Effects of Gamma Irradiation on Optical Properties of Poly(ethylene oxide) Thin Films Doped with Potassium Iodide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Absorbance and Absorption Coefficient
3.2. Energy Gap
3.3. Refractive Index and Extinction Coefficient
3.4. Dielectric Constant
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamsan, M.H.; Shukur, M.F.; Aziz, S.B.; Yusof, Y.M.; Kadir, M.F.Z. Influence of NH4Br as an ionic source on the structural/electrical properties of dextran-based biopolymer electrolytes and EDLC application. J. Mater. Sci. 2019, 43, 30. [Google Scholar]
- Aziz, S.B.; Brza, M.A.; Hamsan, M.H.; Kadir, M.F.Z.; Muzakir, S.K.; Abdulwahid, R.T.J. Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA:Dextran:NH4I based polymer blend electrolytes. Mater. Res. Technol. 2020, 9, 3734–3745. [Google Scholar] [CrossRef]
- Hamsan, M.H.; Aziz, S.B.; Azha, M.A.S.; Azli, A.A.; Shukur, M.F.; Yusof, Y.M.; Muzakir, S.K.A.; Manan, N.S.; Kadir, M.F.Z. Solid-state double layer capacitors and protonic cell fabricated with dextran from Leuconostoc mesenteroides based green polymer electrolyte. Mater. Chem. Phys. 2020, 241, 122290. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hamsan, M.H.; Brza, M.A.; Kadir, M.F.Z.; Abdulwahid, R.T.; Ghareeb, H.O.; Woo, H.J. Fabrication of energy storage EDLC device based on CS:PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys. 2019, 15, 102584. [Google Scholar] [CrossRef]
- Aziz, S.B.; Brza, M.A.; Mishra, K.; Hamsan, M.H.; Karim, W.O.; Abdullah, R.M.; Kadir, M.F.Z.; Abdulwahid, R.T.J. Fabrication of high performance energy storage EDLC device from proton conducting methylcellulose: Dextran polymer blend electrolytes. Mater. Res. Technol. 2020, 9, 1137–1150. [Google Scholar] [CrossRef]
- Mohan, V.M.; Bhargav, P.B.; Raja, V.; Sharma, A.K.; Rao, V.V.R.N. Optical and electrical properties of pure and doped PEO polymer electrolyte films. Soft Mater. 2007, 5, 33–46. [Google Scholar] [CrossRef]
- Meyer, W.H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 1998, 10, 239–248. [Google Scholar] [CrossRef]
- Ngai, K.S.; Ramesh, S.; Ramesh, K.; Juan, J.C. Review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259–1279. [Google Scholar] [CrossRef]
- Pang, W.; Li, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7, 23494–23501. [Google Scholar]
- Aziz, S.B.; Brza, M.A.; Nofal, M.M.; Abdulwahid, R.T.; Hussen, S.A.; Hussein, A.M.; Karim, W.O. Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites. Materials 2020, 13, 3675. [Google Scholar] [CrossRef]
- Manjunatha, V.; Subramanya, K.; Devendrappa, H. Structural optical and electrical conductivity properties of Li2SO4 doped polymer electrolytes. Compos. Interfaces 2014, 21, 121–131. [Google Scholar] [CrossRef]
- Bandara, T.M.W.J.; Dissanayake, M.A.K.L.; Albinsson, I.; Mellander, B.E. Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ion. 2011, 189, 63–68. [Google Scholar] [CrossRef]
- Abdelrazek, E.M.; Abdelghany, A.M.; Badr, S.I.; Morsi, M.A. Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 2018, 7, 419–431. [Google Scholar] [CrossRef]
