; Louis, C.; Jose, S.; Prakash, J.; Buan, M.E.; Flox, C.; Chavan, S.; Shi, X.; Kauranen, P.; et al. Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution. Int. J. Hydrogen Energy 2020, 45, 20693–20708. [Google Scholar] [CrossRef]
- Thompson, M.; Ignacio, A. Modification of a Commercial Activated CARBON with Nitrogen and Boron: Hydrogen Storage Application; Pontificia Universidad Catolica De Chile: Santiago, Chile, 2022. [Google Scholar]
- Ahluwalia, R.; Hua, T.Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrogen Energy 2010, 35, 4171–4184. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Demirci, U.B. Ammonia Borane: An Extensively Studied, Though Not Yet Implemented, Hydrogen Carrier. Energies 2020, 13, 3071. [Google Scholar] [CrossRef]
- Ingram, D.J. The Solvation and Regeneration of Ammonia Borane: A Hydrogen Storage Material. Doctoral Thesis, University College London, London, UK, 2019. [Google Scholar]
- Yadav, N.; Srivastava, P.K.; Varma, M. Recent advances in catalytic combustion of AP-based composite solid propellants. Def. Technol. 2021, 17, 1013–1031. [Google Scholar] [CrossRef]
- Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating. Renew. Sustain. Energy Rev. 2017, 76, 1314–1331. [Google Scholar] [CrossRef]
- Zhou, Y.; Cost of Renewable Hydrogen Produced Onsite at Hydrogen Refueling Stations in Europe. International Council on Clean Transportation n.d. Available online: https://theicct.org/publication/fuels-eu-onsite-hydro-cost-feb22/ (accessed on 3 March 2023).
- Cardiff, P.; Karač, A.; De Jaeger, P.; Jasak, H.; Nagy, J.; Ivanković, A.; Tuković, Ž. An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. arXiv 2018, arXiv:1808.10736. [Google Scholar] [CrossRef]
- Afgan, N.H.; Veziroglu, A.; Carvalho, M.G. Multi-criteria evaluation of hydrogen system options. Int. J. Hydrogen Energy 2007, 32, 3183–3193. [Google Scholar] [CrossRef]
- Soliman, M.; Barone, G.; Frangopol, D.M. Fatigue reliability and service life prediction of aluminum naval ship details based on monitoring data. Struct. Health Monit. 2015, 14, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, K.; Kandasubramanian, B. Self-healing nanofibers for engineering applications. Ind. Eng. Chem. Res. 2022, 61, 3789–3816. [Google Scholar] [CrossRef]
- Rafiee, R. Experimental and theoretical investigations on the failure of filament wound GRP pipes. Compos. Part B Eng. 2013, 45, 257–267. [Google Scholar] [CrossRef]
- Bouhafs, M.; Sereir, Z.; Chateauneuf, A. Probabilistic analysis of the mechanical response of thick composite pipes under internal pressure. Int. J. Press. Vessel. Pip. 2012, 95, 7–15. [Google Scholar] [CrossRef]
- Lovins, A.B.; Cramer, D.R. Hypercars, hydrogen, and the automotive transition. Int. J. Veh. Des. 2004, 35, 50–85. [Google Scholar] [CrossRef]
- Wu, E.; Zhao, Y.; Zhao, B.; Xu, W. Fatigue life prediction and verification of high-pressure hydrogen storage vessel. Int. J. Hydrogen Energy 2021, 46, 30412–30422. [Google Scholar] [CrossRef]
- Moczko, P.; Paduchowicz, M.; Pietrusiak, D. Numerical and Experimental Investigations of the Influence of Operation on the Technical Condition of Pressure Vessels. Materials 2022, 15, 7281. [Google Scholar] [CrossRef]
- Sapre, S.; Pareek, K.; Vyas, M. Investigation of structural stability of type IV compressed hydrogen storage tank during refueling of fuel cell vehicle. Energy Storage 2020, 2, e150. [Google Scholar] [CrossRef] [Green Version]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Bertin, M.; Halm, D.; Magneville, B.; Renard, J.; Saffré, P.; Villalonga, S. One year OSIRHYS IV project synthesis: Mechanical behaviour of 700 bar type iv high pressure vessel code qualification. In Proceedings of the 15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012; p. 8. [Google Scholar]
- Ogale, A.A.; Zhang, M.; Jin, J. Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 2016, 133, app.43794. [Google Scholar] [CrossRef] [Green Version]
- Hassan, I.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Zhang, C.; Xu, Z.; Li, X.; Zhao, G.; Ni, Z. Properties improvement of composite layer of cryo-compressed hydrogen storage vessel by polyethylene glycol modified epoxy resin. Int. J. Hydrogen Energy 2023, 48, 5576–5594. [Google Scholar] [CrossRef]
- Keyte, J.; Pancholi, K.; Njuguna, J. Recent Developments in Graphene Oxide/Epoxy Carbon Fiber-Reinforced Composites. Front. Mater. 2019, 6, 224. [Google Scholar] [CrossRef]
- CW. CNT-Enhanced Composite Tanks Lighten Rescue Workers’ Loads 2020. Available online: https://www.compositesworld.com/articles/cnt-enhanced-composite-tanks-lighten-rescue-workers-loads (accessed on 12 February 2023).
