A Novel One-Pot Synthesis of PVP-Coated Iron Oxide Nanoparticles as Biocompatible Contrast Agents for Enhanced T2-Weighted MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. One-Pot Synthesis of PVP-Coated SPIONs Nanoparticles
2.3. Characterization and Instrumentation
2.4. MRI Measurements
3. Results and Discussion
3.1. XRD Analysis
3.2. TEM Results and Analysis
3.3. Zeta Potential Measurements
3.4. VSM Results and Analysis
3.5. Cytotoxicity Assay of Bare and PVP40K-SPIONs in T-Cells
3.6. Relaxometry Measurements of SPIONs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arbab, A.S.; Wilson, L.B.; Ashari, P.; Jordan, E.K.; Lewis, B.K.; Frank, J.A. A Model of Lysosomal Metabolism of Dextran Coated Superparamagnetic Iron Oxide (SPIO) Nanoparticles: Implications for Cellular Magnetic Resonance Imaging. NMR Biomed. 2005, 18, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.M.; Skrtic, S.; Sharer, K.; Hill, J.M.; Dunbar, C.E.; Koretsky, A.P. MRI Detection of Single Particles for Cellular Imaging. Proc. Natl. Acad. Sci. USA 2004, 101, 10901–10906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zschiesche, L.; Janko, C.; Friedrich, B.; Frey, B.; Band, J.; Lyer, S.; Alexiou, C.; Unterweger, H. Biocompatibility of Dextran-Coated 30 Nm and 80 Nm Sized SPIONs towards Monocytes, Dendritic Cells and Lymphocytes. Nanomaterials 2023, 13, 14. [Google Scholar] [CrossRef]
- Benyoucef, M.; Alzoubi, T.; Reithmaier, J.P.; Wu, M.; Trampert, A. Nanostructured Hybrid Material Based on Highly Mismatched III–V Nanocrystals Fully Embedded in Silicon. Phys. Stat. Solidi (a) 2014, 211, 817–822. [Google Scholar] [CrossRef]
- Makhadmeh, G.N.; Abuelsamen, A.; Al-Akhras, M.-A.H.; Aziz, A.A. Silica Nanoparticles Encapsulated Cichorium Pumilum as a Promising Photosensitizer for Osteosarcoma Photodynamic Therapy: In-Vitro Study. Photodiagn. Photodyn. Ther. 2022, 38, 102801. [Google Scholar] [CrossRef]
- Makhadmeh, G.N.; Abdul Aziz, A.; Abdul Razak, K.; Abu Noqta, O. Encapsulation Efficacy of Natural and Synthetic Photosensitizers by Silica Nanoparticles for Photodynamic Applications. IET Nanobiotechnol. 2015, 9, 381–385. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Noqta, O.A.; Khaniabadi, P.M.; Mehrdel, B. Excellent Relaxivity and X-Ray Attenuation Combo Properties of Fe3O4@ Au CSNPs Produced via Rapid Sonochemical Synthesis for MRI and CT Imaging. Mater. Today Commun. 2020, 25, 101368. [Google Scholar] [CrossRef]
- Shubayev, V.I.; Pisanic, T.R.; Jin, S. Magnetic Nanoparticles for Theragnostics. Adv. Drug Deliv. Rev. 2009, 61, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Noqta, O.A.; Sodipo, B.K.; Aziz, A.A. One-Pot Synthesis of Highly Magnetic and Stable Citrate Coated Superparamagnetic Iron Oxide Nanoparticles by Modified Coprecipitation Method. Funct. Compos. Struct. 2020, 2, 045005. [Google Scholar] [CrossRef]
- Noqta, O.A.; Aziz, A.A.; Usman, I.A.; Bououdina, M. Recent Advances in Iron Oxide Nanoparticles (IONPs): Synthesis and Surface Modification for Biomedical Applications. J. Supercond. Nov. Magn. 2019, 32, 779–795. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziaei-Azad, H.; Semagina, N. Bimetallic Catalysts: Requirements for Stabilizing PVP Removal Depend on the Surface Composition. Appl. Catal. A Gen. 2014, 482, 327–335. [Google Scholar] [CrossRef]
