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Abstract: Despite studies on the potential replacement of synthetic resins by bio-based adhesives
such as proteins in recent years, there is still no reliable method for estimating the strength of wood
products made using the combined parameters in the literature. This limitation is due to the nonlinear
relationship between strength and the combined components. In the present research, the application
of artificial intelligence techniques was studied to predict the bonding strength of glulam adhered by
protein containing different ratios of MUF (melamine–urea–formaldehyde) resin with different F-to-
U/M molar ratios at different press temperatures. For this purpose, the ANFIS artificial intelligence
model was used as basic mode or combined with ant colony optimization (ACOR), particle swarm
optimization (PSO), differential evaluation (DE) and genetic algorithms (GA) to develop an optimal
trained model to predict the bonding strength of glulam based on experimental results. Comparison
of the obtained results with the experimental results showed the ability of the above methods to
estimate the bonding strength of glulam in a reliable manner. Although the basic ANFIS alone and
in combination with other algorithms was not able to achieve an ideal performance prediction to
estimate bonding strength, the combination of GA and ANFIS offered an excellent ability compared
to the combination of other algorithms combined with ANFIS. Hence, the developed ANFIS-GA
model is introduced as the best prediction technique to solve bonding strength problems of laminated
products. In addition, using the developed optimal model, a precise attempt was made to show the
nature of the parameters used to produce glulam and determine the optimum limit.

Keywords: glulam; MUF-modified protein adhesive; molar ratio; press temperature; bonding
strength; ANFIS

1. Introduction

The main adhesives used to make wood composites are thermosetting resins based on
petroleum such as UF. However, the presence of free formaldehyde in synthetic resins limits
their use. For this reason, many studies have been conducted with the aim of replacing
these resins with safe, renewable, biodegradable, bio-based materials such as plant proteins
extracted from soybean. Soybean flour is a waste material resulting from the process of
extracting oil from soybeans. Despite the abundant use of soybean waste in livestock feed,
large amounts of this waste are still produced every year. However, the use of these raw
materials as an adhesive also has major disadvantages. Owing to the high viscosity and
weak moisture and adhesion properties of these materials, as well as their requirement
for a long hot pressure cycle and high energy consumption to remove water from the
adhesive [1,2], it remains challenging to use them to produce wood products. Therefore,
many attempts have been made to improve the technological processes associated with
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the use of soy protein adhesive by applying different thermal chemical treatments, e.g.,
with/without synthetic resins.

Using soy protein adhesives resulting from alkaline modification (NaOH) and trypsin,
Hettiarachchy et al. showed that the bonding strength and water absorption resistance
of soy protein modified by both methods increased compared the non-modified proteins
and that soy protein adhesive modified in a stronger alkaline medium is more resistant to
water absorption [3]. Yang et al. showed that adding hydrophobic materials does not have
a clear negative effect on the properties of soy-protein-based wood products [4]. However,
the addition of these materials decreases formaldehyde release due to the increase in the
free formaldehyde reaction with amine groups in the soy flour [5], without significantly
affecting the properties of the panels [6]. Sun and Bian found that soy protein modified by
alkali has a higher water absorption resistance with the presence of higher levels of urea [7].
Huang and Sun showed that using urea combined with soy protein modified by guanidine
improves the properties of the produced adhesive with the presence of varying urea levels
because the protein polymer chain opens as a result of chemical treatment [8]. A study of
the resistance and water absorption properties of plywood adhered by protein adhesive
resulting from soy chemical treatment through SDS and SDBS indicated the improvement
of the mechanical and physical properties of the plywood [8].

In order to optimize the production process of wood laminated products, various
parameters must be considered and tested. Three types of techniques can be used in
practice to evaluate different properties of materials in the field of engineering and the
production of wood products: artificial intelligence (AI), analytical and numerical methods.
Artificial intelligence techniques have been developed to address the challenges related to
wood composites [9–11]. These techniques can be used to determine the optimal process
parameters for the manufacturing of laminated products and minimize cost, energy and
time expenditures. Umeonylagu and Nwobi-Okoye used an ANN as a fitness function
and achieved desirable performance with the non-dominated sorting genetic algorithm-
II (NSGA-II) in the multiobjective optimization of the strength properties of concrete
reinforced by bamboo, using the Pareto optimal solution as a guideline [12]. Wong et al.
confirmed the performance of the feedforward backpropagation neural network (FFNN),
cascade-forward backpropagation neural network (CFNN) and generalized regression
neural network (GRNN) methods in estimating error values and regression coefficients to
develop models to predict the behaviors of fiberboard [13]. Using multilayer perceptron
(MLP), support vector regression and a fuzzy neural inference system in combination
with particle swarm optimization (PSO) and the kriging interpolation method, Jamali
et al. developed AI methods able to predict the compressive strength of fiber-reinforced
polymer concrete [14].

The potential of the ANFIS to model problems associated with engineered products is
mentioned in the references. The results show that promising research tends to invoke the
capabilities of ANFIS models. However, there are certain problems related to the tuning
of the membership functions parameters [15]. For example, the model training process
affects the correctness of the prediction. AI models can be subjected to hyperparameter
tuning [16]. The computer age has led to the discovery of AI hybrid models using various
optimization algorithms inspired by nature, including ant colony (ACOR), particle swarm
optimization (PSO), genetic algorithm (GA) and differential evaluation (DE) [17–20], which
can be used to train AI models and improve their performance on both nonlinear and high-
dimensional problems. The abovementioned optimization algorithms are able to increase
the optimization capacity of the ANFIS model to model different prediction problems
[21–25]. Hybridization of the ANFIS model through optimization algorithms based on the
laws of nature has remarkably improved the prediction processes in various engineering
applications [26–30]. Hence, the main aim of hybridization is to achieve a reliable and
stable training process [31–33].

