Treatment of Biowaste for Electrodes in Energy Storage Applications: A Brief Review
Abstract
:1. Introduction
2. Biowastes as Rich Source of Carbon Materials
2.1. Methods for Converting Biowastes into Value-Added Carbon Materials
2.1.1. Pyrolysis
2.1.2. Hydrothermal Method
2.1.3. Activation
3. Features of Carbon-Based Electrodes
3.1. Electrocatalysis
3.2. Adsorption
4. Biowaste-Based Activated-Carbon and Their Applications in Energy Storage Systems
4.1. Batteries
- i.
- Cathode: Cathode is the positive electrode that acquires electrons from the external circuit. Reduction reactions normally take place at the cathode. Electrons move from the anode into the cathode while conventional current flow out from the cathode. The chemical reactions that occur around the cathode make use of the electrons from the anode.
- ii.
- Anode: Anode is the negative electrode from where electrons flow to the cathode through the external circuit. Conventional current flows into the anode from the cathode. The chemical reactions that occur at the anode-electrolyte interphase causes a build-up of electrons in the anode of a battery. These electrons are prevented by the membrane from moving to the cathode through the electrolyte but move from the anode through the external circuit into the cathode.
- iii.
- Electrolyte: The electrolyte provides the medium for ion transport mechanism between the two electrodes of a cell. Electrolytes could be in aqueous or molten form containing dissolved salts, acids, or alkalis that are necessary for ionic conduction. Nevertheless, some conventional batteries contain solid electrolytes that work as ionic conductors at ambient temperature.
- iv.
- Separators: The separator is a porous material which separates and avoid the anode and cathode from touching each other, which could result in short circuit in the battery. Different materials such as cotton, nylon, polyester, cardboard, and synthetic polymer films are used to prepare the separator. Separators are chemically unreactive toward electrolyte and the electrodes.
4.2. Lithium-Ion Batteries (LiIBs)
4.3. Sodium-Ion Batteries (NaIBs)
4.4. Other Batteries
4.5. Supercapacitors
5. Biowaste-Based Composites
6. Conclusions/Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, L.; Hu, Y.; Lei, Y.; Wu, H.; Yang, G.; Wang, Y.; Wei, G. Vitrification of petrochemical sludge for rapid, facile, and sustainable fixation of heavy metals. J. Environ. Chem. Eng 2022, 10, 108812. [Google Scholar] [CrossRef]
- Sharifikolouei, E.; Ferraris, M. Potential role of vitrification and waste vitrification in the circular economy. In Ceramics, Glass and Glass-Ceramics; Baino, F., Tomalino, M., Tulyaganov, D., Eds.; PoliTO Springer Series; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Dávalos, J.; Bonilla, A.; Villaquirán-Caicedo, M.A.; Gutiérrez, R.M.; Rincón, J.M. Preparation of glass-ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties. Céram. Vidr. 2021, 60, 183–193. [Google Scholar] [CrossRef]
- Singh, P.; Bhargava, C.; Kumar, M.; Singh, A.; Singh, P.K.; Kumar, P.; Sachdeva, A. Extraction and comparative study of green energy using different types of biowaste material. Mater. Today Proc. 2021, 49, 3474–3481. [Google Scholar] [CrossRef]
- Siddiqui, O.; Dincer, I. Sustainable utilization of agricultural bio-waste for multigeneration of electricity, heating, cooling and freshwater. J. Clean. Prod. 2021, 319, 128540. [Google Scholar] [CrossRef]
- Kumar, M.; Rai, D.; Bhardwaj, G.; Upadhyay, S.N.; Mishra, P.K. Pyrolysis of peanut shell: Kinetic analysis and optimization of thermal degradation process. J. Ind. Crops Prod. 2021, 174, 114128. [Google Scholar] [CrossRef]
- Ajala, E.O.; Ighalo, J.O.; Ajala, M.A.; Adeniyi, A.G.; Ayanshola, A.M. Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. J. Bioresour. Bioprocess. 2021, 8, 87. [Google Scholar] [CrossRef]
