Influence of Sizing Aging on the Strength and Fatigue Life of Composites Using a New Test Method and Tailored Fiber Pre-Treatment: A Comprehensive Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Experiments and Theoretical Background
2.2. Materials, Conditioning, Manufacturing, and Specimen Preparation
2.3. Mechanical Testing
2.4. Fatigue Specimen Design
3. Results and Discussion
3.1. Impact of Material Selection on Static Properties of UD Composites
3.2. Accelerated Aging of GFRP Composites
3.3. Standard and Tailored Aging of Sizing and Fibers
3.4. Impact of Aging and Material Selection on Fatigue Life
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FIM | Failure index matrix |
FRP | Fiber-reinforced polymers |
FTIR | Fourier-transform infrared spectroscopy |
GFRP | Glass fiber-reinforced polymers |
NCF | Non-crimp fabric |
Pre HA | Humid pre-aging |
Pre WA | Wet pre-aging |
RH | Relative humidity |
SFF | Single fiber fragmentation |
Glass transition temperature | |
UD | Unidirectional |
WB | Water bath |
Appendix A
Property in MPa | Fiber A | Fiber B | Fiber C | Fiber D | Fiber E |
---|---|---|---|---|---|
Ref | 1138 ± 113 | 1300 ± 125 | 1123 ± 97 | 868 ± 58 | 1214 ± 182 |
PreHA | 1099 ± 144 (−3%) | 1261 ± 74 (−3%) | 1142 ± 45 (+2%) | 834 ± 33 (−4%) | No data |
PreWA | 952 ± 77 (−16%) | 1093 ± 40 (−16%) | 898 ± 93 (−20%) | No data | 968 ± 86 (−20%) |
Ref | 867 ± 34 | 991 ± 45 | 868 ± 41 | 904 ± 21 | 943 ± 30 |
PreHA | 904 ± 62 (+4%) | 1095 ± 125 (+10%) | 895 ± 27 (+3%) | 883 ± 25 (−2%) | 984 ± 30 (+4%) |
PreWA | 681 ± 9 (−21%) | No data | No data | 781 ± 19 (−14%) | 828 ± 44 (−12%) |
WB | 653 ± 12 (−25%) | 771 ± 81 (−22%) | 457 ± 21 (−47%) | 530 ± 20 (−41%) | No data |
Ref | 54.6 ± 3 | 54.8 ± 3 | 36.5 ± 2 | 47.8 ± 3 | 24.5 ± 2 |
PreHA | |||||
PreWA | No data | No data | |||
WB |
References
- Rocha, I.; Raijmaekers, S.; Nijssen, R.; van der Meer, F.P.; Sluys, L.J. Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades. Compos. Struct. 2017, 174, 110–122. [Google Scholar] [CrossRef] [Green Version]
- D’Antino, T.; Pisani, M.A.; Poggi, C. Effect of the environment on the performance of GFRP reinforcing bars. Compos. Part B Eng. 2018, 141, 123–136. [Google Scholar] [CrossRef]
- Gagani, A.I.; Monsås, A.B.; Krauklis, A.E.; Echtermeyer, A.T. The effect of temperature and water immersion on the interlaminar shear fatigue of glass fiber epoxy composites using the I-beam method. Compos. Sci. Technol. 2019, 181, 107703. [Google Scholar] [CrossRef]
- Idrisi, A.H.; Mourad, A.H.I.; Sherif, M.M. Impact of Prolonged Exposure of Eleven Years to Hot Seawater on the Degradation of a Thermoset Composite. Polymers 2021, 13, 2154. [Google Scholar] [CrossRef] [PubMed]
- Gibhardt, D.; Doblies, A.; Meyer, L.; Fiedler, B. Effects of Hygrothermal Ageing on the Interphase, Fatigue, and Mechanical Properties of Glass Fibre Reinforced Epoxy. Fibers 2019, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Aydın, F.; Arslan, Ş. Investigation of The Durability Performance of FRP Bars in Different Environmental Conditions. Adv. Concr. Constr. 2021, 12, 295–302. [Google Scholar] [CrossRef]
- Dawson, M.; Davies, P.; Harper, P.; Wilkinson, S. Composite Materials in Tidal Energy Blades. In Durability of Composites in a Marine Environment 2; Davies, P., Rajapakse, Y.D., Eds.; Solid Mechanics and Its Applications; Springer International Publishing: Cham, Switzerland, 2018; Volume 245, pp. 173–194. [Google Scholar] [CrossRef]
- Kennedy, C.R.; Leen, S.B.; Ó Brádaigh, C.M. Immersed Fatigue Performance of Glass Fibre-Reinforced Composites for Tidal Turbine Blade Applications. J. Bio- Tribo-Corros. 2016, 2, 151. [Google Scholar] [CrossRef] [Green Version]
