Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Coating Structure
3.2. Oxidation Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soboyejo, W.O.; Obayemi, J.D.; Annan, E.; Ampaw, E.K.; Daniels, L.; Rahbar, N. Review of High Temperature Ceramics for Aerospace Applications. Adv. Mater. Res. 2016, 1132, 385–407. [Google Scholar] [CrossRef]
- Hague, J.R. Refractory Ceramics for Aerospace, A Materials Selection Handbook; Lynch, J.F., Rudnick, A., Holden, F.C., Duckworth, W.H., Eds.; American Ceramic Society: Westerville, OH, USA, 1967; p. 265. [Google Scholar]
- Yanagihara, K.; Przybylski, K.; Maruyama, T. The Role of Microstructure on Pesting during Oxidation of MoSi2 and Mo(Si,Al)2 at 773 K. Oxid. Met. 1997, 47, 277–293. [Google Scholar] [CrossRef]
- Fujiwara, H.; Ueda, Y.; Awasthi, A.; Krishnamurthy, N.; Garg, S.P. Thermodynamic Study on Refractory Metal Silicides. J. Phys. Chem. Solids 2005, 66, 298–302. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Iatsyuk, I.V.; Shvindina, N.V.; Levashov, E.A.; Shtansky, D.V. Comparative Investigation of Structure, Mechanical Properties, and Oxidation Resistance of Mo-Si-B and Mo-Al-Si-B Coatings. Corros. Sci. 2017, 123, 319–327. [Google Scholar] [CrossRef]
- Schneibel, J.H.; Ritchie, R.O.; Kruzic, J.J.; Tortorelli, P.F. Optimization of Mo-Si-B Intermetallic Alloys. Undefined 2005, 36, 525–531. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Sviridova, T.A.; Sidorenko, D.A.; Andreev, N.V.; Klechkovskaya, V.V.; Polčak, J.; Levashov, E.A. Effects of Doping with Zr and Hf on the Structure and Properties of Mo-Si-B Coatings Obtained by Magnetron Sputtering of Composite Targets. Surf. Coat. Technol. 2022, 442, 128141. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, X. A Comparative Study of Two Kinds of Y and Al Modified Silicide Coatings on an Nb–Ti–Si Based Alloy Prepared by Pack Cementation Technique. Corros. Sci. 2011, 53, 4291–4299. [Google Scholar] [CrossRef]
- Wang, C.C.; Li, K.Z.; He, D.Y.; Shi, X.H. Oxidation Behavior and Mechanism of MoSi2-Y2O3 Composite Coating Fabricated by Supersonic Atmospheric Plasma Spraying. Appl. Surf. Sci. 2020, 506, 144776. [Google Scholar] [CrossRef]
- Majumdar, S.; Burk, S.; Schliephake, D.; Krüger, M.; Christ, H.J.; Heilmaier, M. A Study on Effect of Reactive and Rare Earth Element Additions on the Oxidation Behavior of Mo-Si-B System. Oxid. Met. 2013, 80, 219–230. [Google Scholar] [CrossRef]
- Majumdar, S.; Schliephake, D.; Gorr, B.; Christ, H.J.; Heilmaier, M. Effect of Yttrium Alloying on Intermediate to High-Temperature Oxidation Behavior of Mo-Si-B Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2013, 44, 2243–2257. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, K.; Sha, J.; Zhou, C. Microstructure and Wear Behavior of Mo–60Si–5B Coating Doped with 0.5 At% La by Spark Plasma Sintering. Prog. Nat. Sci. Mater. Int. 2022, 32, 752–757. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, K.; Sha, J.; Zhou, C. Oxidation Behavior of Si- Rich Mo-Si-B Coating Doped with La by Spark Plasma Sintering. Corros. Sci. 2021, 192, 109762. [Google Scholar] [CrossRef]
- Terent’eva, V.S.; Zhestkov, B.E. Multifunctional High-Temperature D5 MAI and M1 MAI Coatings. Russ. J. Phys. Chem. B 2009, 3, 391–396. [Google Scholar] [CrossRef]
- Lange, A.; Heilmaier, M.; Sossamann, T.A.; Perepezko, J.H. Oxidation Behavior of Pack-Cemented Si–B Oxidation Protection Coatings for Mo–Si–B Alloys at 1300 °C. Surf. Coat. Technol. 2015, 266, 57–63. [Google Scholar] [CrossRef]
- Sun, J.; Fu, Q.G.; Guo, L.P.; Liu, Y.; Huo, C.X.; Li, H.J. Effect of Filler on the Oxidation Protective Ability of MoSi2 Coating for Mo Substrate by Halide Activated Pack Cementation. Mater. Des. 2016, 92, 602–609. [Google Scholar] [CrossRef]
- Perepezko, J.H.; Sossaman, T.A.; Taylor, M. Environmentally Resistant Mo-Si-B-Based Coatings. J. Therm. Spray Technol. 2017, 26, 929–940. [Google Scholar] [CrossRef]
