An Overview of Enhancing the Performance of Medical Implants with Nanocomposites
Abstract
:1. Introduction
2. Brief Overview of Current Types of Medical Implants
3. Types of Nanocomposites for Medical Implants
Examples of Nanocomposites Currently Being Used or Developed for Medical Implants
4. Strategies for Enhancing Implant Performance with Nanocomposites
4.1. Surface Modification
4.1.1. Nanocomposite Coatings
4.1.2. Chemical Functionalisation
4.1.3. Nanopatterning
4.2. Tailoring Nanoparticle Properties
4.2.1. Size and Shape Control
4.2.2. Chemical Composition
4.2.3. Surface Functionalisation
4.2.4. Core–Shell Nanoparticles
4.2.5. Doping and Alloying
4.3. Reducing Wear and Corrosion
4.3.1. Nanoscale Reinforcement
4.3.2. Protective Nanocomposite Coatings
4.3.3. Corrosion-Resistant Nanoparticles
4.3.4. Self-Healing Nanocomposites
4.3.5. Multi-Functional Nanocomposites
4.4. Promoting Osseointegration
4.4.1. Nanoscale Surface Topography
4.4.2. Bioactive Nanoparticle Coatings
4.4.3. Controlled Release of Osteogenic Factors
4.4.4. Stimuli-Responsive Nanocomposites
4.5. Stimulating Tissue Regeneration
4.5.1. Nanocomposite Scaffolds
4.5.2. Controlled Release of Bioactive Molecules
4.5.3. Modulation of Cellular Responses
4.5.4. Adaptive Nanocomposites
4.6. Controlling Drug Release
4.6.1. Nanoparticle-Loaded Implant Materials
4.6.2. Layer-by-Layer Nanocomposite Coatings
4.6.3. Dynamic Nanocomposites
4.6.4. Magnetic- and Ultrasound-Triggered Drug Release
4.6.5. Hybrid Nanocomposites
4.7. Enhancing Imaging and Monitoring
4.7.1. Contrast-Enhancing Nanoparticles
4.7.2. Fluorescent and Luminescent Nanoparticles
4.7.3. Multi-Modal Imaging Nanocomposites
4.7.4. Stimuli-Responsive Imaging Nanocomposites
4.7.5. Theranostic Nanocomposites
4.8. Bioactivity
4.8.1. Mimicking Natural Tissue Structures
4.8.2. Bioactive Molecule Incorporation
4.8.3. Surface Functionalisation
4.8.4. Stimuli-Sensitive Nanocomposites
5. Challenges and Future Directions
5.1. Potential Challenges
5.1.1. Biocompatibility and Toxicity
5.1.2. Long-Term Stability
5.1.3. Manufacturing and Scalability
5.1.4. Regulatory Approval
5.1.5. Standardisation and Quality Control
5.1.6. Interdisciplinary Collaboration
5.1.7. Public Perception and Acceptance
5.2. Future Directions for Research and Development
5.2.1. Developing Novel Nanocomposites
5.2.2. Enhancing Biocompatibility and Bioactivity
5.2.3. Advanced Drug Delivery Systems
5.2.4. Multi-Functional Implants
5.2.5. Personalised Implants
5.2.6. In Situ Tissue Regeneration
5.2.7. Advanced Imaging and Monitoring
5.2.8. Addressing Regulatory and Ethical Challenges
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mostakhdemin, M.; Nand, A.; Arjmandi, M.; Ramezani, M. Mechanical and microscopical characterisation of bilayer hydrogels strengthened by TiO2 nanoparticles as a cartilage replacement candidate. Mater. Today Commun. 2020, 25, 101279. [Google Scholar] [CrossRef]
- Saeidi, M.; Kelly, P.; Netzel, C.; Scadeng, M.; Kumar, P.; Prendergast, D.; Neitzert, T.; Ramezani, M. Preliminary biomechanical cadaver study investigating a new load-sharing knee implant. J. Exp. Orthop. 2021, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi, M.; Ramezani, M. Mechanical and tribological assessment of silica nanoparticle- alginate-polyacrylamide nanocomposite hydrogels as a cartilage replacement. J. Mech. Behav. Biomed. Mater. 2019, 95, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Levana, O.; Hoon Jeong, J.; Sik Hur, S.; Seo, W.; Lee, M.; Mu Noh, K.; Hong, S.; Hong Park, J.; Hun Lee, J.; Choi, C.; et al. Development of nanoclay-based nanocomposite surfaces with antibacterial properties for potential biomedical applications. J. Ind. Eng. Chem. 2023, 120, 448–459. [Google Scholar] [CrossRef]