- Johnson, K.; Liu, Y.; Lu, M. A Review of Recent Advances in Spent Coffee Grounds Upcycle Technologies and Practices. Front. Chem. Eng. 2022, 4, 838605. [Google Scholar] [CrossRef]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of brewery wastes in food industry. PeerJ 2020, 8, e9427. [Google Scholar] [CrossRef]
- Younes, Y.A.; Kospa, D.A.; Salama, R.S.; Ahmed, A.I.; Ibrahim, A.A. Hydrophilic Candle Wastes Microcapsules as a Thermal Energy Storage Material for All-Day Steam and Electricity Cogeneration. Desalination 2023, 550, 116377. [Google Scholar] [CrossRef]
- Elimelech, M. The Global Challenge for Adequate and Safe Water. J. Water Supply Res. Technol.-AQUA 2006, 55, 3–10. [Google Scholar] [CrossRef]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for Next-Generation Desalination and Water Purification Membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Bakry, A.M.; Alamier, W.M.; Salama, R.S.; Samy El-Shall, M.; Awad, F.S. Remediation of Water Containing Phosphate Using Ceria Nanoparticles Decorated Partially Reduced Graphene Oxide (CeO2-PRGO) Composite. Surf. Interfaces 2022, 31, 102006. [Google Scholar] [CrossRef]
- Wu, X.; Tian, Z.; Guo, J. A review of the theoretical research and practical progress of carbon neutrality. J. Sustain. Oper. Comput. 2022, 3, 54–66. [Google Scholar] [CrossRef]
- González, F.J.; Montesinos, A.; Araujo-Morera, J.; Verdejo, R.; Hoyos, M. ‘In-Situ’ Preparation of Carbonaceous Conductive Composite Materials Based on PEDOT and Biowaste for Flexible Pseudocapacitor Application. J. Compos. Sci. 2020, 4, 87. [Google Scholar] [CrossRef]
- Sundriyal, S.; Shrivastav, V.; Kaur, A.; Dubey, P.; Mishra, S.; Deep, A.; Dhakate, S. Waste Office Papers as a Cellulosic Material Reservoir to Derive Highly Porous Activated Carbon for Solid-State Electrochemical Capacitor. IEEE Trans. Nanotechnol. 2021, 20, 481–488. [Google Scholar] [CrossRef]
- Genovese, M.; Wu, H.; Virya, A.; Li, J.; Shen, P.; Lian, K. Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochim. Acta 2018, 273, 392–401. [Google Scholar] [CrossRef]
- Karnan, M.; Subramani, K.; Srividhya, P.K.; Sathish, M. Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. J. Electrochim. 2017, 228, 586–596. [Google Scholar] [CrossRef]
- Maharjan, M.; Bhattarai, A.; Ulaganathan, M.; Wai, N.; Ohnmar, M.; Wang, J.; Mariana, T. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery. J. Power Sources 2017, 362, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Tavasoli, A.; Aslan, M.; Salimi, M.; Balou, S.; Pirbazari, S.M.; Hashemi, H.; Kohansal, K. Influence of the blend nickel/porous hydrothermal carbon and cattle manure hydrochar catalyst on the hydrothermal gasification of cattle manure for H2 production. J. Energy Convers. Manag. 2018, 173, 15–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Song, N.; Li, X. High-performance supercapacitors and batteries derived from activated banana-peel with porous structures. Electrochim. Acta 2016, 222, 1257–1266. [Google Scholar] [CrossRef] [Green Version]
- Charoensook, K.; Huang, C.L.; Tai, H.C.; Lanjapalli, V.V.K.; Chiang, L.M.; Hosseini, S.; Lin, Y.T.; Li, Y.Y. Preparation of Porous Nitrogen-Doped Activated Carbon Derived from Rice Straw for High-Performance Supercapacitor Application. J. Taiwan Inst. Chem. Eng. 2021, 120, 246–256. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Bilad, M.R.; Afzal, M.T.; Parvez, A.M.; Roslan, F.A.S.; Rahim, S.A.; Vinayagam, V.D.; Afolabi, H.K. Moisture content impact on properties of briquette produced from rice husk waste. Sustainability 2021, 13, 3069. [Google Scholar] [CrossRef]
- Ullah, H.; Lun, L.; Riaz, L.; Naseem, F.; Shahab, A.; Rashid, A. Physicochemical characteristics and thermal degradation behavior of dry and wet torrefied orange peel obtained by dry/wet torrefaction. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Menon, S.D.; Sampath, K.; Kaarthik, S.S. Feasibility studies of coconut shells biomass for downdraft gasification. Mater. Today Proc. 2021, 44, 3133–3137. [Google Scholar] [CrossRef]