- Tan, X.; Wang, Z.; Yang, J.; Song, C.; Zhang, R.; Cui, Y. Polyvinylpyrrolidone-(PVP-) Coated Silver Aggregates for High Performance Surface-Enhanced Raman Scattering in Living Cells. Nanotechnology 2009, 20, 445102. [Google Scholar] [CrossRef]
- Tang, X.-L.; Jiang, P.; Ge, G.-L.; Tsuji, M.; Xie, S.-S.; Guo, Y.-J. Poly (N-Vinyl-2-Pyrrolidone)(PVP)-Capped Dendritic Gold Nanoparticles by a One-Step Hydrothermal Route and Their High SERS Effect. Langmuir 2008, 24, 1763–1768. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.-Y.; Ma, S.; Zhang, Y.-J.; Zhao, X.; Zhang, X.-D.; Zhang, Z.-D. Synthesis of PVP-Coated Ultra-Small Fe3O4 Nanoparticles as a MRI Contrast Agent. J. Mater. Sci. Mater. Med. 2010, 21, 1205–1210. [Google Scholar] [CrossRef]
- Al-Fandi, M.; Oweis, R.J.; Albiss, B.A.; Alzoubi, T.; Al-Akhras, M.; Qutaish, H.; Khwailah, H.; Al-Hattami, S.; Al-Shawwa, E. A Prototype Ultraviolet Light Sensor Based on ZnO Nanoparticles/Graphene Oxide Nanocomposite Using Low Temperature Hydrothermal Method. IOP Conf. Ser. Mater. Sci. Eng. 2015, 92, 012009. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.Y.; Lim, N.H.; Seo, J.A.; Yuk, S.H.; Kwak, B.K.; Khang, G.; Lee, H.B.; Cho, S.H. Preparation and Magnetic Resonance Imaging Effect of Polyvinylpyrrolidone-coated Iron Oxide Nanoparticles. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2006, 79, 142–150. [Google Scholar] [CrossRef]
- Abu-Noqta, O.; Aziz, A.; Usman, A. Colloidal Stability of Iron Oxide Nanoparticles Coated with Different Capping Agents. Mater. Today Proc. 2019, 17, 1072–1077. [Google Scholar] [CrossRef]
- Uvarov, V.; Popov, I. Metrological Characterization of X-Ray Diffraction Methods at Different Acquisition Geometries for Determination of Crystallite Size in Nano-Scale Materials. Mater. Charact. 2013, 85, 111–123. [Google Scholar] [CrossRef]
- Li, J.; Inukai, K.; Takahashi, Y.; Tsuruta, A.; Shin, W. Effect of PVP on the Synthesis of High-Dispersion Core–Shell Barium-Titanate–Polyvinylpyrrolidone Nanoparticles. J. Asian Ceram. Soc. 2017, 5, 216–225. [Google Scholar] [CrossRef]
- Martinez, L.; Leinen, D.; Martin, F.; Gabas, M.; Ramos-Barrado, J.; Quagliata, E.; Dalchiele, E. Electrochemical Growth of Diverse Iron Oxide (Fe3O4, α-FeOOH, and γ-FeOOH) Thin Films by Electrodeposition Potential Tuning. J. Electrochem. Soc. 2007, 154, D126. [Google Scholar] [CrossRef]
- Speakman, S.A. Estimating Crystallite Size Using XRD. MIT Cent. Mater. Sci. Eng. 2014, 2, 14. [Google Scholar]
- Lu, P.; Fang, S.; Cheng, W.; Huang, S.; Huang, M.; Cheng, H. Characterization of Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreen Powder by Comparing Different Measurement Methods. J. Food Drug Anal. 2018, 26, 1192–1200. [Google Scholar] [CrossRef]