To date, various AI-based models have been used to evaluate various physical and
mechanical properties of wood products. However, few studies have been conducted on
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the use of modeling techniques to evaluate the adhesion properties of bio-based connectors.
Bio-based adherents are used mainly because of their inactivity, as well as the necessity of
the application of chemical and thermal modification processes. It is necessary to activate
proteins by applying different treatments. Since the natural protein structure of soy is dense
and spherical, comprising a polypeptide chain of 18 types of amino acids arranged by bonds
including disulfide, hydrogen and hydrophilic interactions, ion bonds and van der Waals
forces interweave soy protein molecules and evaporate water due to the curing mechanism,
while the functional groups exhibit scarce chemical reactions on the molecule chains of the
soy protein, which shows a low bonding strength [34]. The bonding force occurs mainly
due to the hydrogen bonds produced between these functional groups that break easily in
moist media. To improve the bonding strength of soy protein adhesives on the one hand
and to study the feasibility of decreasing the use of synthetic resins and partially replacing
them with bio-based adhesives on the other hand, different formaldehyde-to-urea molar
ratios were used in combination with a low melamine molar ratio in MUF protein adhesive
synthesis to produce a glulam laminate product. Although in the related literature, the
effects of various process variables on the properties of laminated products have been
discussed in detail, very little information is available on the possibility of using an ANN
to estimate the properties of wood laminated products based on protein-based bio-based
adhesive. Hence, to evaluate and present a reliable high-precision model, in the present
study, we investigated the ability of new models based on the hybridization of the ANFIS
model with four algorithms inspired by nature (ACOR, PSO, GA and DE) to predict the
bonding strength of glulam.

2. Materials and Methods
2.1. Materials

After cutting a walnut tree (Juglans regia L.) with a diameter at breast height of 30 cm
and providing pieces with a length of 35 cm, radial planks were cut with a band saw with
dimensions of 350 × 70 × 7 mm. The boards were stored crosswise for 3 months in the
laboratory (to prevent warping and cracking), and their moisture content was reduced to
15%. Then, they were put in an oven at a temperature of 120 ◦C for 5 h to further reduce
their moisture content to 8%. Afterwards, they were kept in plastic bags to prevent moisture
absorption when making the glulam.

To make the protein adhesive, edible soybean (Khoshkpak Products Co., Tehran, Iran)
containing 1.1 g fat, 0.21 g sodium, 3.13 g sugar, 7.6 g carbohydrate and 53.3 g protein in
100 g and NaOH (0.99%), ethylene glycol (Semnan Azma Co., Semnan, Iran) with the
density 1.11 kg/lit) and HCl (20%) were used.

To make the MUF resin, powdered melamine (with 99.8% purity), urea (with
46% purity made by Khorasan Petrochemical Co. Tehran, Iran), formalin (with a den-
sity of 1.08 g/cm3, pH of 2.5–4 and concentration of 36–38 made by Mojalali Co., Tehran,
Iran), NaOH (40%), butanol and ammonium chloride (20%) were used.

2.2. Methods
2.2.1. Experimental Design

The response surface methodology (RSM) is used as a technique to offer statistical and
mathematical models. Hence, it was used to design the experiments. The center composite
design (CCD) was used for this purpose, with three independent variables were used as
the data inputs: the molar ratio of formaldehyde to melamine+urea (MR at three levels:
1.65:1, 1.805:1 and 1.95: 1), the weight ratio of the modified protein to MUF resin (WR at
three levels: 20:80, 40:60 and 60:40) and the press temperature (Tem at three levels: 140,
160 and 180 ◦C). One dependent variable, i.e., bonding strength, was used as the output,
representing the components of the experimental design. Meanwhile, 28 samples were
used for the axial and factorial points according to the number of repeats (2), with 6 samples
used at the center point. Hence, the total number of runs was 34.
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2.2.2. Making the Protein Adhesive

After loading a three-necked flask equipped with a mechanical stirrer, thermometer
and refrigerator with 259.333 mL water, 9.33 g NaOH 99% and 1.766 g ethylene glycol
as the phase transferrer, the contents were heated to 70 ◦C. The mixer was operated at a
speed 650 rpm (to distribute flour in the aqueous medium), 116.66 g ground soy bean flour
passed through a sieve with a mesh size of 100 was added and the mixture temperature
was increased to 88–90 ◦C within 15 min when the mixer was still on. After keeping the
flask at this temperature for 2 h to complete the reaction, the flask temperature was reduced
to 35 ◦C in a cold water bath. The resulting solution with a pH of 12.9 was passed through
a sieve with a mesh size of 35 to remove lumps after being neutralized by HCl 20%. The
resulting solution was kept in a refrigerator (+3 ◦C) until the time of use.

2.2.3. Making the Melamine–Urea–Formaldehyde Resin

According to the experimental design being used (Table 1), the MUF resin was made
at three different MRs of F/U + M (1.68:1 equivalent to 202.7: 86.38 + 9.08 g, 1.805:1
equivalent to 218.9: 86.38 + 9.08 g and 1.93:1 equivalent to 235.12: 86.38 + 9.08 g) and
studied as one of the independent variables using a three-necked flask equipped with a
refrigerator, thermometer and stirrer. For this purpose, the first portions of urea (79.48 g)
and formaldehyde (202.7, 218.9 or 235.12 gr formalin) were placed in the flask. With the
addition of NaOH (40%), the solution’s pH increased from 5.3–5.5 to 8–8.4. The reaction
temperature was increased to 55–60 ◦C, butanol (2.50 g) and melamine (9.08 g) were
added and the reaction mixture was left untreated for 30 min. Then, the mixture’s pH
was increased to 5–5.5 using an ammonium chloride solution, and the temperature of the
reaction medium was increased to 80–85 ◦C using a heater. At this temperature, after
5–10 min, the solubility of the solution in water (the formation of a clear solution in a
cold-water medium) was controlled. After ensuring the solubility of the mixture in water
with a ratio of 1.5:1–2, the mixture was cooled down to 60 ◦C, and the remaining portion
of urea (6.9 g) was loaded. Then, the heater was turned off, and the solution was cooled
down. At the end of the synthesis process, in order to prevent the curing of the obtained
resin, the reaction mixture was neutralized by ammonium chloride 20% solution.