- Camargo, J.M.O.; Gallego-Ríos, J.M.; Neto, A.M.P.; Antonio, G.C.; Modesto, M.; Leite, J.T.C. Characterization of sugarcane straw and bagasse from dry cleaning system of sugarcane for cogeneration system. J. Renew. Energy 2020, 158, 500–508. [Google Scholar] [CrossRef]
- Kluska, J.; Ochnio, M.; Kardaś, D. Carbonization of corncobs for the preparation of barbecue charcoal and combustion characteristics of corncob char. J. Waste Manag. 2020, 105, 560–565. [Google Scholar] [CrossRef]
- Coronado, M.A.; Montero, G.; Montes, D.G.; Valdez-Salas, B.; Ayala, J.R.; García, C.; Carrillo, M.; León, J.A.; Moreno, A. Physicochemical characterization and SEM-EDX analysis of brewer’s spent grain from the craft brewery industry. Sustainability 2020, 12, 7744. [Google Scholar] [CrossRef]
- Sarkar, J.K.; Wang, Q. Characterization of pyrolysis products and kinetic analysis of waste jute stick biomass. Processes 2020, 8, 837. [Google Scholar] [CrossRef]
- Wang, S.; Nam, H.; Nam, H. Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. J. Environ. Chem. Eng. 2020, 8, 103683. [Google Scholar] [CrossRef]
- Barbanera, M.; Muguerza, I.F. Effect of the temperature on the spent coffee grounds torrefaction process in a continuous pilot-scale reactor. Fuel 2020, 262, 116493. [Google Scholar] [CrossRef]
- Tahir, M.H.; Zhao, Z.; Ren, J.; Rasool, T.; Naqvi, S.R. Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenergy 2019, 122, 193–201. [Google Scholar] [CrossRef]
- Nieto, N.; Noya, O.; Iturrondobeitia, A.; Sanchez-Fontecoba, P.; Pérez-López, U.; Palomares, V.; Lopez-Urionabarrenechea, A.; Rojo, T. On the Road to Sustainable Energy Storage Technologies: Synthesis of Anodes for Na-Ion Batteries from Biowaste. Batteries 2022, 8, 28. [Google Scholar] [CrossRef]
- Rodriguez Ortiz, L.; Torres, E.; Zalazar, D.; Zhang, H.; Rodriguez, R.; Mazza, G. Influence of pyrolysis temperature and bio-waste composition on biochar characteristics. J. Renew. Energy 2020, 155, 837–847. [Google Scholar] [CrossRef]
- Al, A.; Meltem, R. High-performance nanostructured bio-based carbon electrodes for energy storage applications. Cellulose 2021, 28, 5169–5218. [Google Scholar] [CrossRef]
- Bian, R.; Shi, W.; Luo, J.; Li, W.; Wang, Y.; Joseph, S.; Gould, H.; Zheng, J.; Zhang, X.; Liu, X.; et al. Copyrolysis of food waste and rice husk to biochar to create a sustainable resource for soil amendment: A pilot-scale case study in Jinhua, China. J. Clean. Prod. 2022, 347, 131269. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Z.; Luo, J.; Wu, W.; Liang, Y.; Tong, X.; Zhao, Z. Hierarchical Porous Carbon with Interconnected Ordered Pores from Biowaste for High-Performance Supercapacitor Electrodes. Nanoscale Res. Lett. 2020, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Myung, Y.; Kim, B.N.; Kim, I.G.; You, I.; Kim, T. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density. Sci. Rep. 2018, 8, 1915. [Google Scholar] [CrossRef] [Green Version]
- Reza, M.T.; Lynam, J.G.; Uddin, M.H.; Coronella, C.J. Hydrothermal carbonization: Fate of inorganics. Biomass Bioenergy 2013, 49, 86–94. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Wen, X.; Chen, X.; Wen, Y.; Shi, X.; Mijowska, E. High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. Sci. Rep. 2020, 10, 3518. [Google Scholar] [CrossRef] [Green Version]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. J. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Tobi, A.R.; Dennis, J.O. Activated carbon from composite of palm bio-waste as electrode material for solid-state electric double layer capacitor. J. Energy Storage 2021, 42, 103087. [Google Scholar] [CrossRef]
- Jiang, X.; Guo, F.; Jia, X.; Liang, S.; Peng, K.; Qian, L. Synthesis of biomass-based porous graphitic carbon combining chemical treatment and hydrothermal carbonization as promising electrode materials for supercapacitors. Ionics 2020, 26, 3655–3668. [Google Scholar] [CrossRef]