- García-Cabezón, C.; Godinho, V.; Pérez-González, C.; Torres, Y.; Martín-Pedrosa, F. Electropolymerized polypyrrole silver nanocomposite coatings on porous Ti substrates with enhanced corrosion and antibacterial behavior for biomedical applications. Mater. Today Chem. 2023, 29, 101433. [Google Scholar] [CrossRef]
- Asif, M.; Ramezani, M.; Khan, K.; Khan, M.; Aw, K.C. Investigation of the strain-rate dependent mechanical behaviour of a photopolymer matrix composite with fumed nano-silica filler. Polym. Eng. Sci. 2019, 59, 1695–1700. [Google Scholar] [CrossRef]
- Islam, H.; Hoque, M.E.; Santulli, C. Polymer nanocomposites for biomedical applications. Adv. Polym. Nanocomposites Sci. Technol. Appl. 2022, 171–204. [Google Scholar] [CrossRef]
- Elabbasy, M.T.; Algahtani, F.D.; Alshammari, H.F.; Kolsi, L.; Dkhil, M.A.; Abd El-Rahman, G.I.; El-Morsy, M.A.; Menazea, A.A. Improvement of mechanical and antibacterial features of hydroxyapatite/chromium oxide/graphene oxide nanocomposite for biomedical utilizations. Surf. Coat. Technol. 2022, 440, 128476. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, C.; Zhang, W.; Ding, X.; Yang, Y. Biodegradable-Glass-Fiber Reinforced Hydrogel Composite with Enhanced Mechanical Performance and Cell Proliferation for Potential Cartilage Repair. Int. J. Mol. Sci. 2022, 23, 8717. [Google Scholar] [CrossRef]
- Mostakhdemin, M.; Nand, A.; Ramezani, M. Articular and Artificial Cartilage, Characteristics, Properties and Testing Approaches—A Review. Polymers 2021, 13, 2000. [Google Scholar] [CrossRef]
- Kumar, A.M.; Khan, A.; Hussein, M.A.; Khan, M.Y.; Dafalla, H.; Suresh, B.; Ramakrishna, S. Hybrid nanocomposite coatings from PEDOT and BN-TiO2 nanosheets: Enhanced invitro corrosion resistance, wettability and biocompatibility for biomedical applications. Prog. Org. Coat. 2022, 170, 106946. [Google Scholar] [CrossRef]
- Sevost’yanov, M.A.; Nasakina, E.O.; Baikin, A.S.; Sergienko, K.V.; Konushkin, S.V.; Kaplan, M.A.; Seregin, A.V.; Leonov, A.V.; Kozlov, V.A.; Shkirin, A.V.; et al. Biocompatibility of new materials based on nano-structured nitinol with titanium and tantalum composite surface layers: Experimental analysis in vitro and in vivo. J. Mater. Sci. Mater. Med. 2018, 29, 33. [Google Scholar] [CrossRef]
- Henyš, P.; Ramezani, M.; Schewitz, D.; Höch, A.; Möbius, D.; Ondruschka, B.; Hammer, N. Sacrospinous and -tuberous ligament influence in pelvis kinematics. J. Anat. 2022, 241, 928–937. [Google Scholar] [CrossRef]
- Mostakhdemin, M.; Nand, A.; Ramezani, M. Tribological assessments of bilayer titanium nanocomposite hydrogels for cartilage replacement in articular joints. Wear 2021, 484, 204017. [Google Scholar] [CrossRef]
- Giordano, M.; Schmid, S.; Arjmandi, M.; Ramezani, M. Wear evaluation of three-dimensionally woven materials for use in a novel cartilage replacement. Wear 2017, 386, 179–187. [Google Scholar] [CrossRef]
- Arjmandi, M.; Ramezani, M. Finite element modelling of sliding wear in three-dimensional textile hydrogel composites. Tribol. Int. 2019, 133, 88–100. [Google Scholar] [CrossRef]