- Bernatas, R.; Dagreou, S.; Despax-Ferreres, A.; Barasinski, A. Recycling of fiber reinforced composites with a focus on thermoplastic composites. Clean. Eng. Technol. 2021, 5, 100272. [Google Scholar] [CrossRef]
- Kim, E.-H.; Rim, M.-S.; Lee, I.; Hwang, T.-K. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Compos. Struct. 2013, 95, 123–134. [Google Scholar] [CrossRef]
- Andersen, K.E. Optimization of a Low-melting Alloy for Fused Filament Fabrication 2015. Available online: https://summit.sfu.ca/item/15662 (accessed on 10 February 2023).
- Fowler, C.P.; Orifici, A.C.; Wang, C.H. A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage. Int. J. Hydrogen Energy 2016, 41, 22067–22089. [Google Scholar] [CrossRef]
- Francescato, P.; Gillet, A.; Leh, D.; Saffré, P. Comparison of optimal design methods for type 3 high-pressure storage tanks. Compos. Struct. 2012, 94, 2087–2096. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Roh, H.S.; Merkel, D.R.; Simmons, K.L. A predictive modeling tool for damage analysis and design of hydrogen storage composite pressure vessels. Int. J. Hydrogen Energy 2021, 46, 20573–20585. [Google Scholar] [CrossRef]
- Bogenfeld, R.; Schmiedel, P.; Kuruvadi, N.; Wille, T.; Kreikemeier, J. An experimental study of the damage growth in composite laminates under tension–fatigue after impact. Compos. Sci. Technol. 2020, 191, 108082. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, C.; Luo, H.; Wei, S.; Wei, Z. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos. Struct. 2015, 134, 475–482. [Google Scholar] [CrossRef]
- Li, W.; Lv, H.; Zhang, L.; He, P.; Zhang, C. Experiment, simulation, optimization design, and damage detection of composite shell of hydrogen storage vessel-A review. J. Reinf. Plast. Compos. 2022. [Google Scholar] [CrossRef]
- Ramirez, J.P.B.; Halm, D.; Grandidier, J.-C.; Villalonga, S.; Nony, F. 700 bar type IV high pressure hydrogen storage vessel burst—Simulation and experimental validation. Int. J. Hydrogen Energy 2015, 40, 13183–13192. [Google Scholar] [CrossRef]
- Zaami, A.; Baran, I.; Bor, T.C.; Akkerman, R. 3D Numerical Modeling of Laser Assisted Tape Winding Process of Composite Pressure Vessels and Pipes—Effect of Winding Angle, Mandrel Curvature and Tape Width. Materials 2020, 13, 2449. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zheng, C.; Wei, S.; Wei, Z. Micromechanics-based progressive failure analysis of carbon fiber/epoxy composite vessel under combined internal pressure and thermomechanical loading. Compos. Part B Eng. 2016, 89, 77–84. [Google Scholar] [CrossRef]
- Littlefield, A.; Macri, M.; Smith, L.; Root, J. Multiscale modeling a composite pressure vessel subjected internal pressure. In Proceedings of the CMAX 2018, Dallas, TX, USA, 15–18 October 2018; p. 17. [Google Scholar]
- Zhang, N.; Gao, S.; Song, M.; Chen, Y.; Zhao, X.; Liang, J.; Feng, J. A Multiscale Study of CFRP Based on Asymptotic Homogenization with Application to Mechanical Analysis of Composite Pressure Vessels. Polymers 2022, 14, 2817. [Google Scholar] [CrossRef]