Table 1. Experimental design (actual and coded values of the input factors).

No x1 (MR) x2 (WR) x3 (TEM) No x1 (MR) x2 (WR) x3 (TEM)

1 1.93:1 (1) 20 (−1) 140 (−1) 18 1.805 (0) 40 (0) 160 (0)
2 1.68:1 (−1) 40 (0) 160 (0) 19 1.805 (0) 40 (0) 160 (0)
3 1.805:1 (0) 40 (0) 140 (−1) 20 1.805 (0) 40 (0) 160 (0)
4 1.93:1 (1) 60 (1) 140 (−1) 21 1.68 (−1) 60 (1) 180 (1)
5 1.93:1 (1) 40 (0) 160 (0) 22 1.805 (0) 40 (0) 160 (0)
6 1.68:1 (−1) 20 (−1) 140 (−1) 23 1.68 (−1) 20 (−1) 180 (1)
7 1.805:1 (0) 40 (0) 160 (0) 24 1.93 (1) 60 (1) 140 (−1)
8 1.68:1 (−1) 20 (−1) 180 (1) 25 1.93 (1) 60 (1) 180 (1)
9 1.93:1 (1) 20 (−1) 180 (1) 26 1.68 (−1) 60 (1) 140 (−1)
10 1.805:1 (0) 40 (0) 160 (0) 27 1.805 (0) 20 (−1) 160 (0)
11 1.68:1 (−1) 20 (−1) 140 (−1) 28 1.805 (0) 20 (−1) 160 (0)
12 1.93:1 (1) 20 (−1) 180 (1) 29 1.93 (1) 40 (0) 160 (0)
13 1.68:1 (−1) 60 (1) 140 (−1) 30 1.805 (0) 40 (0) 180 (1)
14 1.805:1 (0) 60 (1) 160 (0) 31 1.93 (1) 60 (1) 180 (1)
15 1.805:1 (0) 60 (1) 160 (0) 32 1.93 (1) 20 (−1) 140 (−1)
16 1.805:1 (0) 40 (0) 140 (−1) 33 1.805 (0) 40 (0) 180 (1)
17 1.68:1 (−1) 60 (1) 180 (1) 34 1.68 (−1) 40 (0) 160 (0)

After preparing the resin, the WR was prepared at the levels of 20:80, 40:60 and 60:40
as the second variable according to the experimental design for glulam. For this purpose,
to mix the protein adhesive with resin effectively, a high-speed mechanical stirrer was used
(for 5 min).



J. Compos. Sci. 2023, 7, 93 5 of 20

2.3. Manufacturing Glulam

After distributing 150 g/m2 adhesive (based on oven-dried substance) uniformly on
two upper and lower surfaces of the middle layer (among a total of 3 layers) and placing
it between two boards, the layers were placed under a hydraulic press at a temperature
according to the experimental design for 60 s/mm at a pressure of 30 kg/cm2.

When the boards were removed from the press, they were air-conditioned in a labora-
tory environment for 2 weeks to reach the equilibrium moisture. Finally, to test the bonding
strength, the boards were split by a circular saw with a width equal to the final thickness of
the board (20 mm) along the board’s length (along the fiber length). The shear strength of
the glue line (bonding strength) was also determined based on the EN 312 Standard in a
universal testing device. The total number of tests needed for three independent variables
was 23 + (3× 2) + 6 = 20 based on the equation 2n + (n× 2) + k, where n denotes the number
of variables, and k is the number of repeats at the matrix cube center. Since two repeats
were performed for the axial and factorial points, the total number of tests was equal to 34.
After performing the tensile test, the obtained experimental values of the bonding strength
were compared with the values predicted by the pure ANFIS and hybrid ANFIS-ACOR,
ANFIS-PSO, ANFIS-DE and ANFIS-GA models to determine the best method to predict
and determine the optimum point of glulam production.

2.4. Model Development
2.4.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a universal approximation methodology that is able to approximate any real
continuous function on a compact series with any degree of precision. The system offers
a multi-input, single-output (MISO) fuzzy Sugeno model and a series of IF-THEN fuzzy
rules entered in a framework of adaptive systems to adapt and facilitate training. The
model was developed to predict the bonding strength of glulam using ANFIS, taking three
input variables and one output variable into account. The architecture of the proposed
model is presented in Figure 1 and is a combination of viz. fuzzification, product, rule or
normalization, defuzzification and overall output layers. Assuming that the fuzzy inference
system (FIS) being examined has the inputs (x,y) and the output (f), the IF-THEN fuzzy
rules are used as follows:

Rule 1 : IF x is P1 and y is Q1, THEN f1 = a1x + b1y + c1 (1)

Rule 2 : IF x is P2 and y is Q2, THEN f2 = a2x + b2y + c1 (2)

Rule n : IF x is Pi and y is Qi, THEN fi = ai + biy + ci (3)

where P1 . . . Pi and Q1 . . . Qi are the fuzzy sets; f1 . . . fi are the system’s outputs that are
normally polynomial functions of the input variables for the inputs x and y; and a1 . . . ai,
b1 . . . bi and c1 . . . ci are adjustable parameters. This type of IF-THEN rule is called the
“Sugeno fuzzy model” [35].

