Calcium Phosphate-Loaded Novel Polypropylene Glycol-Based Dental Resin Composites: Evaluation of In Vitro Bioactivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Salinization of Silica (Filler)
2.2. Preparation of Experimental Dental Composites Groups
2.3. Preparation of Simulated Body Fluid
2.4. In Vitro Bioactivity Test
2.5. Statistical Analysis
3. Results
3.1. SEM and EDAX Analysis for In Vitro Bioactivity
3.2. EDX Analysis
3.3. Z250 FTIR Spectra Analysis
3.3.1. FTIR Spectra of Z250
3.3.2. FTIR Spectra of Group BC
3.3.3. FTIR Spectra of Group CHX-CP5
3.3.4. FTIR Spectra of Group CHX-CP10
3.3.5. FTIR Spectra of Group CHX-CP15
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcaraz, M.G.R.; Veitz-Keenan, A.; Sahrmann, P.; Schmidlin, P.R.; Davis, D.; Iheozor-Ejiofor, Z. Direct composite resin fillings versus amalgam fillings for permanent or adult posterior teeth. Cochrane Database Syst. Rev. 2014, 31. [Google Scholar] [CrossRef] [Green Version]
- Munir, N.; Inayat, N.; Qaiser, A.; Khan, S.A.; Rana, M.H. Evaluation of the Integrity of Amalgam-Composite Interface with Two Resin Based Intermediate Materials. J. Bahria Univ. Med. Dent. Coll. 2017, 7, 119–124. [Google Scholar]
- Khan, A.A.; Zafar, M.S.; Ali A Ghubayri, A.; AlMufareh, N.A.; Binobaid, A.; Eskandrani, R.M.; Al-Kheraif, A.A. Polymerisation of restorative dental composites: Influence on physical, mechanical and chemical properties at various setting depths. Mater. Technol. 2022, 37, 2056–2062. [Google Scholar] [CrossRef]
- Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. Recent advances and developments in composite dental restorative materials. J. Dent. Res. 2011, 90, 402–416. [Google Scholar] [CrossRef] [Green Version]
- Alfawaz, Y.F.; Almutairi, B.; Kattan, H.F.; Zafar, M.S.; Farooq, I.; Naseem, M.; Vohra, F.; Abduljabbar, T. Dentin bond integrity of hydroxyapatite containing resin adhesive enhanced with graphene oxide nano-particles—An SEM, EDX, micro-raman, and microtensile bond strength study. Polymers 2020, 12, 2978. [Google Scholar] [CrossRef]
- Ali, S.; Sangi, L.; Kumar, N.; Kumar, B.; Khurshid, Z.; Zafar, M.S. Evaluating antibacterial and surface mechanical properties of chitosan modified dental resin composites. Technol. Health Care 2020, 28, 165–173. [Google Scholar] [CrossRef]
- Braun, H.; Zonta, J.H.; Soares de Souza Lima, J.; Fialho dos Reis, E. Produção De Mudas De Café ‘Conilon’ Propagadas Vegetativamente Em Diferentes Níveis De Sombreamento. Idesia 2007, 25, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Aljabo, A.; Abou Neel, E.A.; Knowles, J.C.; Young, A.M. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. Mater. Sci. Eng. C 2016, 60, 285–292. [Google Scholar] [CrossRef]
- Walters, N.J.; Xia, W.; Salih, V.; Ashley, P.F.; Young, A.M. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing. Dent. Mater. 2016, 32, 264–277. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.H.S.; Owji, N.; Ashley, P.; Young, A.M. Varying 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) level improves polymerisation kinetics and flexural strength in self-adhesive, remineralising composites. Dent. Mater. 2021, 37, 1366–1376. [Google Scholar] [CrossRef]
- Agrawal, S.; Srivastava, R. Osteoinductive and osteoconductive biomaterials. In Racing for the Surface: Antimicrobial and Interface Tissue Engineering; Springer: Berlin, Germany, 2020; pp. 355–395. [Google Scholar]