- Schauser, N.S.; Seshadri, R.; Segalman, R.A. Multivalent ion conduction in solid polymer systems. Mol. Syst. Des. Eng. 2019, 4, 263–279. [Google Scholar] [CrossRef]
- Polu, A.R.; Kumar, R. Impedance Spectroscopy and FTIR Studies of PEG-Based Polymer Electrolytes. E-J. Chem. 2011, 8, 347–353. [Google Scholar] [CrossRef]
- Guggilla, P.; Chilvery, A.; Powell, R. Reducing the Bandgap Energy via Doping Process in Lead-Free Thin Film Nanocomposites. Res. Rev. J. Mater. Sci. 2017, 5, 34–44. [Google Scholar]
- Sangodkar, H.; Sukeerthi, S.; Srinivasa, R.S.; Lal, A.; Contractor, A.Q. A biosensor array based on polyaniline. Anal. Chem. 1996, 68, 779–783. [Google Scholar] [CrossRef]
- Abdul-Kader, A.M.; El-Gendy, Y.A.; Al-Rashdy, A.A. Improve the physical and chemical properties of biocompatible polymer material by MeV He ion beam. Radiat. Phys. Chem. 2012, 81, 798. [Google Scholar] [CrossRef]
- Bielinski, D.; Lipinski, P.; Slusarski, L.; Grams, J.; Paryjczak, T.; Jagielski, J.; Turos, A.; Madi, N.K. Surface layer modification of ion bombarded HDPE. Surf. Sci. 2004, 564, 179. [Google Scholar] [CrossRef]
- Tretinnikov, O.N.; Ogata, S.; Ikada, Y. Surface crosslinking of polyethylene by electron beam irradiation in air. Polymer 1998, 39, 6115. [Google Scholar] [CrossRef]
- Gheysari, D.; Behjat, A.; Haji-Saeid, M. The effect of high-energy electron beam on mechanical and thermal properties of LDPE and HDPE. Eur. Polym. J. 2001, 37, 295. [Google Scholar] [CrossRef]
- Clough, R.L. High-energy radiation and polymers: A review of commercial processes and emerging applications. Nucl. Instrum. Meth. B 2001, 185, 8. [Google Scholar] [CrossRef]
- Hazarik, J.; Nath, C.; Kumar, A. 160 MeV Ni12+ ion irradiation effects on the dielectric properties of polyaniline nanotubes. Nucl. Instrum. Meth. B 2012, 88, 4. [Google Scholar]
- Abdul-Kader, A.M.; Turos, A.; Radwan, R.M.; Kelany, A.M. Surface free energy of ultra-high molecular weight polyethylene modified by electron and gamma irradiation. Appl. Surf. Sci. 2009, 255, 5016–5020. [Google Scholar] [CrossRef]
- Siddhartha, S.; Dev Aarya, K.; Raghuvanshi, S.K.; Krishna, J.B.M.; Wahab, M.A. Effect of gamma radiation on the structural and optical properties of Polyethyleneterephthalate (PET) polymer. Radiat. Phys. Chem. 2012, 81, 458. [Google Scholar] [CrossRef]
- Kumar, V.; Sonkawade, R.G.; Chakarvarti, S.K.; Singh, P.; Dhaliwal, A.S. Carbon ion beam induced modifications of optical, structural and chemical properties in PADC and PET polymers. Radiat. Phys. Chem. 2012, 81, 652. [Google Scholar] [CrossRef]
- Šiljegović, M.; Kacarevic-Popovic, Z.M.; Bibic, N.; Jovanovic, Z.M.; Maletic, S.; Stchakovsky, M.; Krklješ, A.N. Optical and dielectric properties of fluorinated ethylene propylene and tetrafluoroethylene–perfluoro (alkoxy vinyl ether) copolymer films modified by low energy N4+ and C4+ ion beams. Radiat. Phys. Chem. 2011, 80, 1378. [Google Scholar] [CrossRef]
- Abdel Moez, A.; Aly, S.S.; Elshaer, Y.H. Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 203. [Google Scholar] [CrossRef]