Since the FIS system is composed of five layers and the first layer includes three
input variables, with all adaptive nodes are in this layer, each node (i) in this layer has a
node function:

O1
i = µpi(x)i (4)

where x is the input variable for node i, O1
i is the membership grade of a fuzzy set

(Pi) and determines a range in which the input x meets the quantity P and µpi is the
membership function (MF). Gaussian2mf, a famous membership function was chosen,
which is expressed as follows:

µpi = e
−(x−c)2

2σ2 (5)

where c and σ are the parameters of the Gaussian2mf theorem. MFs range from −1 to +1.
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In the second layer (the product layer), all nodes are non-adaptive. This layer is used
to check the weight of each MF and is the product of all received signals:

Q2
i = wi = µPi(x)i . µQi(x)i, i = 1, 2. (6)

The output of each node signifies the firing strength of weight and rule.
In the third layer including the normalization or rule layer, each node performs

adaptation as a precondition of the fuzzy rules by calculating the activation level of each
rule. The layer is the ratio of the firing strength of the rule relative to the total firing strength
of the rules. It is also non-adaptive:

O3
i = w∗i =

wi
w1 + w2

, i = 1, 2. (7)

The fourth layer is known as the defuzzification layer and is used to defuzzify the
MFs to achieve the output. The centroid defuzzification method was used, which calculates
the centroid of the region under the MFs. All nodes in this layer are adaptive with the
following function:

O4
i = w∗i . fi = w∗i (aix + biy + ci) (8)

where {ai,bi,ci} is the set of the consequent parameters.
The fifth layer showing all outputs of all input layers of the fourth layer is a single

node that is non-adaptive and described as follows:

O5
i = ∑

i
w∗i . fi =

∑i wi. fi

∑i wi
(9)

All ANFIS modeling was performed using the fuzzy logic toolbox of MATLAB R2015b
(Mathworks Inc., Natick, MA, USA).

Least squares estimation was used to identify the next parameters. The error rates
are propagated backward, while the premise parameters are updated when the gradient
is descended. Then, the membership function of the ANFIS models was developed using
optimization algorithms according to their counterparts in nature, such as ACOR, PSO, DE
and GA, to ensure the bonding strength prediction error.

2.4.2. Ant Colony Optimization (ACOR)

ACOR algorithms have a wide range of applications due to their ability to solve both
static and dynamic problems. These algorithms use a discrete structure to determine the
solution. The discrete structure concept in an ACOR means that each decision variable
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is divided into a certain number of states within a defined range. In order to ensure that
the variable space is discrete, a limitation is imposed on the algorithm that decreases the
optimality precision. However, by dividing the space between the decision variables to a
large degree, the solution precision is increased, and the program time increases accordingly.
Furthermore, as the system becomes more complicated, the precision may decrease. To
solve this problem, ACOR was generalized in the continuous space so that the algorithm
would move in the R space and the continuity would be met using a probability density
function. Socha and Dorigo proposed the Gaussian function. A Gaussian function cannot
create several maxima [36]. Therefore, the kernel Gaussian function (sum of single Gaussian
functions) was used, which is defined for the i-th decision variable as follows:

fi(x) = ∑k
l wl gl

i(x) = ∑k
l=1wl 1√

2πσl
i

exp

 x− µl
i√

2σl
i

2

(10)

During the implementation of the algorithm, the parameters wl, µl
i and σl

i must be
defined, and k is the number of single Gaussian functions. The decision variables related to
the i-th solution are denoted by bl

1 and bl
2, and the n-th decision variable is denoted by

bl
n, the value of which is calculated for each solution (h(bl)). The number of solutions is k.

Then, the solutions are arranged in descending order based on quality and are saved. Then,
for each bl, a weight (w) is determined, the value of which is proportional to the quality of
the related solution, where w1 ≥ w2 ≤ . . . ≥ wk is calculated as follows:

wl =
1

qp
√

2π
exp

(
−(l − 1)2

2q2k2

)
(11)

If the value of q is assumed to be very small, it is less likely to select the weak solutions,
and if it is excessively small, it falls within the local optimum. µl

i is equal to bl
l for the

solution l and the i-th variable. σl
i is the standard deviation between all k values of the i-th

variable relative to bl
i and is calculated as follows:

σl
i = ϑ∑k

z=1

∣∣∣be
i − bl

i

∣∣∣
k− 1

, i = 1, . . . , m. (12)

The coefficient ϑ is an adjustable parameter. The larger its value, the lower the con-
vergence speed will be. The coefficient affects the long-term memory of the algorithm and
makes it less likely that worse solutions are chosen, clearing them from the memory [36].

2.4.3. Particle Swarm Optimization (PSO)

PSO is a computational framework for continuous and discrete decision processes [37]
that is based on the natural behavior of living creatures such as fish in their search for food
resources. The main problems encountered in swarm optimization are accompanied by
the position of N particles assigned randomly as a swarm in D-dimensional space. Each
solution in the swarm is accompanied by a position, and each particle in the solution space
is computed by a scoring function describing the problem status [38]. All particles find
the best global position in the solution space and obtain the best personal positions [39].
The new identified position and the velocity of particles are updated according to the
following rules [40]:

p = p + v (13)

with
v = v + c1.rand.(pbest − p) + c2.rand.(gbest − p) (14)

where p and v are the particle’s position and direction, respectively; c1 is the local weight;
c2 is the global weight; pbest and gbest are the best positions of particles and swarms, respec-
tively; and rand is a random value.
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2.4.4. Differential Evaluation (DE)

DE was used as an intelligent optimization framework, whereby the basic optimized
mutation, crossover and selection operators are imitated. DE relies on the D-dimensional
parameter vectors and population size (NP) because it is a parallel direct search method
and is not affected by the minimization processes; hence, the method is considered a
population process when producing each generation (G). In DE, an initial population vector
is selected to cover all parameter spaces; a uniform probability distribution is assigned
to all random selections. DE produces new parameter vectors based on the accessible
preliminary solution by producing the weight difference between two population vectors
and a third vector through a mutation operation as follows:

xi, G = [x1, i, G, x2, i, G, . . . xn, i, G], i = 1, 2, . . . , k, (15)

where x1, G, i = 1,2,3, . . . ,NP are the mutant vectors produced by applying νi,G + 1, and
r1, r2 and r3 are the arbitrary selection numbers ∈[1,2,3, . . . ,] . . . NP. The trial vector is
determined by a combined process (crossover operation) that uses a combination of the
mutated vector parameters and other predetermined vector parameters:

xLj ≤ xj, i, 1 ≤ xUj, (16)

where Uj,G + 1 is the trailer vector, xi,G is the target vector, rand b(j) denotes the j-th uniform
random evaluation (∈∈[0,1]), rnbr(i) is a random value index (∈∈[1,2,3, . . . ,d]) and CR is
a crossover constant determined by the user. Finally, the trial vector is used as the target
value of the next generation in the selection process and offers the lowest-cost function
value compared to the target vector. Since each population must act as the target vector,
NP tasks are considered a single generation procedure.