- Mandell, J.F.; Samborsky, D.D.; Miller, D.A.; Agastra, P.; Sears, A.T. Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade Materials 2010–2015; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Guzman, V.A.; Brøndsted, P. Effects of moisture on glass fiber-reinforced polymer composites. J. Compos. Mater. 2015, 49, 911–920. [Google Scholar] [CrossRef]
- Ilioni, A.; Le Gac, P.Y.; Badulescu, C.; Thévenet, D.; Davies, P. Prediction of Mechanical Behaviour of a Bulk Epoxy Adhesive in a Marine Environment. J. Adhes. 2019, 95, 64–84. [Google Scholar] [CrossRef] [Green Version]
- Gibhardt, D.; Buggisch, C.; Meyer, D.; Fiedler, F. Hygrothermal aging history of amine-epoxy resins: Effects on thermo-mechanical properties. Front. Mater. 2022, 9, 826076. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy. Polymer 1999, 40, 5505–5512. [Google Scholar] [CrossRef]
- Le Guen-Geffroy, A.; Le Gac, P.Y.; Habert, B.; Davies, P. Physical ageing of epoxy in a wet environment: Coupling between plasticization and physical ageing. Polym. Degrad. Stab. 2019, 168, 108947. [Google Scholar] [CrossRef]
- Startsev, V.O.; Lebedev, M.P.; Khrulev, K.A.; Molokov, M.V.; Frolov, A.S.; Nizina, T.A. Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers. Polym. Test. 2018, 65, 281–296. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Gagani, A.I.; Echtermeyer, A.T. Hygrothermal Aging of Amine Epoxy: Reversible Static and Fatigue Properties. Open Eng. 2018, 8, 447–454. [Google Scholar] [CrossRef]
- Gibhardt, D.; Krauklis, A.E.; Doblies, A.; Gagani, A.; Sabalina, A.; Starkova, O.; Fiedler, B. Time, temperature and water aging failure envelope of thermoset polymers. Polym. Test. 2023, 118, 107901. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part II: Variations of glass transition temperature. Polymer 1999, 40, 5513–5522. [Google Scholar] [CrossRef]
- Baschek, G.; Hartwig, G.; Zahradnik, F. Effect of water absorption in polymers at low and high temperatures. Polymer 1999, 40, 3433–3441. [Google Scholar] [CrossRef]
- Vanlandingham, M.R.; Eduljee, R.F.; Gillespie, J.W. Moisture diffusion in epoxy systems. J. Appl. Polym. Sci. 1999, 71, 787–798. [Google Scholar] [CrossRef]
- Abdelkader, A.F.; White, J.R. Water absorption in epoxy resins: The effects of the crosslinking agent and curing temperature. J. Appl. Polym. Sci. 2005, 98, 2544–2549. [Google Scholar] [CrossRef]
- Brown, E. Effect of surface treatment on the hydrolytic stability of E-glass fiber bundle tensile strength. Compos. Sci. Technol. 2005, 65, 129–136. [Google Scholar] [CrossRef]
- Bledzki, A.; Spaude, R.; Ehrenstein, G.W. Corrosion phenomena in glass fibers and glass fiber reinforced thermosetting resins. Compos. Sci. Technol. 1985, 23, 263–285. [Google Scholar] [CrossRef]
- Krauklis, A.; Gagani, A.; Vegere, K.; Kalnina, I.; Klavins, M.; Echtermeyer, A. Dissolution Kinetics of R-Glass Fibres: Influence of Water Acidity, Temperature, and Stress Corrosion. Fibers 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Lamon, J.; R’Mili, M. Statistical-Probabilistic Approach to the Lifetime and Strength Degradation of E-Glass Filaments and Bundles under Constant Tensile Loading in Water. J. Compos. Sci. 2019, 3, 78. [Google Scholar] [CrossRef] [Green Version]
- Joliff, Y.; Rekik, W.; Belec, L.; Chailan, J.F. Study of the moisture/stress effects on glass fibre/epoxy composite and the impact of the interphase area. Compos. Struct. 2014, 108, 876–885. [Google Scholar] [CrossRef]
- Riaño, L.; Chailan, J.F.; Joliff, Y. Evolution of effective mechanical and interphase properties during natural ageing of glass-fibre/epoxy composites using micromechanical approach. Compos. Struct. 2021, 258, 113399. [Google Scholar] [CrossRef]