- Alshami, A.A. Development of a Novel Antibacterial and Remineralising Dental Composite for Paediatric Dentistry. Ph.D. Thesis, University College London, London, UK, 2015; 310p. [Google Scholar]
- Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2000, 31 (Suppl. S4), 37–47. [Google Scholar] [CrossRef] [PubMed]
- Lodoso-Torrecilla, I.; van den Beucken, J.J.J.P.; Jansen, J.A. Calcium phosphate cements: Optimization toward biodegradability. Acta Biomater. 2021, 119, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Reif, S.C. Dedicated To. Vetus Testam. 1972, 22, 495–501. [Google Scholar] [CrossRef]
- Al-Sanabani, J.S.; Madfa, A.A.; Al-Sanabani, F.A. Application of calcium phosphate materials in dentistry. Int. J. Biomater. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, O.; Shiwaku, Y.; Hamai, R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dent. Mater. J. 2020, 39, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Khan, A.S.; Syed, M.R. A review of bioceramics-based dental restorative materials. Dent. Mater. J. 2019, 38, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Almulhim, K.S.; Syed, M.R.; Alqahtani, N.; Alamoudi, M.; Khan, M.; Ahmed, S.Z.; Khan, A.S. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. Materials 2022, 15, 6864. [Google Scholar] [CrossRef]
- Cheng, L.; Weir, M.D.; Xu, H.H.K.; Kraigsley, A.M.; Lin, N.J.; Lin-Gibson, S.; Zhou, X. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine. Dent. Mater. 2012, 28, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Yoruç, A.B.H.; Aydınoğlu, A. The precursors effects on biomimetic hydroxyapatite ceramic powders. Mater. Sci. Eng. C 2017, 75, 934–946. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Pazarceviren, A.E.; Tezcaner, A.; Evis, Z. Historical development of simulated body fluids used in biomedical applications: A review. Microchem. J. 2020, 155, 104713. [Google Scholar] [CrossRef]
- Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdawi, I.M.; Kitagawa, R.; Kitagawa, H.; Yamaguchi, S.; Hirose, N.; Kohno, T.; Imazato, S. Incorporation of chlorhexidine in self-adhesive resin cements. Dent. Mater. J. 2022, 41, 675–681. [Google Scholar] [CrossRef]
- Amin, F.; Fareed, M.A.; Zafar, M.S.; Khurshid, Z.; Palma, P.J.; Kumar, N. Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. Coatings 2022, 12, 1094. [Google Scholar] [CrossRef]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tarle, A.; Prskalo, K.; Tauböck, T. Effect of adhesive coating on calcium, phosphate, and fluoride release from experimental and commercial remineralizing dental restorative materials. Sci. Rep. 2022, 12, 10272. [Google Scholar] [CrossRef]
- Baino, F.; Yamaguchi, S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: Review and challenges. Biomimetics 2020, 5, 57. [Google Scholar] [CrossRef]
- Dridi, A.; Riahi, K.Z.; Somrani, S. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37 °C. J. Phys. Chem. Solids 2021, 156, 110122. [Google Scholar] [CrossRef]
- Díaz-Cuenca, A.; Rabadjieva, D.; Sezanova, K.; Gergulova, R.; Ilieva, R.; Tepavitcharova, S. Biocompatible calcium phosphate-based ceramics and composites. Mater. Today Proc. 2022, 61, 1217–1225. [Google Scholar] [CrossRef]
- Engstrand, J.; Persson, C.; Engqvist, H. The effect of composition on mechanical properties of brushite cements. J. Mech. Behav. Biomed. Mater. 2014, 29, 81–90. [Google Scholar] [CrossRef]