- Qureshi, A.; Singh, D.; Singh, N.L.; Ataoglu, S.; Gulluoglu, A.N.; Tripathi, A.; Avasthi, D.K. Effect of irradiation by 140 Mev Ag11+ ions on the optical and electrical properties of polypropylene/TiO2 composite. Nucl. Instrum. Methods B 2009, 267, 3456. [Google Scholar] [CrossRef]
- Verma, R.; Dhar, R.; Rath, M.C.; Sarkar, S.K.; Dabrowski, R. Electron beam irradiation induced changes in the dielectric and electro-optical properties of a room temperature nematic display material 4-(trans-4′-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT). J. Phys. Chem. Solids 2012, 73, 288. [Google Scholar] [CrossRef]
- Radwan, R.M.; Fawzy, Y.H.A.; El-Hag Ali, A. Electrical behaviour of butyl acrylate/methyl methacrylate copolymer films irradiated with 1.5 MeV electron beam. Radiat. Phys. Chem. 2008, 77, 179. [Google Scholar] [CrossRef]
- Nouh, S.A.; Benthami, K.; Samy, R.M.; El-Hagg, A.A. Effect of gamma radiation on the structure and optical properties of polycarbonate-polybutylene terephthalate/silver nanocomposite films. Chem. Phys. Lett. 2020, 741, 137123. [Google Scholar] [CrossRef]
- Aldaghri, O.A.; El-Badry, B.A.; Ali, M.K.M.; Ibnaouf, K.H. Effect of Gamma Irradiation on the Optical Properties of the Conjugated Copolymer B-co-MP. Appl. Sci. 2022, 12, 1606. [Google Scholar] [CrossRef]
- Forster, P.L.; Parra, D.F.; Kai, J.g.; Brito, H.F.; Lugao, A.B. Influence of gamma irradiation on photoluminescence properties of polycarbonate films doped with Eu3+-β-diketonate complex. Radiat. Phys. Chem. 2013, 84, 47–50. [Google Scholar] [CrossRef]
- Al-Kadhemy, M.F.H.; Saeed, A.A.; Khaleel, R.I.; Al-Nuaimi, F.J.K. Effect of gamma ray on optical characteristics of (PMMA/PS) polymer blends. J. Theor. Appl. Phys. 2017, 11, 201–207. [Google Scholar] [CrossRef]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 903–922. [Google Scholar] [CrossRef]
- Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324. [Google Scholar] [CrossRef]
- Ramadin, Y.; Al-Haj Abdallah, M.; Ahmad, M.; Zihlif, A.M.; Al-Ani, S.K.J.; Al-Ani, S.G.K. Optical properties of epoxy-glass microballoons composite. Opt. Mater. 1996, 5, 69–73. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abdulwahid, R.T.; Rsaul, H.A.; Ahmed, H.M. In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J. Mater Sci. Electron. 2016, 27, 4163–4171. [Google Scholar] [CrossRef]
- Eakins, G.L.; Cooper, M.W.; Gerasimchuk, N.N.; Phillips, T.J.; Breyfogle, B.E.; Stearman, C.J. Structural influences impacting the role of the 9-ylidene bond in the electronic tuning of structures built upon 9-fluorenylidene scaffolds. Can. J. Chem. 2013, 91, 1–13. [Google Scholar] [CrossRef]
- Abdul-Kader, A.M. The optical band gap and surface free energy of polyethylene modified by electron beam irradiations. J. Nucl. Mater. 2013, 435, 231–235. [Google Scholar] [CrossRef]
- El-Mansy, M.K.; Sheha, E.M.; Patel, K.R.; Sharma, G.D. Characterization of PVA/CuI polymer composites as electron donor for photovoltaic application. Optik 2013, 124, 1624–1631. [Google Scholar] [CrossRef]
- Tauc, J. Amorphous and Liquid Semiconductors; Plenum: New York, NY, USA, 1974. [Google Scholar]
- Hadi, A.G.; Lafta, F.; Hashim, A.; Hakim HAl-Zuheiry, A.L.O.; Salman, S.R.; Ahmed, H. Study the Effect of Barium Sulphate on Optical Properties of Polyvinyl Alcohol (PVA). Univers. J. Mater. Sci. 2013, 1, 52–55. [Google Scholar] [CrossRef]