- Saeidi, M.; Gubaua, J.E.; Kelly, P.; Kazemi, M.; Besier, T.; Oening Dicati, G.W.; Pereira, J.T.; Neitzert, T.; Ramezani, M. The influence of an extra-articular implant on bone remodelling of the knee joint. Biomech. Model. Mechanobiol. 2020, 19, 37–46. [Google Scholar] [CrossRef]
- Davoodi, E.; Montazerian, H.; Esmaeilizadeh, R.; Darabi, A.C.; Rashidi, A.; Kadkhodapour, J.; Jahed, H.; Hoorfar, M.; Milani, A.S.; Weiss, P.S.; et al. Additively Manufactured Gradient Porous Ti-6Al-4V Hip Replacement Implants Embedded with Cell-Laden Gelatin Methacryloyl Hydrogels. ACS Appl. Mater. Interfaces 2021, 13, 22110–22123. [Google Scholar] [CrossRef] [PubMed]
- Digennaro, V.; Manzetti, M.; Bulzacki Bogucki, B.D.; Barile, F.; Panciera, A.; Viroli, G.; Ferri, R.; Cecchin, D.; Ruffilli, A.; Faldini, C. Total knee replacements using rotating hinge implants in polio patients: Clinical and functional outcomes. Musculoskelet. Surg. 2022. [Google Scholar] [CrossRef] [PubMed]
- Saeidi, M.; Ramezani, M.; Kelly, P.; Neitzert, T.; Kumar, P. Preliminary study on a novel minimally invasive extra-articular implant for unicompartmental knee osteoarthritis. Med. Eng. Phys. 2019, 67, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Tipan, N.; Pandey, A.; Chandra, G. Femur Bone Implant Plate Design Analysis Under Varying Fracture Conditions. In Advancement in Materials, Manufacturing and Energy Engineering; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; Volume 1, pp. 403–421. [Google Scholar] [CrossRef]
- Berk, T.; Zderic, I.; Varga, P.; Schwarzenberg, P.; Lesche, F.; Halvachizadeh, S.; Richards, G.; Gueorguiev, B.; Pape, H.-C. Evaluation of Cannulated Compression Headless Screw (CCHS) as an alternative implant in comparison to standard S1-S2 screw fixation of the posterior pelvis ring: A biomechanical study. BMC Musculoskelet. Disord. 2023, 24, 215. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi, M.; Ramezani, M.; Bolle, T.; Köppe, G.; Gries, T.; Neitzert, T. Mechanical and tribological properties of a novel hydrogel composite reinforced by three-dimensional woven textiles as a functional synthetic cartilage. Compos. Part A Appl. Sci. Manuf. 2018, 115, 123–133. [Google Scholar] [CrossRef]
- Steinert, A.F.; Schröder, L.; Sefrin, L.; Janßen, B.; Arnholdt, J.; Rudert, M. The Impact of Total Knee Replacement with a Customized Cruciate-Retaining Implant Design on Patient-Reported and Functional Outcomes. J. Pers. Med. 2022, 12, 194. [Google Scholar] [CrossRef]
- Alizadeh, M.; Aghajani Koopaie, A.; Shakeri Jousheghan, S. Investigation of changing geometry parameters of nickel-titanium shape memory alloys wire stent in cardiovascular implants. Comput. Methods Biomech. Biomed. Eng. 2023, 26, 952–959. [Google Scholar] [CrossRef]
- Tolosana, J.M.; Guasch, E.; San Antonio, R.; Apolo, J.; Pujol-López, M.; Chipa-Ccasani, F.; Trucco, E.; Roca-Luque, I.; Brugada, J.; Mont, L. Very high pacing thresholds during long-term follow-up predicted by a combination of implant pacing threshold and impedance in leadless transcatheter pacemakers. J. Cardiovasc. Electrophysiol. 2020, 31, 868–874. [Google Scholar] [CrossRef]
- Ono, M.; Varma, N. Remote monitoring to Improve long-term prognosis in heart failure patients with implantable cardioverter-defibrillators. Expert Rev. Med. Devices 2017, 14, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Gupta, N.; Jana, R.; Das, M.K.; Kar, K.K. Ramifications of Vorticity on Aggregation and Activation of Platelets in Bi-Leaflet Mechanical Heart Valve: Fluid-Structure-Interaction Study. J. Biomech. Eng. 2022, 144, 081002. [Google Scholar] [CrossRef]