- Vignoli, L.L.; Savi, M.A. Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study. Lat. Am. J. Solids Struct. 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Nguyena, B.N.; Rohb, H.S.; Merkela, D.R.; Johnsona, K.I.; Simmonsa, K.L. A Multiscale Modeling Approach to Cryo-compressed Hydrogen Storage Pressure Vessels–Part II: Constitutive Modeling and Finite Element Analysis. In Proceedings of the SAMPE 2020 Conference & Exposition, PNNL-SA-150459, Chicago, IL, USA, 12–15 October 2020. [Google Scholar]
- Nguyen, B.N.; Simmons, K.L. A multiscale modeling approach to analyze filament-wound composite pressure vessels. J. Compos. Mater. 2013, 47, 2113–2123. [Google Scholar] [CrossRef]
- Lin, S.; Yang, L.; Xu, H.; Jia, X.; Yang, X.; Zu, L. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion. Compos. Struct. 2021, 255, 113046. [Google Scholar] [CrossRef]
- Müzel, S.D.; Bonhin, E.P.; Guimarães, N.M.; Guidi, E.S. Application of the Finite Element Method in the Analysis of Composite Materials: A Review. Polymers 2020, 12, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiee, R.; Torabi, M.A.; Maleki, S. Investigating structural failure of a filament-wound composite tube subjected to internal pressure: Experimental and theoretical evaluation. Polym. Test. 2018, 67, 322–330. [Google Scholar] [CrossRef]
- Allix, O.; Hild, F. (Eds.) Continuum Damage Mechanics of Materials and Structures; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1–15. [Google Scholar] [CrossRef]
- Ladeveze, P.; LeDantec, E. Damage modelling of the elementary ply for laminated composites. Compos. Sci. Technol. 1992, 43, 257–267. [Google Scholar] [CrossRef]
- Renard, J.; Favre, J.-P.; Jeggy, T. Influence of transverse cracking on ply behavior: Introduction of a characteristic damage variable. Compos. Sci. Technol. 1993, 46, 29–37. [Google Scholar] [CrossRef]
- Nguyen, B.N. Damage modeling of laminated composites by the use of multilayer volume elements. Compos. Sci. Technol. 1998, 58, 891–905. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Merkel, D.R.; Johnson, K.I.; Gotthold, D.W.; Simmons, K.L.; Roh, H.S. Modeling the effects of loading scenario and thermal expansion coefficient on potential failure of cryo-compressed hydrogen vessels. Int. J. Hydrogen Energy 2020, 45, 24883–24894. [Google Scholar] [CrossRef]
- Rafiee, R.; Salehi, A. A novel recursive multi-scale modeling for predicting the burst pressure of filament wound composite pressure vessels. Appl. Phys. A 2022, 128, 388. [Google Scholar] [CrossRef]
- Zheng, J.; Bie, H.; Xu, P.; Chen, H.; Liu, P.; Li, X.; Liu, Y. Experimental and numerical studies on the bonfire test of high-pressure hydrogen storage vessels. Int. J. Hydrogen Energy 2010, 35, 8191–8198. [Google Scholar] [CrossRef]
- Wang, D.; Liao, B.; Zheng, J.; Huang, G.; Hua, Z.; Gu, C.; Xu, P. Development of regulations, codes and standards on composite tanks for on-board gaseous hydrogen storage. Int. J. Hydrogen Energy 2019, 44, 22643–22653. [Google Scholar] [CrossRef]
- Gąsior, P.; Wachtarczyk, K.; Błachut, A.; Kaleta, J.; Yadav, N.; Ozga, M.; Baron, A. Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage. Appl. Sci. 2021, 11, 5667. [Google Scholar] [CrossRef]
- Lee, G.; Ko, K.D.; Yu, Y.C.; Lee, J.; Yu, W.-R.; Youk, J.H. A facile method for preparing CNT-grafted carbon fibers and improved tensile strength of their composites. Compos. Part A Appl. Sci. Manuf. 2015, 69, 132–138. [Google Scholar] [CrossRef]