- Ahmed, B.; Kumar, S.; Kumar, S.; Ojha, A.K. Shape Induced (Spherical, Sheets and Rods) Optical and Magnetic Properties of CdS Nanostructures with Enhanced Photocatalytic Activity for Photodegradation of Methylene Blue Dye under Ultra-Violet Irradiation. J. Alloy. Compd. 2016, 679, 324–334. [Google Scholar] [CrossRef]
- Seo, K.; Sinha, K.; Novitskaya, E.; Graeve, O.A. Polyvinylpyrrolidone (PVP) Effects on Iron Oxide Nanoparticle Formation. Mater. Lett. 2018, 215, 203–206. [Google Scholar] [CrossRef]
- Riddick, T.M. Control of Colloid Stability through Zeta Potential: With a Closing Chapter on Its Relationship to Cardiovascular Disease; Zeta-Meter, Incorporated: Staunton, VA, USA, 1968; Volume 1. [Google Scholar]
- Seipenbusch, M.; Rothenbacher, S.; Weber, A.; Kasper, G. Interparticle Forces in Nanoparticle Agglomerates. In Proceedings of the European Aerosol Conference, Salzburg, Austria, 9–14 September 2007. [Google Scholar]
- Ngenefeme, F.-T.J.; Eko, N.J.; Mbom, Y.D.; Tantoh, N.D.; Rui, K.W. A One Pot Green Synthesis and Characterisation of Iron Oxide-Pectin Hybrid Nanocomposite. Open J. Compos. Mater. 2013, 3, 29725. [Google Scholar]
- Noqta, O.A.; Aziz, A.A.; Usman, A.I. Synthesis of PVP Coated Superparamagnetic Iron Oxide Nanoparticles with a High Saturation Magnetization; Trans Tech Publ: Zurich, Switzerland, 2019; Volume 290, pp. 301–306. [Google Scholar]
- Choudhari, Y.; Kulthe, S.; Inamdar, N.; Shirolikar, S.; Borde, L.; Mourya, V. Combination of Low and High Molecular Weight Chitosans for the Preparation of Nanoparticles: A Novel Approach towards Sustained Drug Delivery. J. Nanopharm. Drug Deliv. 2013, 1, 376–387. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Noqta, O.A.; Khaniabadi, P.M.; Mehrdel, B. Simple Rapid Stabilization Method through Citric Acid Modification for Magnetite Nanoparticles. Sci. Rep. 2020, 10, 10793. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Paul, K.G.; Frigo, T.B.; Groman, J.Y.; Groman, E.V. Synthesis of Ultrasmall Superparamagnetic Iron Oxides Using Reduced Polysaccharides. Bioconjug. Chem. 2004, 15, 394–401. [Google Scholar] [CrossRef]
- Gnanaprakash, G.; Philip, J.; Jayakumar, T.; Raj, B. Effect of Digestion Time and Alkali Addition Rate on Physical Properties of Magnetite Nanoparticles. J. Phys. Chem. B 2007, 111, 7978–7986. [Google Scholar] [CrossRef]
- Lin, C.-R.; Chu, Y.-M.; Wang, S.-C. Magnetic Properties of Magnetite Nanoparticles Prepared by Mechanochemical Reaction. Mater. Lett. 2006, 60, 447–450. [Google Scholar] [CrossRef]
- Roy, S.; Dubenko, I.; Edorh, D.D.; Ali, N. Size Induced Variations in Structural and Magnetic Properties of Double Exchange La0.8 Sr0.2 MnO3−δ Nano-Ferromagnet. J. Appl. Phys. 2004, 96, 1202–1208. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Quintela, M.; Hueso, L.; Rivas, J.; Rivadulla, F. Intergranular Magnetoresistance in Nanomanganites. Nanotechnology 2003, 14, 212. [Google Scholar] [CrossRef]
- Dan, D.F.M. Scott Block Copolymer Cross-Linked Nanoassemblies Improve Particle Stability and Biocompatibility of Superparamagnetic Iron Oxide Nanoparticles|SpringerLink. Available online: https://link.springer.com/article/10.1007/s11095-012-0900-8 (accessed on 9 March 2023).