- Ritt, P.; Sakidja, R.; Perepezko, J.H. Mo–Si–B Based Coating for Oxidation Protection of SiC–C Composites. Surf. Coat. Technol. 2012, 206, 4166–4172. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W.; Yang, X. Oxidation Performance of Aluminide Coating on Inconel 783 Bolts for Ultra-Supercritical Steam Turbine Application. Corros. Sci. 2022, 196, 110033. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Lai, Z.; Kuang, T.; Djouadi, M.A. Microstructure and Mechanical Properties of HfBx Coatings Deposited on Cemented Carbide Substrates by HiPIMS and DCMS. Surf. Coat. Technol. 2023, 452, 129119. [Google Scholar] [CrossRef]
- Kumar, A.; Bauri, R.; Naskar, A.; Chattopadhyay, A.K. Characterization of HiPIMS and DCMS Deposited TiAlN Coatings and Machining Performance Evaluation in High Speed Dry Machining of Low and High Carbon Steel. Surf. Coat. Technol. 2021, 417, 127180. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Horwat, D.; Pierson, J.F.; Levashov, E.A. Comparative Analysis of Cr-B Coatings Deposited by Magnetron Sputtering in DC and HIPIMS Modes. Tech. Phys. Lett. 2014, 40, 614–617. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sheveyko, A.N.; Vorotilo, S.A.; Levashov, E.A. Wear-Resistant Ti–Al–Ni–C–N Coatings Produced by Magnetron Sputtering of SHS-Targets in the DC and HIPIMS Modes. Ceram. Int. 2020, 46, 1775–1783. [Google Scholar] [CrossRef]
- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized Physical Vapor Deposition (IPVD): A Review of Technology and Applications. Thin Solid Film. 2006, 513, 1–24. [Google Scholar] [CrossRef]
- Lattemann, M.; Ehiasarian, A.P.; Bohlmark, J.; Persson, P.Å.O.; Helmersson, U. Investigation of High Power Impulse Magnetron Sputtering Pretreated Interfaces for Adhesion Enhancement of Hard Coatings on Steel. Surf. Coat. Technol. 2006, 200, 6495–6499. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, F.V. Possibilities of Glow Discharge Optical Emission Spectroscopy in the Investigation of Coatings. Russ. J. Non-Ferrous Met. 2014, 55, 494–504. [Google Scholar] [CrossRef]
- Chen, P.Y.; Wang, W.C.; Wu, Y.T. Experimental Investigation of Thin Film Stress by Stoney’s Formula. Measurement 2019, 143, 39–50. [Google Scholar] [CrossRef]
- Sarakinos, K.; Alami, J.; Konstantinidis, S. High Power Pulsed Magnetron Sputtering: A Review on Scientific and Engineering State of the Art. Surf. Coat. Technol. 2010, 204, 1661–1684. [Google Scholar] [CrossRef]
- Sytchenko, A.D.; Kiryukhantsev-Korneev, P. V Plasma Diagnostics during Deposition of Zr-B-N Coatings by Magnetron Sputtering of UHTC Ceramic in DCMS and HIPIMS Modes. J. Phys. Conf. Ser. 2021, 2064, 012062. [Google Scholar] [CrossRef]
- Zubkins, M.; Arslan, H.; Bikse, L.; Purans, J. High Power Impulse Magnetron Sputtering of Zn/Al Target in an Ar and Ar/O2 Atmosphere: The Study of Sputtering Process and AZO Films. Surf. Coat. Technol. 2019, 369, 156–164. [Google Scholar] [CrossRef]
- Samuelsson, M.; Lundin, D.; Jensen, J.; Raadu, M.A.; Gudmundsson, J.T.; Helmersson, U. On the Film Density Using High Power Impulse Magnetron Sputtering. Surf. Coat. Technol. 2010, 205, 591–596. [Google Scholar] [CrossRef]
- Nayak, M.; Lodha, G.S. Optical Response Near the Soft X-ray Absorption Edges and Structural Studies of Low Optical Contrast System Using Soft X-ray Resonant Reflectivity. J. At. Mol. Opt. Phys. 2011, 2011, 649153. [Google Scholar] [CrossRef]
- Filatova, E.O.; Sakhonenkov, S.S.; Gaisin, A.U.; Konashuk, A.S.; Chumakov, R.G.; Pleshkov, R.S.; Chkhalo, N.I. Inhibition of Chemical Interaction of Molybdenum and Silicon in a Mo/Si Multilayer Structure by the Formation of Intermediate Compounds. Phys. Chem. Chem. Phys. 2021, 23, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Sakhonenkov, S.S.; Filatova, E.O.; Gaisin, A.U.; Kasatikov, S.A.; Konashuk, A.S.; Pleshkov, R.S.; Chkhalo, N.I. Angle Resolved Photoelectron Spectroscopy as Applied to X-ray Mirrors: An in Depth Study of Mo/Si Multilayer Systems. Phys. Chem. Chem. Phys. 2019, 21, 25002–25010. [Google Scholar] [CrossRef] [PubMed]
- XPS, AES, UPS and ESCA, LaSurface.Com. Available online: http://www.lasurface.com/database/elementxps.php (accessed on 15 September 2022).