- Wong, J.; Eng, P. CNG & hydrogen tank safety, R&D, and testing. In CNG and Hydrogen Lessons Learned Workshop; Powertech Labs Inc.: Surrey, BC, Canada, 2009. [Google Scholar]
- Wörner, A. NEMESIS-New Method for Superior Integrated Hydrogen Generation System; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- Laadel, N.-E.; El Mansori, M.; Kang, N.; Marlin, S.; Boussant-Roux, Y. Permeation barriers for hydrogen embrittlement prevention in metals—A review on mechanisms, materials suitability and efficiency. Int. J. Hydrogen Energy 2022, 47, 32707–32731. [Google Scholar] [CrossRef]
- Sankar, B.; Xu, J.; Pelt, J.V. Lightweight Composite Tanks for Liquid Hydrogen Storage. In Hydrogen Research for Spaceport and Space-Based Applications: NASA CR-2008-215440, Part 3; NASA Glenn Research Center: Cleveland, OH, USA, 2008; pp. 29–77. [Google Scholar]
- Ma, K.; Xu, L.; Abed, A.M.; Elkamchouchi, D.H.; Khadimallah, M.A.; Ali, H.E.; Algarni, H.; Assilzadeh, H. An artificial intelligence approach study for assessing hydrogen energy materials for energy saving in building. Sustain. Energy Technol. Assess. 2023, 56, 103052. [Google Scholar] [CrossRef]
- Alcántar, V.; Aceves, S.; Ledesma, E.; Aguilera, E. Optimization of Type 4 composite pressure vessels using genetic algorithms and simulated annealing. Int. J. Hydrogen Energy 2017, 42, 15770–15781. [Google Scholar] [CrossRef]
- Islam, M.; Sohaib, M.; Kim, J.; Kim, J.-M. Crack classification of a pressure vessel using feature selection and deep learning methods. Sensors 2018, 18, 4379. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-U.; Hong, C.-S.; Kim, C.-G.; Kim, J.-Y. Optimal design of filament wound type 3 tanks under internal pressure using a modified genetic algorithm. Compos. Struct. 2005, 71, 16–25. [Google Scholar] [CrossRef]
- Kim, C.-U.; Kang, J.-H.; Hong, C.-S.; Kim, C.-G. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm. Compos. Struct. 2005, 67, 443–452. [Google Scholar]
- Tomassetti, G.; Barboni, R.; De Benedetti, M. Optimisation methodology for cryotanks. Comput. Struct. 2005, 83, 2293–2305. [Google Scholar] [CrossRef]
- Liu, P.; Xu, P.; Zheng, J. Artificial immune system for optimal design of composite hydrogen storage vessel. Comput. Mater. Sci. 2009, 47, 261–267. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, J.; Chen, H.; Liu, P. Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm. Int. J. Hydrogen Energy 2010, 35, 2840–2846. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, B.; Lei, Y.; Zhang, G.; Zhang, Z.; Meng, B.; Liu, Z. Identification of voids and interlaminar shear strengths of polymer-matrix composites by optical microscopy experiment and deep learning methodology. Polym. Adv. Technol. 2021, 32, 1853–1865. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, L.; Qiao, T.; Zhang, B.; Xu, Y. Detection on curing process of large thickness composite laminate using fiber Bragg grating. In Proceedings of the ICCM22 2019, Melbourne, Australia, 11–16 August 2019; Engineers Australia: Melbourne, Australia, 2019; pp. 1564–1570. [Google Scholar]