- Patel, P.S.; Bandre, N.; Saraf, A.; Ruparelia, J.P. Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment. Procedia Eng. 2013, 51, 430–435. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Cui, H.; Zhang, W.; Zhai, J.; Qian, Y.; Xie, X.; Li, Q. Fabrication and electrochemical treatment application of a microstructured TiO2-NTs/Sb-SnO2/PbO2 anode in the degradation of C.I. Reactive Blue 194 (RB 194). Chem. Eng. J. 2012, 209, 86–93. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, K.; Qiu, Y.; Liu, X.; Cao, C.; Feng, Y.; Hu, P. Nitrogen and sulfur co-doped porous carbon derived from biowaste as a promising electrocatalyst for zinc-air battery. Energy 2017, 143, 43–55. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, L.; Shi, G.; Liu, J.; Chen, J.; Dai, L. N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Zuschriften Angew. 2016, 250100, 2270–2274. [Google Scholar] [CrossRef]
- Ţurcanu, A.A.; Matei, E.; Râpă, M.; Predescu, A.M.; Coman, G.; Predescu, C. Biowaste Valorization Using Hydrothermal Carbonization for Potential Wastewater Treatment Applications. Water 2022, 14, 2344. [Google Scholar] [CrossRef]
- Gan, L.; Wu, Y.; Song, H.; Zhang, S.; Lu, C.; Yang, S.; Wang, Z.; Jiang, B.; Wang, C.; Li, A. Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Sep. Purif. Technol. 2019, 212, 728–736. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Q.; Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 2019, 62, 533–548. [Google Scholar] [CrossRef]
- Sangprasert, T.; Sattayarut, V.; Rajrujithong, C.; Khanchaitit, P.; Khemthong, P.; Chanthad, C.; Grisdanurak, N. Making use of the inherent nitrogen content of spent coffee grounds to create nanostructured activated carbon for supercapacitor and lithium-ion battery applications. Diam. Relat. Mater. 2022, 127, 109164. [Google Scholar] [CrossRef]
- Thanwisai, P.; Chaiyapo, N.; Phuenhinlad, P.; Kanaphan, Y.; Nash, J.; Chotsuwan, C.; Klamchuen, A.; Wang, Y.; Nann, T.; Meethong, N. Mesoporous and defective activated carbon cathode for AlCl4− anion storage in non-aqueous aluminium-ion batteries. Carbon 2022, 191, 195–204. [Google Scholar] [CrossRef]
- Liu, S.-F.; Kuo, C.-H.; Lin, H.-Y.; Lu, C.-Z.; Kang, J.-W.; Fey, G.T.-K.; Chen, H.-Y. Biowaste-derived Si@SiOx/C anodes for sustainable lithium-ion batteries. Electrochim. Acta 2022, 403, 139580. [Google Scholar] [CrossRef]
- Han, X.R.; Guo, X.T.; Xu, M.J.; Pang, H.; Ma, Y.W. Clean Utilization of Palm Kernel Shell: Sustainable and Naturally Heteroatom-Doped Porous Activated Carbon for Lithium–Sulfur Batteries. Rare Met. 2020, 39, 1099–1106. [Google Scholar] [CrossRef]
- Rybarczyk, M.K.; Li, Y.; Qiao, M.; Hu, Y.S.; Titirici, M.M.; Lieder, M. Hard Carbon Derived from Rice Husk as Low Cost Negative Electrodes in Na-Ion Batteries. J. Energy Chem. 2019, 29, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Mauger, A.; Julien, C.M. Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics 2017, 23, 1933–1947. [Google Scholar] [CrossRef] [Green Version]
- Amatucci, G.G.; Tarascon, J.M.; Klein, L.C. CoO2, the end member of the LixCoO2 Solid Solution. J. Electrochem. Soc. 1996, 143, 1114–1123. [Google Scholar] [CrossRef]
- Nanaji, K. Jute sticks derived novel graphitic porous carbon nanosheets as Li-ion battery anode material with superior electrochemical properties. Int. J. Energy Res. 2019, 44, 2289–2297. [Google Scholar] [CrossRef]
- Kwon, H.J.; Hwang, J.; Shin, H.; Jeong, M.; Chung, K.Y.; Sun, Y.; Jung, H. Nano/Microstructured Silicon−Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries. Nano Lett. 2020, 20, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhu, X.; Liu, Y.; Fang, Y.; Zhou, X.; Bao, J. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon. 2018, 127, 658–666. [Google Scholar] [CrossRef]
- Barnes, P.; Smith, K.; Parrish, R.; Jones, C.; Skinner, P.; Storch, E.; White, Q.; Deng, C.; Karsann, D.; Lau, M.L.; et al. A Non-Aqueous Sodium Hexafluorophosphate-Based Electrolyte Degradation Study: Formation and Mitigation of Hydrofluoric Acid. J. Power Sources 2020, 447, 227363. [Google Scholar] [CrossRef]
- Ould, D.M.C.; Menkin, S.; O’Keefe, C.A.; Coowar, F.; Barker, J.; Grey, C.P.; Wright, D.S. New Route to Battery Grade NaPF6 for Na-Ion Batteries: Expanding the Accessible Concentration. Angew. Chem.-Int. Ed. 2021, 60, 24882–24887. [Google Scholar] [CrossRef]