2.4.5. Genetic Algorithm

The GA is a directional random optimization method moving toward the optimum
point gradually. One of the benefits of this algorithm is its very good global search that is
independent of the problem status. It offers suitable performance combined with problems
with large computations and does not fall within the local optimum [41]. ANFIS models
including two types of parameters (i.e., antecedent and consequent parameters) that are
tuned by gradient-based methods including the steep descend error (SDE) and the least
square error (LSE). The solutions of the gradient-based method may fall within the local
optimum. Therefore, the application of metaheuristic algorithms including GA with a
random search nature can be a suitable alternative method. The antecedent parameters {σi,
ci} or µpi in Equation (5) are related to the membership functions that can be optimized by
the evolutionary algorithms. Any of these parameters contains N genes, where N is the
number of the membership functions. The consequent parameters {Pi, Qi, ci} in Equation (3)
can be trained by the optimization algorithm. In the Results section, the genes (I + 1) × R
produce each chromosome. The objective function of the evolutionary algorithms used
is the root mean square error (RMSE). To solve the mentioned optimum problem using
the ANFIS-GA, the weight (µpi) of the fuzzy antecedent parameters is tuned by the GA
algorithms like linear parameters such as Q, P and c.

2.5. Performance Evaluation

To determine the performance of each model, four statistics, i.e., the determination
coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and sum square
error (SSE), were used to analyze the performance of the new models in the following
examined forms:

R2 =

[
n

∑
i=1

(xi − x)(yi − y)/

√
n

∑
i=1

(xi − x)2
n

∑
i=1

(yi − y)2

]2

(17)
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RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (18)

MAE =
∑|xi − x|

n
(19)

SSE =
n

∑
i=1

(xi − x)2 (20)

where n is the number of observations; xi and x are the observed and mean values, respec-
tively; and yi and ȳ are the related predicted and mean values, respectively. As R2 increases
and approaches 1, the predicted values approach the experimental values, showing the
high performance of the model in predicting the response with high precision. As the errors
decrease to a minimum, the model under examination offers a more precise prediction of
the response being examined.

3. Results and Discussion

Owing to the need for fewer runs in less time and the independence of the selected
design, as well as the rotatability and generalizability of the results in infinite ranges,
the central composite design (CCD) implemented in the RSM environment was used to
determine the effect of the combination of the input variables on the dependent variable
(bonding strength) up to 34 runs (Table 2).

Table 2. Experimental results and the values estimated by ANFIS, ACOR, PSO, DL and GA.

No Ex. ANFIS ACOR PSO DE GA No Ex. ANFIS ACOR PSO DL GA

1 4.71 2.11 3.74 4.94 3.76 4.93 18 5.02 5.45 5.40 5.49 5.77 5.49
2 5.13 5.15 5.10 5.13 5.37 5.16 19 5.7 5.45 5.40 5.49 5.77 5.49
3 4.94 4.54 4.38 4.94 4.42 4.92 20 5.6 5.45 5.40 5.49 5.77 5.49
4 5.03 5.03 5.65 5.19 4.84 5.19 21 7.82 7.75 7.18 7.75 7.08 7.75
5 5.7 5.75 5.70 5.80 5.43 5.80 22 5.08 5.45 5.40 5.49 5.77 5.49
6 2.49 2.72 3.02 2.95 3.13 2.95 23 4.98 4.98 5.07 4.98 5.39 4.95
7 5.5 5.45 5.40 5.49 5.77 5.49 24 5.36 5.03 5.65 5.19 4.84 5.18
8 4.24 4.98 5.08 4.99 5.39 4.95 25 6.67 6.10 7.66 6.80 6.65 6.79
9 5.54 5.66 5.75 5.59 6.16 5.60 26 5.14 5.14 5.12 5.26 5.33 5.24
10 5.8 5.45 5.40 5.49 5.77 5.49 27 4.15 4.39 4.38 5.38 5.76 5.29
11 2.95 2.72 3.02 2.95 3.13 2.95 28 4.63 4.39 4.38 5.38 5.76 5.29
12 5.66 5.66 5.75 5.59 6.16 5.60 29 5.8 5.75 5.70 5.79 5.43 5.79
13 5.38 5.14 5.12 5.26 5.33 5.24 30 6.03 6.03 6.42 6.07 6.71 6.07
14 6.10 6.10 6.42 6.20 5.89 6.20 31 6.92 6.10 7.66 6.80 6.65 6.79
15 6.3 6.10 6.42 6.20 5.89 6.20 32 4.94 2.11 3.74 4.93 3.76 4.93
16 4.15 4.54 4.38 4.94 4.42 4.93 33 6.13 6.03 6.42 6.07 6.71 6.07
17 7.69 7.75 7.18 7.75 7.08 7.75 34 5.18 5.15 5.10 5.13 5.37 5.16

3.1. Accuracy of the Predicted Values Obtained by the Approaches

To determine the accuracy of the performance of the models used to estimate the
output, the regression diagram of the experimentally measured values versus the values
predicted by the ANFIS-based, ANFIS-ACOR, ANFIS-PSO, ANFIS-DE and ANFIS-GA
models is given in Figure 2 for the training and testing datasets. The points distributed
around the fit line represent the experimental data and include different matches between
the models’ outputs and actual values. It is easily observed that, with a determination
coefficient (or correlation coefficient) close to 1, the ANFIS-GA model produces less error
compared to other models, making it more suitable to predict the bonding strength both
for the training and test datasets.
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Figure 2. Comparison of the estimated and actual values for the (a) training dataset and (b) testing dataset.

Finally, while the ANFIS-GA model offers a better bonding strength prediction com-
pared to other models, this model was preferred to develop the bonding strength at different
MR, WR and Tem values. Using the well-trained ANFIS-GA model, the effect of the input
data on the response in the related ranges was examined. The ANFIS-GA model has an R2

equal to 0.9809 for the training dataset and 0.8108 for the testing datasets, meaning that the
model achieved excellent training of the outputs so that 98.09% and 81.08% of the estimated
values agree with the measured values for the training and testing datasets, respectively.