- Zhang, G.; Luo, L.; Lin, T.; Zhang, B.; Wang, H.; Qu, Y.; Meng, B. Multi-Objective Optimisation of Curing Cycle of Thick Aramid Fibre/Epoxy Composite Laminates. Polymers 2021, 13, 4070. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, B.; Zhang, G.; Li, X.; Fang, X.; Li, W.; Zhang, Z. Rapid prediction and inverse design of distortion behaviors of composite materials using artificial neural networks. Polym. Adv. Technol. 2021, 32, 1049–1060. [Google Scholar] [CrossRef]
- Bao, H.; Wu, S.; Wu, Z.; Kang, G.; Peng, X.; Withers, P.J. A machine-learning fatigue life prediction approach of additively manufactured metals. Eng. Fract. Mech. 2021, 242, 107508. [Google Scholar] [CrossRef]
- Huang, W.; Xu, R.; Yang, J.; Huang, Q.; Hu, H. Data-driven multiscale simulation of FRP based on material twins. Compos. Struct. 2021, 256, 113013. [Google Scholar] [CrossRef]
- Xu, R.; Yang, J.; Yan, W.; Huang, Q.; Giunta, G.; Belouettar, S.; Zahrouni, H.; Ben Zineb, T.; Hu, H. Data-driven multiscale finite element method: From concurrence to separation. Comput. Methods Appl. Mech. Eng. 2020, 363, 112893. [Google Scholar] [CrossRef]
- Gu, G.X.; Chen, C.-T.; Buehler, M.J. De novo composite design based on machine learning algorithm. Extreme Mech. Lett. 2018, 18, 19–28. [Google Scholar] [CrossRef]
- Kaveh, A.; Eslamlou, A.D.; Javadi, S.M.; Malek, N.G. Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mech. 2021, 232, 921–931. [Google Scholar] [CrossRef]
- Xiao, J.; Bi, C.; Bénard, P.; Chahine, R.; Zong, Y.; Luo, M.; Yang, T. Neural network based optimization for cascade filling process of on-board hydrogen tank. Int. J. Hydrogen Energy 2021, 46, 2936–2951. [Google Scholar] [CrossRef]
- Kekez, S.; Kubica, J. Connecting concrete technology and machine learning: Proposal for application of ANNs and CNT/concrete composites in structural health monitoring. RSC Adv. 2020, 10, 23038–23048. [Google Scholar] [CrossRef]
- Azizian, M.; Almeida, J.H.S., Jr. Stochastic, probabilistic and reliability analyses of internally-pressurised filament wound composite tubes using artificial neural network metamodels. Mater. Today Commun. 2022, 31, 103627. [Google Scholar] [CrossRef]
- Cai, W.; Li, C.; Agbossou, K.; Bénard, P.; Xiao, J. A review of hydrogen-based hybrid renewable energy systems: Simulation and optimization with artificial intelligence. J. Phys. Conf. Ser. 2022, 2208, 012012. [Google Scholar] [CrossRef]
- Bai, X.-S.; Yang, W.-W.; Tang, X.-Y.; Dai, Z.-Q.; Yang, F.-S. Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device. Energy 2022, 243, 123044. [Google Scholar] [CrossRef]
- So, C.; Kim, Y.-S.; Park, J.H.; Kim, G.-Y.; Cha, D.; Ko, J.H.; Kang, B. Data-Driven Design of Electrically Conductive Nanocomposite Materials: A Case Study of Acrylonitrile–Butadiene–Styrene/Carbon Nanotube Binary Composites. Adv. Intell. Syst. 2023, 5, 2200399. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Wu, Y.; Guo, X.; Xiao, W. Predicting hydrogen storage capacity of V–Ti–Cr–Fe alloy via ensemble machine learning. Int. J. Hydrogen Energy 2022, 47, 34583–34593. [Google Scholar] [CrossRef]
- Hai, T.; Aziz, K.H.H.; Zhou, J.; Dhahad, H.A.; Sharma, K.; Almojil, S.F.; Almohana, A.I.; Alali, A.F.; Kh, T.I.; Mehrez, S.; et al. Neural network-based optimization of hydrogen fuel production energy system with proton exchange electrolyzer supported nanomaterial. Fuel 2023, 332, 125827. [Google Scholar] [CrossRef]