- Landesfeind, J.; Hosaka, T.; Graf, M.; Kubota, K.; Komaba, S.; Gasteiger, H.A. Comparison of Ionic Transport Properties of Non-Aqueous Lithium and Sodium Hexafluorophosphate Electrolytes. J. Electrochem. Soc. 2021, 168, 040538. [Google Scholar] [CrossRef]
- Walter, M.; Kovalenko, M.V.; Kravchyk, K.V. Challenges and benefits of post-lithium-ion batteries. New J. Chem. 2020, 44, 1677–1683. [Google Scholar] [CrossRef] [Green Version]
- Lv, W.; Wen, F.; Xiang, J.; Zhao, J.; Li, L.; Wang, L.; Liu, Z.; Tian, Y. Peanut shell derived hard carbon as ultralong cycling. Electrochim. Acta 2015, 176, 533–541. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Li, M.I.N. Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries. JOM 2018, 70, 1387–1391. [Google Scholar] [CrossRef]
- Demir, E.; Aydin, M.; Andreas, A.; Demir-cakan, R. Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries. J. Alloys Compd. 2019, 788, 1093–1102. [Google Scholar] [CrossRef]
- Wu, L.; Buchholz, D.; Vaalma, C.; Giffin, G.A. Apple-Biowaste-Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries. ChemElectroChem 2016, 3, 292–298. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Xie, Z.; Zhou, Z. Recent progress in rechargeable alkali metal-air batteries. Green Energy Environ. 2016, 1, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, J. Metal—air Batteries: Will They Be the Future Electrochemical Energy Storage Device of choice? Energy Lett. 2017, 2, 1370–1377. [Google Scholar] [CrossRef]
- Zhang, J. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Cai, Y.; Pam, M.E.; Yang, Y.; Zhang, D.; Wang, Y.; Huang, S. Designing Advanced Aqueous Zinc-Ion Batteries: Principles, Strategies, and Perspectives. Energy Environ. Mater. 2022, 5, 823–851. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Jiang, K. A Low Cost Aqueous Zn–S Battery Realizing Ultrahigh Energy Density. Adv. Sci. 2020, 7, 2000761. [Google Scholar] [CrossRef] [PubMed]
- Mensah-darkwa, K.; Zequine, C.; Kahol, P.K.; Gupta, R.K. Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustainability 2019, 11, 414. [Google Scholar] [CrossRef] [Green Version]
- Mangisetti, S.R.; Kamaraj, M.; Sundara, R. Green Approach for Synthesizing Three Different Carbon Microstructures from a Single Biowaste Bombax malabaricum for Fully Biocompatible Flexible Supercapacitors and Their Performance in Various Electrolytes. ACS Omega 2019, 4, 6399–6410. [Google Scholar] [CrossRef] [Green Version]
- Misnon, I.I.; Zain, N.K.M.; Lei, T.S.; Vijayan, B.L.; Jose, R. Activated carbon with graphitic content from stinky bean seedpod biowaste as supercapacitive electrode material. Ionics 2020, 26, 4081–4093. [Google Scholar] [CrossRef]
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Al-Thabaiti, S.A.; Mostafa, M.M.M.; Ahmed, A.I.; Salama, R.S. Synthesis of Copper/Chromium Metal Organic Frameworks-Derivatives as an Advanced Electrode Material for High-Performance Supercapacitors. Ceram. Int. 2023, 49, 5119–5129. [Google Scholar] [CrossRef]
- Samantara, A.K.; Ratha, S. Components of Supercapacitor BT. In Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective; Briefs in Materials; Spinger: Berlin/Heidelberg, Germany, 2018; pp. 11–39. [Google Scholar] [CrossRef]
- Wan, L.; Chen, D.; Liu, J.; Zhang, Y.; Chen, J.; Du, C.; Xie, M. Facile preparation of porous carbons derived from orange peel via basic copper carbonate activation for supercapacitors. J. Alloys Compd. 2020, 823, 153747. [Google Scholar] [CrossRef]
- Selvaraj, A.R.; Muthusamy, A.; Cho, I.; Kim, H.-J.; Senthil, K.; Prabakar, K. Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors. Carbon 2021, 174, 463–474. [Google Scholar] [CrossRef]
- Song, Y.; Qu, W.; He, Y.; Yang, H.; Du, M.; Wang, A.; Yang, Q.; Chen, Y. Synthesis and processing optimization of N-doped hierarchical porous carbon derived from corncob for high performance supercapacitors. J. Energy Storage 2020, 32, 101877. [Google Scholar] [CrossRef]