- Thomason, J.L. Sizing Chemistry of Glass Fibers. In Fiberglass Science and Technology: Chemistry, Characterization, Processing, Modeling, Application, and Sustainability; Li, H., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 259–321. [Google Scholar] [CrossRef]
- Jurko, M.; Souckova, L.; Prokes, J.; Cech, V. The Effect of Glass Fiber Storage Time on the Mechanical Response of Polymer Composite. Polymers 2022, 14, 4633. [Google Scholar] [CrossRef] [PubMed]
- Pantano, C.G.; Carman, L.A.; Warner, S. Glass fiber surface effects in silane coupling. J. Adhes. Sci. Technol. 1992, 6, 49–60. [Google Scholar] [CrossRef]
- Wu, H.F.; Dwight, D.W.; Huff, N.T. Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites. Compos. Sci. Technol. 1997, 57, 975–983. [Google Scholar] [CrossRef]
- Plonka, R.; Mäder, E.; Gao, S.; Bellmann, C.; Dutschk, V.; Zhandarov, S. Adhesion of epoxy/glass fibre composites influenced by aging effects on sizings. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1207–1216. [Google Scholar] [CrossRef]
- Peters, L. Influence of Glass Fibre Sizing and Storage Conditions on Composite Properties. In Durability of Composites in a Marine Environment 2; Davies, P., Rajapakse, Y.D., Eds.; Solid Mechanics and Its Applications; Springer International Publishing: Cham, Switzerland, 2018; Volume 245, pp. 19–31. [Google Scholar] [CrossRef]
- Gibhardt, D.; Fleschhut, C.; Fiedler, B. The influence of different glass fiber/epoxy matrix combinations on the durability under severe moisture impact. IOP Conf. Ser. Mater. Sci. Eng. 2020, 942, 012009. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Goutianos, S. Micromechanical model for prediction of the fatigue limit for unidirectional fibre composites. Mech. Mater. 2019, 131, 169–187. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Goutianos, S.; Mikkelsen, L.P.; Fæster, S. Fatigue damage growth and fatigue life of unidirectional composites. Compos. Sci. Technol. 2021, 211, 108656. [Google Scholar] [CrossRef]
- Castro, O.; Carraro, P.A.; Maragoni, L.; Quaresimin, M. Fatigue damage evolution in unidirectional glass/epoxy composites under a cyclic load. Polym. Test. 2019, 74, 216–224. [Google Scholar] [CrossRef]
- Fazlali, B.; Lomov, S.V.; Swolfs, Y. Fiber break model for tension-tension fatigue of unidirectional composites. Compos. Part B Eng. 2021, 220, 108970. [Google Scholar] [CrossRef]
- Thomason, J.L. Glass fibre sizing: A review. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105619. [Google Scholar] [CrossRef]
- Petersen, H. Investigation of Sizing—From Glass Fibre Surface to Composite Interface. Ph.D. Thesis, DTU, Lyngby, Denmark, 2017. [Google Scholar]
- Tripathi, D.; Jones, F.R. Single fibre fragmentation test for assessing adhesion in fibre reinforced composites. J. Mater. Sci. 1998, 33, 1–16. [Google Scholar] [CrossRef]
- Korkiakoski, S.; Brøndsted, P.; Sarlin, E.; Saarela, O. Influence of specimen type and reinforcement on measured tension–tension fatigue life of unidirectional GFRP laminates. Int. J. Fatigue 2016, 85, 114–129. [Google Scholar] [CrossRef] [Green Version]
- de Baere, I.; van Paepegem, W.; Quaresimin, M.; Degrieck, J. On the tension–tension fatigue behaviour of a carbon reinforced thermoplastic part I: Limitations of the ASTM D3039/D3479 standard. Polym. Test. 2011, 30, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Leone, F.A.; Bergan, A.C.; Dávila, C.G. CompDam—Deformation Gradient Decomposition (DGD), v2.5.0. 2019. Available online: https://github.com/nasa/CompDam_DGD (accessed on 7 May 2021).