- Bressloff, N.W. Multi-objective design of a biodegradable coronary artery stent. In Cardiovascular and Cardiac Therapeutic Devices; Springer: Berlin/Heidelberg, Germany, 2014; Volume 15, pp. 1–28. [Google Scholar] [CrossRef]
- Pasang, T.; Ramezani, M.; Prygoski, M.; Wanhill, R.; Byrnes, R.; Kamiya, O.; Tanaka, K. Fatigue of commercially pure titanium dental implant. Mater. Phys. Mech. 2016, 27, 79–89. [Google Scholar]
- Herrero-Climent, M.; Falcao, A.; Tondela, J.; Brizuela, A.; Rios-Carrasco, B.; Gil, J. Relevant Aspects of the Dental Implant Design on the Insertion Torque, Resonance Frequency Analysis (RFA) and Micromobility: An In Vitro Study. J. Clin. Med. 2023, 12, 855. [Google Scholar] [CrossRef]
- Elsanadidy, E.; Mosa, I.M.; Hou, B.; Schmid, T.; El-Kady, M.F.; Khan, R.S.; Haeberlin, A.; Tzingounis, A.V.; Rusling, J.F. Self-sustainable intermittent deep brain stimulator. Cell Rep. Phys. Sci. 2022, 3, 101099. [Google Scholar] [CrossRef]
- Li, X.; Yu, M.; Zhu, J.; Zheng, W.; Ma, G.; Deng, X.; Huang, W.; Serdijn, W.A. System Design of a Closed-Loop Vagus Nerve Stimulator Comprising a Wearable EEG Recorder and an Implantable Pulse Generator. IEEE Circuits Syst. Mag. 2022, 22, 22–40. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, B.; Hao, H.; Li, L. Intermediate multimedia node: Implantable spinal cord stimulator. J. Vis. Commun. Image Represent. 2016, 41, 15–20. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Kanchwala, S.K.; Cho, H.; Jolly, J.C.; Jablonka, E.; Tanis, M.; Kamien, R.D.; Yang, S. Natural Shaping of Acellular Dermal Matrices for Implant-Based Breast Reconstruction via Expansile Kirigami. Adv. Mater. 2023, 35, 2208088. [Google Scholar] [CrossRef]
- Foroushani, F.T.; Dzobo, K.; Khumalo, N.P.; Mora, V.Z.; de Mezerville, R.; Bayat, A. Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater. Res. 2022, 26, 80. [Google Scholar] [CrossRef]
- Yang, C.; Luo, Y.; Shen, H.; Ge, M.; Tang, J.; Wang, Q.; Lin, H.; Shi, J.; Zhang, X. Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nat. Commun. 2022, 13, 4866. [Google Scholar] [CrossRef]
- Chau Nguyen, T.T.; Shin, C.M.; Lee, S.J.; Koh, E.S.; Kwon, H.H.; Park, H.; Kim, D.H.; Choi, C.H.; Oh, S.-H.; Kim, D.W.; et al. Ultrathin Nanostructured Films of Hyaluronic Acid and Functionalized β-Cyclodextrin Polymer Suppress Bacterial Infection and Capsular Formation of Medical Silicone Implants. Biomacromolecules 2022, 23, 4547–4561. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi, M.; Ramezani, M.; Giordano, M.; Schmid, S. Finite element modelling of sliding wear in three-dimensional woven textiles. Tribol. Int. 2017, 115, 452–460. [Google Scholar] [CrossRef]
- Pawłowski, Ł.; Rościszewska, M.; Majkowska-Marzec, B.; Jażdżewska, M.; Bartmański, M.; Zieliński, A.; Tybuszewska, N.; Samsel, P. Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior. Materials 2022, 15, 7556. [Google Scholar] [CrossRef] [PubMed]
- Charbe, N.B.; Tambuwala, M.; Palakurthi, S.S.; Warokar, A.; Hromić-Jahjefendić, A.; Bakshi, H.; Zacconi, F.; Mishra, V.; Khadse, S.; Aljabali, A.A.; et al. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng. Transl. Med. 2023, 8, e10333. [Google Scholar] [CrossRef] [PubMed]