- Surya, K.; Michael, M.S. Hierarchical porous activated carbon prepared from biowaste of lemon peel for electrochemical double layer capacitors. Biomass Bioenergy 2021, 152, 106175. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Zhang, L.; Jiao, S.; Zhang, H.; Zhang, J.; Li, P.; Tao, Y.; Zhao, X. Rice hull-derived carbon for supercapacitors: Towards sustainable silicon-carbon supercapacitors. Polymers 2021, 13, 4463. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Cevik, E.; Aziz, M.A.; Qahtan, T.F.; Bozkurt, A.; Yamani, Z.H. Jute Sticks Derived and Commercially Available Activated Carbons for Symmetric Supercapacitors with Bio-electrolyte: A Comparative Study. J. Synth. Met. 2021, 277, 116765. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Wang, H.-L.; Yu, G.-T.; Huang, G.-M.; Lin, J.-H. Meso-pore dominant activated carbon from spent coffee grounds for high-performance electrochemical capacitors in organic electrolyte. J. Environ. Chem. Eng. 2021, 9, 106418. [Google Scholar] [CrossRef]
- Taer, E.; Yusra, D.A.; Amri, A.; Awitdrus; Taslim, R.; Apriwandi; Agustino; Putri, A. Synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes. Mater. Today Proc. 2020, 44, 3346–3349. [Google Scholar] [CrossRef]
- Lee, K.C.; Lim, M.S.W.; Hong, Z.Y.; Chong, S.; Tiong, T.J.; Pan, G.T.; Huang, C.M. Coconut shell-derived activated carbon for high-performance solid-state supercapacitors. Energies 2021, 14, 4546. [Google Scholar] [CrossRef]
- Xu, M.; Wang, A.; Xiang, Y.; Ejaz, A.; Niu, J. Self-template bagasse-based porous carbons for high performance supercapacitors. J. Ind. Crops Prod. 2022, 176, 114291. [Google Scholar] [CrossRef]
- Saini, S.; Chand, P.; Joshi, A. Biomass derived carbon for supercapacitor applications: Review. J. Energy Storage 2021, 39, 102646. [Google Scholar] [CrossRef]
- Bigdeloo, M.; Kowsari, E.; Ehsani, A.; Ramakrishna, S.; Chinnappan, A. Activated carbon derived from fennel flower waste as high-efficient sustainable materials for improving cycle stability and capacitance performance of electroactive nanocomposite of conductive polymer. J. Energy Storage 2022, 55, 105793. [Google Scholar] [CrossRef]
- Okenwa, C.; Aigbodion, V.S.; Offor, P.O.; Onoh, E.U. New insights into improved electrochemical performance of graphene synthesized from rice husk doped graphite composite electrode for supercapacitor. Chem. Data Collect. 2021, 40, 100887. [Google Scholar] [CrossRef]
- Ye, W.; Cai, J.; Yu, F.; Li, X.; Wang, X. Nitrogen-doped bagasse carbon spheres/graphene composite for high-performance supercapacitors. Biomass Bioenergy 2021, 145, 105949. [Google Scholar] [CrossRef]
- Bigdeloo, M.; Kowsari, E.; Ehsani, A.; Chinnappan, A.; Ramakrishna, S. Functionalized graphene oxide/activated carbon from canola waste as sustainable nanomaterials to improve pseudocapacitance performance of the electroactive conductive polymer. J. Energy Storage 2022, 50, 104279. [Google Scholar] [CrossRef]
- Tamilselvi, R.; Lekshmi, G.S.; Padmanathan, N.; Selvarage, V.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mandhakini, M. NiFe2O4/rGO nancomposites produced by soft bubble assembly for energy storage and environmental remediation. Renew. Energy 2022, 181, 1386–1401. [Google Scholar] [CrossRef]
- Wesley, R.J.; Durairaja, A.; Ramanathan, S.; Obadiah, A.; Justinabraham, R.; Lv, X.; Vasanthkumar. Potato peels biochar composite with copper phthalocyanine for energy storage application. Diam. Relat. Mater. 2021, 115, 108360. [Google Scholar] [CrossRef]
- Ramos, M.O.; Meraz, E.D.A.; Rojo, J.M.; Pacheco-Catalán, D.E.; Castro, M.A.P.; Ortiz, R.S.M. Activated carbons from coconut shell and NiO-based composites for energy storage systems. J. Mater Sci. Mater. Electron. 2021, 32, 4872–4884. [Google Scholar] [CrossRef]
- Pandey, V.K.; Verma, S.; Verma, B. Polyaniline/activated carbon/copper ferrite (PAN/AC/CuF) based ternary composite as an efficient electrode material for supercapacitor. Chem. Phys. Lett. 2022, 802, 139780. [Google Scholar] [CrossRef]