- Durand, C.; Vallée, C.; Dubourdieu, C.; Gautier, E.; Bonvalot, M.; Joubert, O. Interface Formation during the Yttrium Oxide Deposition on Si by Pulsed Liquid-Injection Plasma Enhanced Metal-Organic Chemical Vapor Deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2004, 22, 2490. [Google Scholar] [CrossRef]
- Pang, J.; Wang, W.; Zhou, C. Microstructure Evolution and Oxidation Behavior of B Modified MoSi2 Coating on Nb–Si Based Alloys. Corros. Sci. 2016, 105, 1–7. [Google Scholar] [CrossRef]
- Yoshimi, K.; Nakatani, S.; Suda, T.; Hanada, S.; Habazaki, H. Oxidation Behavior of Mo5SiB2-Based Alloy at Elevated Temperatures. Intermetallics 2002, 10, 407–414. [Google Scholar] [CrossRef]
- Koller, C.M.; Marihart, H.; Bolvardi, H.; Kolozsvári, S.; Mayrhofer, P.H. Structure, Phase Evolution, and Mechanical Properties of DC, Pulsed DC, and High Power Impulse Magnetron Sputtered Ta–N Films. Surf. Coat. Technol. 2018, 347, 304–312. [Google Scholar] [CrossRef]
- Engwall, A.M.; Shin, S.J.; Bae, J.; Wang, Y.M. Enhanced Properties of Tungsten Films by High-Power Impulse Magnetron Sputtering. Surf. Coat. Technol. 2019, 363, 191–197. [Google Scholar] [CrossRef]
- He, J.; Guo, X.; Qiao, Y.; Luo, F. A Novel Zr-Y Modified Silicide Coating on Nb-Si Based Alloys as Protection against Oxidation and Hot Corrosion. Corros. Sci. 2020, 177, 108948. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Potanin, A.Y.; Vorotilo, S.A.; Levashov, E.A. Mechanical Properties and Oxidation Resistance of Mo-Si-B and Mo-Hf-Si-B Coatings Obtained by Magnetron Sputtering in DC and Pulsed DC Modes. Surf. Coat. Technol. 2020, 403, 126373. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Liang, W.; Miao, Q.; Zhou, S.; Sun, J.; Qi, Y.; Gao, X.; Song, Y.; Ogawa, K. Effect of the Y2O3 Amount on the Oxidation Behavior of ZrB2-SiC-Based Coatings for Carbon/Carbon Composites. J. Eur. Ceram. Soc. 2022, 42, 4770–4782. [Google Scholar] [CrossRef]
Coating | Mode | SY, cm2 | Elemental Composition, at.% | Thickness, µm | Growth Rate, nm/min | ||||
---|---|---|---|---|---|---|---|---|---|
Mo | Si | B | Y | Zr | |||||
Mo-Si-B | DCMS | 0 | 24 | 68 | 8 | 0 | 0 | 7.3 | 183 |
Mo-Si-B | HIPIMS | 0 | 22 | 70 | 8 | 0 | 0 | 3.5 | 88 |
Mo-Y-Si-B | DCMS | 10 | 30 | 58 | 5 | 7 | 0 | 6.4 | 160 |
Mo-Y-Si-B | HIPIMS | 10 | 24 | 62 | 7 | 7 | 0 | 6.2 | 155 |
Mo-Zr-Y-Si-B | HIPIMS | 5 | 14 | 52 | 22 | 3 | 9 | 3.2 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sytchenko, A.D.; Loginov, P.A.; Nozhkina, A.V.; Levashov, E.A.; Kiryukhantsev-Korneev, P.V. Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets. J. Compos. Sci. 2023, 7, 185. https://doi.org/10.3390/jcs7050185
Sytchenko AD, Loginov PA, Nozhkina AV, Levashov EA, Kiryukhantsev-Korneev PV. Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets. Journal of Composites Science. 2023; 7(5):185. https://doi.org/10.3390/jcs7050185
Chicago/Turabian StyleSytchenko, Alina D., Pavel A. Loginov, Alla V. Nozhkina, Evgeny A. Levashov, and Philipp V. Kiryukhantsev-Korneev. 2023. "Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets" Journal of Composites Science 7, no. 5: 185. https://doi.org/10.3390/jcs7050185
APA StyleSytchenko, A. D., Loginov, P. A., Nozhkina, A. V., Levashov, E. A., & Kiryukhantsev-Korneev, P. V. (2023). Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets. Journal of Composites Science, 7(5), 185. https://doi.org/10.3390/jcs7050185