- Tromsdorf, U.I.; Bruns, O.T.; Salmen, S.C.; Beisiegel, U.; Weller, H. A Highly Effective, Nontoxic T 1 MR Contrast Agent Based on Ultrasmall PEGylated Iron Oxide Nanoparticles. Nano Lett. 2009, 9, 4434–4440. [Google Scholar] [CrossRef]
- Kim, B.H.; Lee, N.; Kim, H.; An, K.; Park, Y.I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S.G.; Na, H.B. Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T 1 Magnetic Resonance Imaging Contrast Agents. J. Am. Chem. Soc. 2011, 133, 12624–12631. [Google Scholar] [CrossRef]
- Gossuin, Y.; Martin, E.; Vuong, Q.L.; Delroisse, J.; Laurent, S.; Stanicki, D.; Rousseau, C. Characterization of Commercial Iron Oxide Clusters with High Transverse Relaxivity. J. Magn. Reson. Open 2022, 10, 100054. [Google Scholar] [CrossRef]
- Jun, Y.; Seo, J.; Cheon, J. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences. Acc. Chem. Res. 2008, 41, 179–189. [Google Scholar] [CrossRef]
- Ahmad, T.; Bae, H.; Rhee, I.; Chang, Y.; Lee, J.; Hong, S. Particle Size Dependence of Relaxivity for Silica-Coated Iron Oxide Nanoparticles. Curr. Appl. Phys. 2012, 12, 969–974. [Google Scholar] [CrossRef]
- Al Zoubi, T.; Albiss, B.; AL-Akhras, M.-A.; Qutaish, H.; Alabed, E.; Nazrul, S. NiO-Nanofillers Embedded in Graphite/PVA-Polymer Matrix for Efficient Electromagnetic Radiation Shielding. AIP Conf. Proc. 2019, 2083, 020002. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzoubi, F.Y.; Abu Noqta, O.; Al Zoubi, T.; Al-Khateeb, H.M.; Alqadi, M.K.; Abuelsamen, A.; Makhadmeh, G.N. A Novel One-Pot Synthesis of PVP-Coated Iron Oxide Nanoparticles as Biocompatible Contrast Agents for Enhanced T2-Weighted MRI. J. Compos. Sci. 2023, 7, 131. https://doi.org/10.3390/jcs7030131
Alzoubi FY, Abu Noqta O, Al Zoubi T, Al-Khateeb HM, Alqadi MK, Abuelsamen A, Makhadmeh GN. A Novel One-Pot Synthesis of PVP-Coated Iron Oxide Nanoparticles as Biocompatible Contrast Agents for Enhanced T2-Weighted MRI. Journal of Composites Science. 2023; 7(3):131. https://doi.org/10.3390/jcs7030131
Chicago/Turabian StyleAlzoubi, Fedda Y., Osama Abu Noqta, Tariq Al Zoubi, Hasan M. Al-Khateeb, Mohammed K. Alqadi, Abdulsalam Abuelsamen, and Ghaseb Naser Makhadmeh. 2023. "A Novel One-Pot Synthesis of PVP-Coated Iron Oxide Nanoparticles as Biocompatible Contrast Agents for Enhanced T2-Weighted MRI" Journal of Composites Science 7, no. 3: 131. https://doi.org/10.3390/jcs7030131
APA StyleAlzoubi, F. Y., Abu Noqta, O., Al Zoubi, T., Al-Khateeb, H. M., Alqadi, M. K., Abuelsamen, A., & Makhadmeh, G. N. (2023). A Novel One-Pot Synthesis of PVP-Coated Iron Oxide Nanoparticles as Biocompatible Contrast Agents for Enhanced T2-Weighted MRI. Journal of Composites Science, 7(3), 131. https://doi.org/10.3390/jcs7030131