In addition to R2, three other statistical indices that compare the deviation between
the actual and estimated values, i.e., RMSE, MAE and SSE, are given in Table 3 to compare
the performance of the developed prediction models. In addition to confirming the higher
precision of the ANFIS-GA model to predict the output using R2 (Figure 2), the errors esti-
mated by RMSE, MAE and SSE have lower values (0.3366, 0.2082 and 3.8523, respectively)
than the ANFIS (0.7192, 0.3575 and 17.5885, respectively), ANFIS-ACOR (0.4711, 0.3636 and
7.5470, respectively), ANFIS-DE (0.6157, 0.4905 and 12.8904, respectively) and ANFIS-PSO
(0.3535, 0.2135 and 4.2479, respectively) models. Using different hybrids of the ANFIS
model, the errors were decreased, with the most limited decrease associated with the using
the GA model (Figure 3). More than 70% of the errors produced range from −5% to 5% in
the model developed with the GA, while in the basic ANFIS and ACOR models, the errors
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are distributed in a wider range from −40% to 60%. Hence, the hybrid ANFIS-GA model
can be used to predict the response values with the highest precision among tested models.
The random division of data into two testing and training phases led to an overfitting prob-
lem because the classic training algorithms are generally very dependent on the training
datasets and cannot offer an acceptable performance in the testing phase (Figure 3). Unlike
the classic ANFIS model, the hybrid ANFIS algorithms showed reliable performance in
the testing and training phases. The best hybrid methods prevent the system from falling
into overfitting and local optima [42]. The performance of the GA method may be due to
the ability of the algorithm to model a complex phenomenon. The weak performance of
other optimization methods such as PSO may be due to the weakness of the algorithms
to solve hard problems compared to GA [43] because the simple PSO structure cannot
precisely optimize the bonding strength values. Furthermore, the classic ANFIS model that
uses gradient-based training techniques including backpropagation requires many burden
values to be optimized and trained when the number of inputs is increased [41].

Table 3. R2 and errors presented by different models.

Source ANFIS ANFIS-ACOR ANFIS-DE ANFIS-PSO ANFIS-GA

R2 Test dataset 0.4715 0.8870 0.4635 0.7798 0.8108
Training dataset 0.9655 0.8664 0.7664 0.9810 0.9809

RMSE 0.7192 0.4711 0.6157 0.3535 0.3366
MAE 0.3575 0.3636 0.4905 0.2135 0.2082
SSE 17.5885 7.5470 12.8904 4.2479 3.8523
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Figure 3. Comparison of the residual profile for bonding strength.

As mentioned in the previous section, the overfitting problem is very common among
the problems encountered when mathematically solving datasets. This suggests that a
model may be successful in an excellent simulation of the data used to develop and train
it, but at the same time, the model may predict very abnormal values for the values of
the input parameters except those used in the development and training process [44].
Hence, it is necessary to compare the results of the tested methods with the experimental
values or results similar to those reported in other studies in which a wide range of
input parameter combinations affects the response. In the first, second and third cases
of experimental verification, the bonding strength related to the MR, WR and Tem of
the obtained experimental results was tested (Figure 4). For the first input parameter
(MR), overfitting occurred in the ANFIS-based and hybrid ACOR, PSO and DE models.
Overfitting was stronger for the simulation of the ANFIS and hybrid DE datasets, while no
overfitting occurred when using the GA. For the second parameter (WR), no overfitting
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occurred when using the hybrid GA for modeling, while overfitting clearly occurred when
other methods were applied, with the strongest overfitting associated with the ANFIS-based
and other hybrid models, although weaker compared to the MR effect. For the third input
parameter, the changes in the overfitting were similar to the effect due to the application of
the second input parameter. In other words, the GA has minimum overfitting, while the
overfitting occurred to some extent with the application of the other tested models. The
changes in the overfitting of the WR and Tem parameters follow a similar pattern, although
the changes in overfitting are much less than the MR effect.
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Figure 4. Comparison of the actual direct effects of the independent variable on the bonding strength
of glulam with ANFIS, ANFIS-ACOR, ANFIS-PSO, ANFIS-DE and ANFIS-GA.

ANFIS is an intelligent neuro-fuzzy method used to model and control uncertain
systems. ANFIS considers both input and output data. The proposed ANFIS structure
is used to model the prediction system including the determination/preparation of the
input and output values, determination/examination of the fuzzy sets for input variables,
identification of the fuzzy rules and creation and training the neural network. It requires
development of a means to implement and test the proposed structure in order to produce
and evaluate fuzzy systems using a graphical user interface (GUI). This tool contains an
FIS editor, MF editor, rule editor, output surface viewer and fuzzy interface viewer. The FIS
editor provides general information about the FIS, while the MF editor edits and shows
MFs accompanied by all input and output variables. The rule editor allows for the creation
of rule expressions in an automatic route by clicking and choosing one case in each input
variable frame, one item in each output frame and one connection item. Using the rule
viewer, the user can completely interpret the fuzzy inference process each time. In the
ANFIS editor, the GUI selection panel initializes the FIS training, saves the FIS object and
opens a Sugeno schema for FIS interpretation. In the MF design, a Gaussian or bell-shaped
MF was used to develop the fuzzy models due to its flexibility and simplicity. The modeling
results were developed based on the Gaussian MF, which was selected as the best among
all tested MF types (Figure 5). Figure 5 shows the Gaussian MFs of the input parameters by
the developed ANFIS-GA model to predict the bonding strength of glulam. Each input
parameter with three MFs showed the best result in predicting the bonding strength of
glulam. Hence, a set of 27 fuzzy rules (3 × 3 × 3) was designed by the system to solve
the problem. Low, average and high qualitative variables were employed in the modeling
process. Moreover, the output MF type was assumed to be linear. In the developed hybrid
ANFIS-GA model, no change was observed in the network performance after epoch №
9 (Figure 6). As shown in Figure 6, the FIS + ANFIS_gauss2 model achieved the best
prediction performance results, followed by the FIS + ANFIS_gauss, FIS + ANFIS_Bell and
FIS + ANFIS_Trap models. During training for many epochs, the error tolerance was set
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at zero, while a maximum band was not considered for the number of epochs. The error
saturation was determined as the final result of the training period [45]. When the error
was constant, the training stopped and was considered the training saturation point. It is
worth noting that all datasets were divided into two separate training (80% of all datasets)
and testing (20% of all datasets) sets to develop and evaluate the model. After training
by ANFIS-GA, the dataset was tested using the hybrid and subclustering algorithms with
different membership functions. While the hybrid method uses the backpropagation
algorithm for all input membership functions and the least square algorithm for the output
membership functions simultaneously and according to the prioritization of different
membership functions, the fuzzy system was created with rules to differentiate the fuzzy
quality accompanied by each cluster. In the rule-framing process, the functions NOT, OR
and AND were used, as shown in Figure 1.
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3.2. Optimized Values of the Preferred Approach