- Mostakhdemin, M.; Nand, A.; Ramezani, M. A novel assessment of microstructural and mechanical behaviour of bilayer silica-reinforced nanocomposite hydrogels as a candidate for artificial cartilage. J. Mech. Behav. Biomed. Mater. 2021, 116, 104333. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.; Ji, X. Synthesis and in vitro evaluation of Ca-P coating on biodegradable Zn alloys. J. Mater. Sci. Technol. 2023, 141, 124–134. [Google Scholar] [CrossRef]
- Boyapati, P.C.S.; Srinivas, K.; Akhil, S.; Bollikolla, H.B.; Chandu, B. A Comprehensive Review on Novel Graphene-Hydroxyapatite Nanocomposites for Potential Bioimplant Applications. ChemistrySelect 2023, 8, e202204585. [Google Scholar] [CrossRef]
- Pietrzykowska, E.; Romelczyk-Baishya, B.; Chodara, A.; Koltsov, I.; Smogór, H.; Mizeracki, J.; Pakieła, Z.; Łojkowski, W. Microstructure and mechanical properties of inverse nanocomposite made from polylactide and hydroxyapatite nanoparticles. Materials 2022, 15, 184. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, B.; Ghosh, S.; Patra, D.; Haldar, J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1745. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; de Roo Puente, Y.J.D.; Hoyos-Nogués, M.; Gil, F.J.; Perez, R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021, 6, 4470–4490. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Yague, M.A.; Abbah, S.A.; McNamara, L.; Zeugolis, D.I.; Pandit, A.; Biggs, M.J. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev. 2015, 84, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Weng, Z.; Liu, X.; Yeung, K.W.K.; Pan, H.; Wu, S. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioact. Mater. 2017, 2, 44–50. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Kumar, S. Synergistic effect of carbon nanotubes and nano-hydroxyapatite on mechanical properties of polyetheretherketone based hybrid nanocomposites. Polym. Polym. Compos. 2021, 29, 1365–1376. [Google Scholar] [CrossRef]
- Liu, C.; Chan, K.W.; Shen, J.; Liao, C.Z.; Yeung, K.W.K.; Tjong, S.C. Polyetheretherketone hybrid composites with bioactive nanohydroxyapatite and multiwalled carbon nanotube fillers. Polymers 2016, 8, 425. [Google Scholar] [CrossRef]
- Firoozabadi, F.D.; Saadatabadi, A.R.; Asefnejad, A. Fabrication and Evaluation of In Vitro Studies of Biodegradable and Antibacterial Composite Scaffolds Based on Polylactic Acid-Polycaprolactone-Hydroxyapatite Reinforced with Graphene and Zinc Oxide Nanoparticles for Use in Orthopedic Surgery. Iran. J. Mater. Sci. Eng. 2022, 19, 1–19. [Google Scholar] [CrossRef]
- Sahu, G.; Rajput, M.S.; Mahapatra, S.P. Polylactic acid nanocomposites for biomedical applications: Effects of calcium phosphate, and magnesium phosphate nanoparticles concentration. Plast. Rubber Compos. 2021, 50, 228–240. [Google Scholar] [CrossRef]
- Govindaraj, D.; Rajan, M.; Munusamy, M.A.; Alarfaj, A.A.; Suresh Kumar, S. Mineral-substituted hydroxyapatite reinforced poly(raffinose-citric acid)-polyethylene glycol nanocomposite enhances osteogenic differentiation and induces ectopic bone formation. New J. Chem. 2017, 41, 3036–3047. [Google Scholar] [CrossRef]
- Zemtsova, E.G.; Orehhov, J.V.; Arbenin, A.Y.; Valiev, R.Z.; Smirnov, V.M. The creation of nanocoatings of various morphology on the basis of titanium dioxide on a titanium matrix for bone implant. Mater. Phys. Mech. 2016, 29, 138–144. [Google Scholar]