- Elfakhri, F.; Alkahtani, R.; Li, C.; Khaliq, J. Influence of filler characteristics on the performance of dental composites: A comprehensive review. Ceram. Int. 2022, 48, 27280–27294. [Google Scholar] [CrossRef]
- Panpisut, P.; Suppapatpong, T.; Rattanapan, A.; Wongwarawut, P. Monomer conversion, biaxial flexural strength, apatite forming ability of experimental dual-cured and self-adhesive dental composites containing calcium phosphate and nisin. Dent. Mater. J. 2021, 40, 399–406. [Google Scholar] [CrossRef]
- Senra, M.R.; de Lima, R.B.; Souza, D.D.H.S.; Marques, M.D.F.V.; Monteiro, S.N. Thermal characterization of hydroxyapatite or carbonated hydroxyapatite hybrid composites with distinguished collagens for bone graft. J. Mater. Res. Technol. 2020, 9, 7190–7200. [Google Scholar] [CrossRef]
- Yang, L.; Perez-Amodio, S.; Barrère-de Groot, F.Y.F.; Everts, V.; van Blitterswijk, C.A.; Habibovic, P. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials 2010, 31, 2976–2989. [Google Scholar] [CrossRef] [PubMed]
Abbreviation Formulations | Composition of the Composite | Fillers (wt%) | |||
---|---|---|---|---|---|
CHX | Silica | CaP | |||
MCPM | β-TCP | ||||
BC | Basic composite without any reactive fillers (BC) | 0 | 40% | 0 | 0 |
CHX-CP5 | BC + 5% (MCPM) 5% (β-TCP) + 5% Chlorhexidine | 5% | 40% | 5% | 5% |
CHX-CP10 | BC + 10% MCPM, 10% β-TCP + 5% Chlorhexidine | 5% | 40% | 10% | 10% |
CHX-CP15 | BC + 15% MCPM, 15% β-TCP + 5% Chlorhexidine | 5% | 40% | 15% | 15% |
Z250 | BC | CHX-CP5 | CHX-CP10 | CHX-CP15 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Element | Wt% | Atomic% | Wt% | Atomic% | Wt% | Atomic% | Wt% | Atomic% | Wt% | Atomic% |
O 1 | 65.60 | 68.76 | 58.68 | 71.35 | 57.56 | 70.52 | 57.54 | 70.79 | 56.95 | 70.22 |
Si 2 | 33.95 | 25.51 | 42.32 | 29.31 | 41.37 | 28.86 | 38.90 | 27.26 | 38.26 | 28.24 |
P 3 | −0.32 | −0.23 | −1.21 | −0.53 | 0.28 | 0.46 | 0.98 | 0.33 | 0.52 | 0.62 |
Cl 4 | 0.45 | 0.60 | 0.32 | 0.10 | 0.88 | 0.94 | 1.74 | 1.68 | 1.94 | 1.70 |
Ca 5 | 0.10 | 0.15 | 0.12 | 0.15 | 0.40 | 0.15 | 1.87 | 0.54 | 1.10 | 0.92 |
Total | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafqat, Z.; Munir, N.; Inayat, N.; Khan, M.A.; Fareed, M.A.; Zafar, M.S. Calcium Phosphate-Loaded Novel Polypropylene Glycol-Based Dental Resin Composites: Evaluation of In Vitro Bioactivity. J. Compos. Sci. 2023, 7, 140. https://doi.org/10.3390/jcs7040140
Shafqat Z, Munir N, Inayat N, Khan MA, Fareed MA, Zafar MS. Calcium Phosphate-Loaded Novel Polypropylene Glycol-Based Dental Resin Composites: Evaluation of In Vitro Bioactivity. Journal of Composites Science. 2023; 7(4):140. https://doi.org/10.3390/jcs7040140
Chicago/Turabian StyleShafqat, Zahra, Nadia Munir, Naveed Inayat, Muhammad Adnan Khan, Muhammad Amber Fareed, and Muhammad Sohail Zafar. 2023. "Calcium Phosphate-Loaded Novel Polypropylene Glycol-Based Dental Resin Composites: Evaluation of In Vitro Bioactivity" Journal of Composites Science 7, no. 4: 140. https://doi.org/10.3390/jcs7040140
APA StyleShafqat, Z., Munir, N., Inayat, N., Khan, M. A., Fareed, M. A., & Zafar, M. S. (2023). Calcium Phosphate-Loaded Novel Polypropylene Glycol-Based Dental Resin Composites: Evaluation of In Vitro Bioactivity. Journal of Composites Science, 7(4), 140. https://doi.org/10.3390/jcs7040140