- Baig, M.M.; Gul, I.H. Transformation of Wheat Husk to 3D Activated Carbon/NiCo2S4 Frameworks for High-Rate Asymmetrical Supercapacitors. J. Energy Storage 2021, 37, 102477. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, N.; Man, J.; Du, Y.; Cui, J.; Sun, J. A Sustainable Approach from Rice Husks to P,N-Dual Doping Porous C/SiOx Composites for High-Performance Lithium-Ion Battery Anodes. J. Electroanal. Chem. 2022, 904, 115939. [Google Scholar] [CrossRef]
- Cui, J.; Qiu, Y.; Zhang, H.; Yao, Z.; Zhao, W.; Liu, Y.; Sun, J. Sulfur- and Nitrogen-Doped Rice Husk-Derived C/SiOx Composites as High-Performance Lithium-Ion Battery Anodes. Solid State Ion. 2021, 361, 115548. [Google Scholar] [CrossRef]
- Zhao, D.; Ge-Zhang, S.; Zhang, Z.; Tang, H.; Xu, Y.; Gao, F.; Xu, X.; Liu, S.; Zhou, J.; Wang, Z.; et al. Three-Dimensional Honeycomb-Like Carbon as Sulfur Host for Sodium–Sulfur Batteries without the Shuttle Effect. ACS Appl. Mater. Interfaces 2022, 14, 54662–54669. [Google Scholar] [CrossRef] [PubMed]
- Bosubabu, D.; Sampathkumar, R.; Karkera, G.; Ramesha, K. Facile Approach to Prepare Multiple Heteroatom-Doped Carbon Material from Bagasse and Its Applications toward Lithium-Ion and Lithium−sulfur Batteries. Energy Fuels 2021, 35, 8286–8294. [Google Scholar] [CrossRef]
- Arie, A.A.; Kristianto, H.; Cengiz, E.C.; Demir-Cakan, R. Waste Tea-Based Porous Carbon–Sulfur Composite Cathodes for Lithium–Sulfur Battery. Ionics 2020, 26, 201–212. [Google Scholar] [CrossRef]
- Sekar, S.; Ahmed, T.A.; Inamdar, A.I.; Lee, Y.; Im, H.; Kim, D.Y.; Lee, S. Activated Carbon-Decorated Spherical Silicon Nanocrystal Composites Synchronously-Derived from Rice Husks for Anodic Source of Lithium-Ion Battery. Nanomaterials 2019, 9, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzou, K.A.K.; Terbouche, A.; Ramdane-Terbouche, C.A.; Belkhalfa, H.; Bachari, K.; Hauchard, D.; Mezaoui, D. Electrochemical performance of new hybrid activated carbon materials from binary and ternary Date-Olive pits for supercapacitor electrodes. J. Energy Storage 2022, 47, 103559. [Google Scholar] [CrossRef]
Biowaste | Carbon (%) | Hydrogen (%) | Nitrogen (%) | Oxygen (%) | Reference |
---|---|---|---|---|---|
Rice husk | 35.82 | 6.15 | 5.57 | 51.95 | [23] |
Orange peel | 45.10 | 8.78 | 0.46 | 42.30 | [24] |
Coconut shell | 42.31 | 4.65 | 0.57 | 52.03 | [25] |
Sugarcane bagasse | 44.60 | 5.80 | 0.60 | 44.50 | [26] |
Corncob | 45.69 | 6.18 | 5.65 | 41.65 | [27] |
Brewer’s spent grain | 43.59 | 6.18 | 3.46 | 37.22 | [28] |
Jute stick | 43.41 | 5.78 | 7.81 | 43.00 | [29] |
Groundnut shell | 46.82 | 6.58 | 0.80 | 37.64 | [30] |
Spent coffee grounds | 59.70 | 7.80 | 2.20 | 30.20 | [31] |
Banana peel | 45.43 | 5.67 | 2.31 | 36.40 | [32] |
Apple pomace | 41.70 | 7.80 | 0.60 | 48.10 | [33] |
Olive mill solid waste | 44.10 | 6.30 | 1.60 | 35.80 | [33] |
Grape seed | 47.40 | 6.70 | 1.90 | 38.50 | [33] |
Grape skin | 48.60 | 7.00 | 3.00 | 33.20 | [33] |
Almond shell | 49.62 | 5.98 | 0.17 | 44.23 | [34] |
Nutshell | 48.79 | 5.99 | 0.38 | 44.84 | [34] |
Biochar Precursor | Carbonization Temperature (°C) | C (%) | H (%) | N (%) | O (%) | Reference |
---|---|---|---|---|---|---|
Corncob | 1200 | 89.31 | 0.45 | 1.56 | - | [33] |
Olive mill solid waste | 1200 | 70.76 | 0.39 | 2.27 | - | [33] |
Almond shell | 873 | 85.50 | 5.28 | 1.70 | 7.52 | [34] |
Nutshell | 873 | 81.13 | 6.11 | 1.20 | 11.56 | [34] |
Biowaste Source | Treatment | Specific Capacity (mAh/g) | Coulombic Efficiency (%) | Cycle Number | Application | Reference |
---|---|---|---|---|---|---|
Spent coffee grounds | KOH activation | 592 at 100 mA/g | 97 | 500 | LiIB | [52] |
Coconut shell | KOH activation | 150 at 0.1 A/g | − | 1500 | AlIB | [53] |
Rice husk/waste coffee grounds | Carbonization | 1125 at 100 mA/g | − | 100 | LiIB | [54] |
Corncob | Carbonization | 268.54 at 24.80 mA/g | 73.49 | − | NaIB | [33] |
Grape skin | Carbonization | 243.82 at 24.80 mA/g | 61.89 | − | NaIB | [33] |
Grape seed | Carbonization | 244.94 at 24.80 mA/g | 60.25 | − | NaIB | [33] |