- D’Agostino, A.; Bertolini, M.; Bono, N.; Pavarini, M.; Tarsini, P.; Candiani, G.; De Nardo, L.; Chiesa, R. Antibacterial titanium dioxide coatings for CoCrMo orthopaedic implants. Appl. Surf. Sci. 2023, 609, 155300. [Google Scholar] [CrossRef]
- Garcia, D.; Gilmore, A.; Berns, E.; Spake, C.; Dockery, D.M.; Vishwanath, N.; Glasser, J.; Antoci, V.; Daniels, A.; Born, C.T. Silver carboxylate and titanium dioxide-polydimethylsiloxane coating decreases adherence of multi-drug resistant Serratia marcescens on spinal implant materials. Spine Deform. 2021, 9, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Aminatun Furqon, I.A.; Hikmawati, D.; Abdullah, C.A.C. Antibacterial Properties of Silver Nanoparticle (AgNPs) on stainless steel 316L. Nanomed. Res. J. 2021, 6, 117–127. [Google Scholar] [CrossRef]
- Seesala, V.S.; Dhara, S. Nature inspired dough processing of alumina-zirconia composites: Rheology, plasticity and weibull analysis towards net shaping. J. Eur. Ceram. Soc. 2021, 41, 7170–7181. [Google Scholar] [CrossRef]
- Müller, V.; Djurado, E. Microstructural designed S58 bioactive glass/ hydroxyapatite composites for enhancing osteointegration of Ti6Al4V-based implants. Ceram. Int. 2022, 48, 35365–35375. [Google Scholar] [CrossRef]
- Jafari, N.; Habashi, M.S.; Hashemi, A.; Shirazi, R.; Tanideh, N.; Tamadon, A. Application of bioactive glasses in various dental fields. Biomater. Res. 2022, 26, 31. [Google Scholar] [CrossRef]
- Pina, S.; Kwon, I.K.; Reis, R.L.; Oliveira, J.M. Biocomposites and Bioceramics in Tissue Engineering: Beyond the Next Decade. In Innovative Bioceramics in Translational Medicine I; Springer Series in Biomaterials Science and, Engineering; Choi, A.H., Ben-Nissan, B., Eds.; Springer: Singapore, 2022; Volume 17, pp. 319–350. [Google Scholar] [CrossRef]
- Oliver, J.-A.N.; Su, Y.; Lu, X.; Kuo, P.-H.; Du, J.; Zhu, D. Bioactive glass coatings on metallic implants for biomedical applications. Bioact. Mater. 2019, 4, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, Y.; Zhang, Q.; Li, G.; Guo, Y.; Lian, J.; Zhang, Z.; Ren, L. Enhancing the Antibacterial Properties of Magnesium Alloys with Copper-Doped Anhydrous Calcium Phosphate Nanoparticles Embedded into the Polycaprolactone Coating for Medical Implants. ACS Appl. Nano Mater. 2022, 5, 18965–18976. [Google Scholar] [CrossRef]
- Yadav, T.C.; Gupta, P.; Saini, S.; Mohiyuddin, S.; Pruthi, V.; Prasad, R. Plausible Mechanistic Insights in Biofilm Eradication Potential against Candida spp. Using in Situ-Synthesized Tyrosol-Functionalized Chitosan Gold Nanoparticles as a Versatile Antifouling Coating on Implant Surfaces. ACS Omega 2022, 7, 8350–8363. [Google Scholar] [CrossRef]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Feng, X.; Lang, X.; Wang, J.; Du, Z.; Niu, X. Evaluation of Osteogenic Potentials of Titanium Dioxide Nanoparticles with Different Sizes and Shapes. J. Nanomater. 2020, 2020, 8887323. [Google Scholar] [CrossRef]
- Iqbal, A.K.M.A.; Ismail, N.B. Mechanical Properties and Corrosion Behavior of Silica Nanoparticle Reinforced Magnesium Nanocomposite for Bio-Implant Application. Materials 2022, 15, 8164. [Google Scholar] [CrossRef]
- Mostakhdemin, M.; Nand, A.; Ramezani, M. Tribological evaluation of silica nanoparticle enhanced bilayer hydrogels as a candidate for cartilage replacement. Polymers 2022, 14, 3593. [Google Scholar] [CrossRef]