- Burov, A.E.; Burova, O.G. Development of digital twin for composite pressure vessel. J. Phys. Conf. Ser. 2020, 1441, 012133. [Google Scholar] [CrossRef]
- Hopmann, C.; Magura, N.; Müller, R.; Schneider, D.; Fischer, K. Impact of winding parameters on the fiber bandwidth in the cylindrical area of a hydrogen pressure vessel for generating a digital twin. Polym. Compos. 2022, 43, 1577–1589. [Google Scholar] [CrossRef]
- Jaribion, A.; Khajavi, S.H.; Öhman, M.; Knapen, A.; Holmström, J. A digital twin for safety and risk management: A prototype for a hydrogen high-pressure vessel. In Designing for Digital Transformation. Co-Creating Services with Citizens and Industry, Proceedings of the 15th International Conference on Design Science Research in Information Systems and Technology, DESRIST 2020, Kristiansand, Norway, 2–4 December 2020; Springer: Cham, Switzerland, 2020; pp. 369–375. [Google Scholar]
Hydrogen Storage Tank Type | Energy Density (MJ/kg) | Operating Pressure (bar) | Temperature Range (°C) | Cost ($/kg H2) | Refill Time (min) |
---|---|---|---|---|---|
Type I | 4–5 | 250–700 | −40 to 65 | $7–10 | 5–10 |
Type II | 4–5 | 700–875 | −40 to 65 | $5–8 | 3–5 |
Type III | 4–5 | 875–1100 | −40 to 65 | $4–6 | 2–3 |
Type IV | 4–5 | 700–875 | −40 to 65 | $7–10 | 3–5 |
Type V | 5–8 | 875–1100 | −40 to 65 | $5–7 | 2–3 |
Type of Carbon Fiber | Sizing Type & Amount | Resin System Compatibility | Method |
---|---|---|---|
T300 | 40A/B (1.0%) | Epoxy | TY-030B-05 |
40D (0.7%) | Epoxy | TY-030B-05 | |
50A/B (1.0%) | Epoxy, phenolic, polyester, vinyl ester | TY-030B-05 | |
T700S | 50C (1.0%) | Epoxy, phenolic, polyester, vinyl ester | TY-030B-05 |
60E (0.3%) | Epoxy | TY-030B-05 | |
F0E (0.7%) | Vinylester, compatible with epoxy | TY-030B-05 | |
T700G | 31E (0.5%) | Epoxy | TY-030B-05 |
41E (0.5%) | Epoxy | TY-030B-05 | |
51C (1.0%) | Epoxy, phenolic, polyester, vinyl ester | TY-030B-05 | |
T800H | 40B (1.0%) | Epoxy | TY-030B-05 |
50B (1.0) | Epoxy, phenolic, polyester, vinyl ester | TY-030B-05 | |
T800S | 10E (0.5%) | Epoxy | TY-030B-05 |
50C (1.0%) | Epoxy, phenolic, polyester, vinyl ester | TY-030B-05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nachtane, M.; Tarfaoui, M.; Abichou, M.a.; Vetcher, A.; Rouway, M.; Aâmir, A.; Mouadili, H.; Laaouidi, H.; Naanani, H. An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design. J. Compos. Sci. 2023, 7, 119. https://doi.org/10.3390/jcs7030119
Nachtane M, Tarfaoui M, Abichou Ma, Vetcher A, Rouway M, Aâmir A, Mouadili H, Laaouidi H, Naanani H. An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design. Journal of Composites Science. 2023; 7(3):119. https://doi.org/10.3390/jcs7030119
Chicago/Turabian StyleNachtane, Mourad, Mostapha Tarfaoui, Mohamed amine Abichou, Alexandre Vetcher, Marwane Rouway, Abdeouhaed Aâmir, Habib Mouadili, Houda Laaouidi, and Hassan Naanani. 2023. "An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design" Journal of Composites Science 7, no. 3: 119. https://doi.org/10.3390/jcs7030119
APA StyleNachtane, M., Tarfaoui, M., Abichou, M. a., Vetcher, A., Rouway, M., Aâmir, A., Mouadili, H., Laaouidi, H., & Naanani, H. (2023). An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design. Journal of Composites Science, 7(3), 119. https://doi.org/10.3390/jcs7030119