- Leone, F.A. Deformation gradient tensor decomposition for representing matrix cracks in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf. 2015, 76, 334–341. [Google Scholar] [CrossRef]
- Manalo, A.; Maranan, G.; Sharma, S.; Karunasena, W.; Bai, Y. Temperature-sensitive mechanical properties of GFRP composites in longitudinal and transverse directions: A comparative study. Compos. Struct. 2017, 173, 255–267. [Google Scholar] [CrossRef]
- Kraus, D.; Trappe, V. Transverse damage in glass fiber reinforced polymer under thermo-mechanical loading. Compos. Part C Open Access 2021, 5, 100147. [Google Scholar] [CrossRef]
- Echtermeyer, A.T.; Krauklis, A.E.; Gagani, A.I.; Sæter, E. Zero Stress Aging of Glass and Carbon Fibers in Water and Oil—Strength Reduction Explained by Dissolution Kinetics. Fibers 2019, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Assarar, M.; Scida, D.; El Mahi, A.; Poilâne, C.; Ayad, R. Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax–fibres and glass–fibres. Mater. Des. 2011, 32, 788–795. [Google Scholar] [CrossRef]
- Boisseau, A.; Davies, P.; Thiebaud, F. Sea Water Ageing of Composites for Ocean Energy Conversion Systems: Influence of Glass Fibre Type on Static Behaviour. Appl. Compos. Mater. 2012, 19, 459–473. [Google Scholar] [CrossRef]
- Gibhardt, D.; Meyer, D.; Braun, L.; Buggisch, C.; Fiedler, B. Effects of the hygrothermal aging history on epoxy resins and GFRP composites. In Composites Meet Sustainability (Vol 1–6), Proceedings of the 20th European Conference on Composite Materials—Composites Meet Sustainability, Lausanne, Switzerland, 26–30 June 2022; Vassilopoulos, A.P., Michaud, V., Eds.; Composite Construction Laboratory: Lausanne, Switzerland, 2022; Volume 6, pp. 347–354. [Google Scholar] [CrossRef]
- Mandell, J.F.; Samborsky, D.D.; Miller, D.A. Effects of resin and reinforcement variations on fatigue resistance of wind turbine blades. In Advances in Wind Turbine Blade Design and Materials; Elsevier: Amsterdam, The Netherlands, 2013; Volume 127, pp. 210–250. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibhardt, D.; Buggisch, C.; Blume-Werry, L.; Fiedler, B. Influence of Sizing Aging on the Strength and Fatigue Life of Composites Using a New Test Method and Tailored Fiber Pre-Treatment: A Comprehensive Analysis. J. Compos. Sci. 2023, 7, 139. https://doi.org/10.3390/jcs7040139
Gibhardt D, Buggisch C, Blume-Werry L, Fiedler B. Influence of Sizing Aging on the Strength and Fatigue Life of Composites Using a New Test Method and Tailored Fiber Pre-Treatment: A Comprehensive Analysis. Journal of Composites Science. 2023; 7(4):139. https://doi.org/10.3390/jcs7040139
Chicago/Turabian StyleGibhardt, Dennis, Christina Buggisch, Lena Blume-Werry, and Bodo Fiedler. 2023. "Influence of Sizing Aging on the Strength and Fatigue Life of Composites Using a New Test Method and Tailored Fiber Pre-Treatment: A Comprehensive Analysis" Journal of Composites Science 7, no. 4: 139. https://doi.org/10.3390/jcs7040139
APA StyleGibhardt, D., Buggisch, C., Blume-Werry, L., & Fiedler, B. (2023). Influence of Sizing Aging on the Strength and Fatigue Life of Composites Using a New Test Method and Tailored Fiber Pre-Treatment: A Comprehensive Analysis. Journal of Composites Science, 7(4), 139. https://doi.org/10.3390/jcs7040139