- Kramadhati, S.; Thyagarajan, K. Optical Properties of Pure and Doped (Kno3 & Mgcl2) Polyvinyl Alcohol Polymer Thin Films. Int. J. Eng. Res. Dev. 2013, 6, 15–18. [Google Scholar]
- Grodzinski, J.J. Biomedical application of functional polymers. React. Funct. Polym. 1999, 39, 99. [Google Scholar] [CrossRef]
- Yakuphanoglu, F.; Ilican, S.; Caglar, M.; Caglar, Y. The determination of the optical band and optical constants of non-crystalline and crystalline ZnO thin films deposited by spray pyrolysis. J. Optoelectron. Adv. Mater. 2007, 9, 2180–2185. [Google Scholar]
- Habeeb, M.A.; Rabee, B.H.; Hashim, A. Effect of Potassium Chloride on Physical and Optical Properties of Polystyrene. Adv. Phys. Theor. Appl. 2013, 20, 141–147. [Google Scholar]
- Abu Saleh, B.A.; Alzubi, R.I.; Elimat, Z.M.; Juwhari, H.K.; Zihlif, A.M. Ultrafine iron particles/polystyrene composites: Effects of gamma radiation and manufacture aging on the AC electrical characterization. Radiat. Eff. Defects Solids 2022, 177, 1065–1074. [Google Scholar] [CrossRef]
- Penn, D.R. Wave-Number-Dependent Dielectric Function of Semiconductors. Phys. Rev. 1962, 128, 2093–2097. [Google Scholar] [CrossRef]
- Aziz, S.B.; Rasheed, M.A.; Ahmed, H.M. Synthesis of Polymer Nanocomposites Based on [Methyl Cellulose](1−x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with Desired Optical Band Gaps. Polymers 2017, 9, 194. [Google Scholar] [CrossRef]
PEO Thin Film | (eV) before Gamma Irradiation | (eV) after Gamma Irradiation | |
---|---|---|---|
100 Gy | 200 Gy | ||
0 wt.% KI | 2.307 | 2.294 | 2.195 |
2 wt.% KI | 2.271 | 2.254 | 2.140 |
6 wt.% KI | 2.222 | 2.156 | 2.043 |
10 wt.% KI | 2.183 | 2.000 | 1.922 |
15 wt.% KI | 2.156 | 1.925 | 1.851 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qwasmeh, A.A.H.; Abu Saleh, B.A.; Al-Tweissi, M.; Tarawneh, M.A.; Elimat, Z.M.; Alzubi, R.I.; Juwhari, H.K. Effects of Gamma Irradiation on Optical Properties of Poly(ethylene oxide) Thin Films Doped with Potassium Iodide. J. Compos. Sci. 2023, 7, 194. https://doi.org/10.3390/jcs7050194
Qwasmeh AAH, Abu Saleh BA, Al-Tweissi M, Tarawneh MA, Elimat ZM, Alzubi RI, Juwhari HK. Effects of Gamma Irradiation on Optical Properties of Poly(ethylene oxide) Thin Films Doped with Potassium Iodide. Journal of Composites Science. 2023; 7(5):194. https://doi.org/10.3390/jcs7050194
Chicago/Turabian StyleQwasmeh, Ahmed Ali Husein, Batool A. Abu Saleh, Mohammed Al-Tweissi, Mou’ad A. Tarawneh, Ziad M. Elimat, Ruba I. Alzubi, and Hassan K. Juwhari. 2023. "Effects of Gamma Irradiation on Optical Properties of Poly(ethylene oxide) Thin Films Doped with Potassium Iodide" Journal of Composites Science 7, no. 5: 194. https://doi.org/10.3390/jcs7050194
APA StyleQwasmeh, A. A. H., Abu Saleh, B. A., Al-Tweissi, M., Tarawneh, M. A., Elimat, Z. M., Alzubi, R. I., & Juwhari, H. K. (2023). Effects of Gamma Irradiation on Optical Properties of Poly(ethylene oxide) Thin Films Doped with Potassium Iodide. Journal of Composites Science, 7(5), 194. https://doi.org/10.3390/jcs7050194