Apple pomace | Carbonization | 247.19 at 24.80 mA/g | 40.73 | − | NaIB | [33] |
Olive mill | Carbonization | 174.16 at 28.80 mA/g | 50.00 | − | NaIB | [33] |
Palm kernel shell | KOH activation | 869.8 at 200 mA/g | − | 100 | LiSB | [55] |
Rice husk | Carbonization | 632 at 1.0 A/g | 70.4 | 100 | NaIB | [56] |
Biowaste | Treatment Method | Specific Surface Area (m2/g) | Energy Density (Wh/Kg) | Power Density (W/Kg) | Specific Capacitance (F/g) | Current Density (A/g) | Reference |
---|---|---|---|---|---|---|---|
Peanut shell | ZnCl2 activation | 2129.5 | 32.08 | 1000.0 | 266.06 | 0.5 | [43] |
Waste coffee grounds | KOH activation | 3549.0 | 101 | 900 | 224.0 | 1.0 | [40] |
Spent coffee grounds | hydrothermal/carbonization KOH activation | 1835 | 10.84 | 4589 | 312 | 0.1 & 3 | [52] |
Orange peel | CuCO3 activation | 912.4 | 31.3 | 499.5 | 375.7 | 1.0 | [81] |
Prosopis juliflora wood | KOH activation | 2943.0 | 56.7 | 248.8 | 588.0 | 0.5 | [82] |
Corncob | KOH activation | 1722.0 | 18.84 | 149.36 | 382.6 | 0.5 | [83] |
Lemon peel | KOH activation | 744.78 | 4.67 | 8113.0 | 152.14 | - | [84] |
Rice hull | NaOH activation | 768.0 | 31.9 | 309.2 | 150.8 | 0.5 | [85] |
Jute stick | NaHCO3 activation | 1100.0 | 20.0 | 500.0 | 150.0 | 1.0 | [86] |
Spent coffee grounds | CO2 activation | 2497.0 | 48.3 | 627.0 | 222.4 | 0.5 | [87] |
Banana stem | ZnCl2 activation | 788.09 | 6.19 | 44.67 | 179.0 | - | [88] |
Coconut shell | KOH activation | 1567.0 | 48.9 | 1000.0 | 449.0 | 1.0 | [89] |
Sugarcane bagasse | Activation | 1351.7 | 14.5 | 125.0 | 418.5 | 0.5 | [90] |
Biowaste Source | Composite Formed | Electrochemical Performance | Application | Reference |
---|---|---|---|---|
Fennel flower | poly-orthoaminophenol/functionalized graphene oxide/activated fennel flower | 1400.2 F/g at 2 A/g | Supercapacitor | [92] |
Rice husk | graphene/graphite | 16007.02 F/g | Supercapacitor | [93] |
Sugarcane bagasse | carbon spheres/graphene | 226.8 F/g at 0.5 A/g | Supercapacitor | [94] |
Canola waste | poly-orthoaminophenol/functionalized graphene oxide/activated canola waste | 1350.5 F/g at 2.0 A/g | Supercapacitor | [95] |
Coconut coir | NiFe2O4/reduced graphene oxide | 599.9 F/g at 1.0 A/g | Supercapacitor | [96] |
Potato peels | potato peels biochar/copper phthalocyanine | 237.0 F/g at 6.1 A/g | Supercapacitor | [97] |
Coconut shell | Coconut shell activated carbon/NiO | 142.0 F/g at 6 mA/g | Supercapacitor | [98] |
Coconut shell | Polyaniline/activated carbon/copper ferrite | 248.3 F/g at 1.0 A/g | Supercapacitor | [99] |
Wheat husk | NiCo2S4/wheat husk activated carbon | 1962.0 F/g at 1.0 A/g | [100] | |
Rice husk | P,N-doped carbon/SiOx | 622 mA/g at 1.0 A.g after 1000 cycles | LiIB | [101] |
Rice husk | S,N-doped carbon/SiOx | 632 mA/g at 1.0 A/g after 1200 cycles | NaIB | [102] |
Wheat husk | Sulfur/carbon | 822 mA/g at 0.2 C after 100 cycles | NaSB | [103] |
Sugarcane bagasse | N,S,O-doped activated carbon | 574 mA/g after 1000 cycles | LiIB/LiSB | [104] |
Waste tea | Sulfur/activated carbon | 428 mA/g at 0.5 C after 100 cycles | LiSB | [105] |
Rice husk | Activated carbon/silicon | 429 at 100 mA/g after 100 cycles | LiIB | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayode, S.E.; González, F.J. Treatment of Biowaste for Electrodes in Energy Storage Applications: A Brief Review. J. Compos. Sci. 2023, 7, 127. https://doi.org/10.3390/jcs7030127
Kayode SE, González FJ. Treatment of Biowaste for Electrodes in Energy Storage Applications: A Brief Review. Journal of Composites Science. 2023; 7(3):127. https://doi.org/10.3390/jcs7030127
Chicago/Turabian StyleKayode, Samuel Ebenezer, and Francisco J. González. 2023. "Treatment of Biowaste for Electrodes in Energy Storage Applications: A Brief Review" Journal of Composites Science 7, no. 3: 127. https://doi.org/10.3390/jcs7030127
APA StyleKayode, S. E., & González, F. J. (2023). Treatment of Biowaste for Electrodes in Energy Storage Applications: A Brief Review. Journal of Composites Science, 7(3), 127. https://doi.org/10.3390/jcs7030127