To better synthesize and understand the fuzzy response behavior, the rules were
evaluated (Figure 7) using the selected ANFIS-GA model. Figure 7 shows the rule viewer
indicating different input values in the model and the calculated output. The bonding
strength (output) can be predicted by changing the parameters, including MR, WR and Tem,
for the chosen and developed ANFIS model. In this regard, to determine the interactive
effect of the parameters on the outputs and based on the GA model, the change in the value
of each parameter can be presented as a graph. It is observed that when the parameters
were changed so that MR was minimum (1.68:1:1), WR was maximum (60%) and the press
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temperature was maximum (180 ◦C), the bonding strength reached a maximum value
(7.76 MPa).
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Figure 7. Fuzzy inference diagram of the ANFIS model with nine rules.

Figure 8 also represents the interactive effect of the investigated parameters on the
output and the graphical difference relative to the actual values of the response. Figure 9
also shows the interactive effect of the parameters on the output. As shown in Figure 8, the
general changes in the strength follow a unique pattern when comparing the real values
with the estimated values, except the effect of the molar ratio of 1.68:1 in the interaction
with WR on the estimated strength, the molar ratio of 1.93:1 in the interaction with the
Tem on the estimated strength and WR 20% in the interaction with Tem on the estimated
strength, which is inconsistent with the changes in the experimental strengths when using
the same parameters.
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Figure 8. Comparison of the interactive effect of MR ×WR, MR × TEM and WR × TEM on the real
and estimated values of the bonding strength estimated by the ANFIS-GA model.
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Figures 8 and 9 represent conditions under which the third parameter is fixed in the
middle of the value range. The diagram of the interactive effects was generated based on
statistical analysis of the GA, showing that the interactive effects on the bonding strength
including MR ×WR, MR × Tem and WR × Tem were statistically significant according
to ANOVA.

As shown Figures 8 and 9a, as the WR increases to a maximum value, the MR decreases
to a minimum value, the strength increases to a maximum value and Tem is maintained
at a median value (160 ◦C). As WR decreases to a minimum value and MR increases to
a maximum value, the strength also increases but not reach a maximum. In other words,
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there is an inverse relation between MR and WR. The minimum value of the strength is
also reached as both MR and WR decrease.

As shown in Figures 8 and 9b, as MR and Tem increase, the strength increases and
approaches the maximum level, but the maximum value of the strength occurs when MR
is minimum, and the Tem is maximum. Comparison of Figure 9a,b shows that in both
cases, an increase in MR results in an increase in the strength, while the decreasing effect of
the increase in the Tem is much less than the decreasing effect of the increase in MR. This
means that when applying higher values of WR, a higher range of temperature can be used
to compensate for the decreasing effect of MR.

The interactive effect of WR and Tem on the strength is shown in Figures 8 and 9c. As
the Tem and WR increase simultaneously when the MR is at a median value (1.805:1), the
strength reaches a maximum value. However, as both parameters decrease to minimum
values, the strength also reaches its minimum.

Protein contains strong polar groups such as hydroxyl, amide and carboxyl. Since
the components of wood such as cellulose, hemicellulose and lignin are polar, the main
molecular forces between the wood surface and protein are the interactions of the polar
groups. As protein is treated by NaOH, the internal hydrogen bonds of the coiled protein
molecules break and open widely and are exposed to many accessible polar groups, mak-
ing connection possible. During the treatment, the produced peptide chain contributes
to the bondability with a suitable molecular weight distribution [46]. The constancy of
viscosity in all ranges of the shear rate, i.e., Newtonian fluid, occurs due to the small size
of UF molecules and disorientation with the shear flow. According to the non-Newtonian
behavior of a protein suspension [47], shear-thinning behavior is possible for the MUF/MP
adhesive in which modified proteins play the role of a rheological modifier. Hence, owing
to the increase in the protein–water interaction through hydrogen bonds, the viscosity
increases. At lower levels of protein, the distance between random coils is more than
the radius of gyration so that no entanglement occurs, and the suspension’s viscosity
is comparable to that of its solvent. As protein content increases, the relative viscosity
increases gradually to a threshold (*C) at which the distance between the random coils
(d) is almost equal to the radius of gyration, beyond which the relative viscosity suddenly
increases exponentially. When the suspension concentration (C) increases beyond the criti-
cal concentration (*C), polymer entanglement becomes dominant, and viscosity increases
exponentially [48]. In this process, pseudoplastic behavior occurs even at low ratios of
protein [49], and overpenetration is avoided as viscosity increases.

The structural changes of the adhesive compound indicate that the modulus of elastic-
ity (G’) and viscous modulus (G”) are functions of shear stress in the stress–strain curve
accompanied by the sample’s strength against the fluid ability [49], indicating the struc-
tural stability of the material [50]. The modulus (G’) is significantly lower in UF than
adhesive containing protein. UF exhibiting pseudo-liquid behavior can be expressed by
the relation G” > G’, while protein showing pseudo-gel behavior can be expressed by
G’ > G”. This phenomenon is due to the formation of an entangled network in the presence
of protein, promoting the structural strength of the suspension. This behavior is promoted
by protein denaturation by adding NaOH, which increases the random coil volume of
the polymer [51]. The rheological behavior of the UF/modified protein compound shows
the entangled structure of the sample even at low levels of protein (G’ > G”), and G’ is
almost aligned with modified protein alone in the linear region of the stress–strain curve
of the UF/modified protein compound. Hence, all rheological properties of the adhesive
compound are affected by the presence of high-molecular-weight protein. Hence, the
protein and UF resin chain can be interwoven to achieve crosslinking during and even
after pressing [52].

After curing, UF has smooth surfaces, as a thermoset polymer has a brittle form during
failure [53,54]. Brittle rupture means that no ductile rupture has occurred during the test.
However, as an adhesive is added with no brittle rupture, the rupture range is added in the
stress–strain curve, and the viscous deformation range is added during the rupture test.
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Such a change in the rupture curve was observed during the test in practice. Bacigalupe
et al. also observed ductility in an adhesive when adding protein to UF [49]. Such a ductile
rupture that can show that a crosslinked network exists between the UF and that modified
protein does not exist in the cured non-modified protein adhesive [55]. However, in the
UF/protein adhesive, ductility increases as the modified protein increases [49], and practical
observations in the tests indicated that no phase separation occurred, demonstrating the
compatibility of the two components.

As a denaturing agent, urea breaks the globular structure of the protein into short
protein chains and increases its viscosity. In this process, a secondary structure of protein
forms through the reaction between oxygen and urea hydrogen atoms and hydroxyl groups
of protein [56], leading to bonding and solubilization. The increase in solubilization allows
the protein to flow better on the wood and forms hydrogen bonds with wood, producing
subsequent chemical crosslinkings [57]. Meanwhile, denaturation intensifies when the
reaction intensity increases such as by applying a higher press temperature, increased
pressure, a change in pH or adding urea [58,59].

According to the endothermic reaction during the change in the natural protein state
to the denatured state in the temperature range of 160–175 ◦C [4] followed by crosslinking
of the MUF resin methylol groups with amino bonds, amide bonds and naturated or
denaturated protein, a sufficiently high press temperature further denatures the modified
protein and enables a reaction with fibers. The polar functional groups in the protein and
carbohydrates such as hydroxyl, amino and carboxylic acid can react with formaldehyde
and form bonds with each other with a high energy level of wood [60,61].

Due to the high moisture content in the modified protein, as MUF is applied with a
higher formaldehyde molar ratio, an insufficient adhesive curing reaction is produced, pre-
venting the complete polycondensation of MUF resin [34] because the urea and melamine
percentages are decreased to simultaneously make connections with formaldehyde and
modified protein. In addition, the curing time of the modified MUF resin is increased be-
cause the reactivity of the MU/protein adhesive decreases as protein content increases [62].
Under these conditions, adding protein can positively affect the completion of more copoly-
merization reactions by moving the equilibrium shift forward [63]. At the same time, as a
result of the increase in moisture due to the increase in modified protein (WR), the force
resulting from the saturated vapor pressure easily exceeds the internal bonding force of the
glue line. Hence, in addition to the prevention of additional involvement of urea, melamine
or protein with formaldehyde followed by additional release of free formaldehyde, the
bonding strength decreases because moisture can create gaps due to the formation of steam
and produce a rough surface on the glue line [64].

Based on the hypothesis related to the unfolding of protein molecules and their break-
down into smaller pieces, the active groups were exposed after NaOH hydrolysis treatment
through the destruction of the van der Waals force, hydrogen bonds and hydrophobic
interaction between the molecules in the protein. In this process, the exposed active amine
can react with formaldehyde and form hydroxymethyl. Hydroxymethyl can react with
urea, urea methylol, amine or hydroxymethyl under the final acidic conditions used in
the glue line to form methylene and ether methylene bridges and produce chains with
random crosslinkings with each other to form a 3D structure after curing [63]. Under these
conditions, no hole or crack is produced, and the surface becomes smooth during the rup-
ture as a result of the use of unfolded protein molecules and rearrangement, together with
denaturation and the formation of a more crystalline matrix with a smoothened surface [64].

Adding even a small amount of protein causes a sharp decrease in the solid content of
the adhesive. Simultaneously, due to the increase in viscosity resulting from the addition
of formaldehyde, the solid content decreases [65]. However, as the F-to-U/M molar
ratio decreases according to urea/melamine properties to unfold the globular structure of
protein, the increase in the U/M molar ratio increases the solid content and it limits the
need for additional time. According to the low solid content in the presence of protein, as
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the press temperature increases and to remove the superfluous water from resin to avoid
delamination of the board, the bonding strength improves [65].

4. Conclusions

In the present study, basic ANFIS, ANFIS-ACOR, ANFIS-PSO, ANFIS-DE and ANFIS-
GA models were developed to predict the bonding strength of glulam made with MUF-
modified soy protein adhesive. A three-factor, three-level CCD design was used to make
the test samples to compare the prediction precision of the response under examination
obtained by all applied methods. After designing and testing the systems, the predictability
of all five models was compared using statistical criteria, i.e., R2, RMSE, MAE and SSE. After
determining the best model in terms of precision in estimating the response, it was used to
determine the optimum level of the variables used to achieve the highest bonding strength.
The results indicate that by combining the basic ANFIS model with other algorithms, the
accuracy of the response estimation can be generally increased. The combination of the
genetic algorithm with the ANFIS model resulted in a more accurate response estimation
compared to combinations with other algorithms, with an R2 of 0.9809, RMSE of 0.3366,
MAE of 0.2082 and SSE of 3.8523. Hence, the optimization method has had a higher
prediction accuracy. Based on the developed model, the optimum input values to produce
glulam with a maximum bonding strength (7.76 MPa) were a minimum MR value (1.68:1),
a maximum WR value (60:40) and a maximum press temperature value (180 ◦C).
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