- Vergara-Llanos, D.; Koning, T.; Pavicic, M.F.; Bello-Toledo, H.; Díaz-Gómez, A.; Jaramillo, A.; Melendrez-Castro, M.; Ehrenfeld, P.; Sánchez-Sanhueza, G. Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: An in-vitro study. Arch. Oral Biol. 2021, 122, 105031. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface modifications and their effects on titanium dental implants. BioMed Res. Int. 2015, 2015, 791725. [Google Scholar] [CrossRef]
- Fiocchi, S.; Chiaramello, E.; Marrella, A.; Suarato, G.; Bonato, M.; Parazzini, M.; Ravazzani, P. Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response. PLoS ONE 2022, 17, e0274676. [Google Scholar] [CrossRef]
- Ramachandran, P.; Lee, C.Y.; Doong, R.-A.; Oon, C.E.; Kim Thanh, N.T.; Lee, H.L. A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: Synthesis, characterisation, and cell viability evaluation. RSC Adv. 2020, 10, 21795–21805. [Google Scholar] [CrossRef]
- Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar] [CrossRef]
- Munir, K.S.; Wen, C.; Li, Y. Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: A Review. Adv. Biosyst. 2019, 3, 1800212. [Google Scholar] [CrossRef] [PubMed]
- Rothammer, B.; Neusser, K.; Bartz, M.; Wartzack, S.; Schubert, A.; Marian, M. Evaluation of the wear-resistance of DLC-coated hard-on-soft pairings for biomedical applications. Wear 2023, 523, 204728. [Google Scholar] [CrossRef]
- Ghadai, R.K.; Singh, K.; Sharma, A.; Roy, M.K.; Swain, B.P. Mechanical and Tribological Properties of Metal Incorporated DLC Thin Film. Mater. Horiz. Nat. Nanomater. 2021, 229–263. [Google Scholar] [CrossRef]
- Iacovacci, V.; Naselli, I.; Salgarella, A.R.; Clemente, F.; Ricotti, L.; Cipriani, C. Stability and in vivo safety of gold, titanium nitride and parylene C coatings on NdFeB magnets implanted in muscles towards a new generation of myokinetic prosthetic limbs. RSC Adv. 2021, 11, 6766–6775. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, D. A tannic acid-reinforced PEEK-hydrogel composite material with good biotribological and self-healing properties for artificial joints. J. Mater. Chem. B 2021, 9, 8021–8030. [Google Scholar] [CrossRef]
- Thukkaram, M.; Cools, P.; Kylian, O.; Morent, R.; De Geyter, N. Antimicrobial Ag/a-C:H nanocomposite coated titanium substrates for implant applications. In Proceedings of the IEEE International Conference on Plasma Science 2018, Denver, CO, USA, 24–28 June 2018. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, L.; Lan, W.; Du, J.; Hu, Y.; Wei, Y.; Hang, R.; Chen, W.; Huang, D. In situ titanium phosphate formation on a titanium implant as ultrahigh bonding with nano-hydroxyapatite coating for rapid osseointegration. Biomater. Sci. 2023, 11, 2230–2242. [Google Scholar] [CrossRef]
- Covarrubias, C.; Mattmann, M.; Von Marttens, A.; Caviedes, P.; Arriagada, C.; Valenzuela, F.; Rodríguez, J.P.; Corral, C. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles. Appl. Surf. Sci. 2016, 363, 286–295. [Google Scholar] [CrossRef]
- Wang, C.; Hu, H.; Li, Z.; Shen, Y.; Xu, Y.; Zhang, G.; Zeng, X.; Deng, J.; Zhao, S.; Ren, T.; et al. Enhanced Osseointegration of Titanium Alloy Implants with Laser Microgrooved Surfaces and Graphene Oxide Coating. ACS Appl. Mater. Interfaces 2019, 11, 39470–39483. [Google Scholar] [CrossRef]
- Ye, X.; Leeflang, S.; Wu, C.; Chang, J.; Zhou, J.; Huan, Z. Mesoporous bioactive glass functionalized 3D Ti-6Al-4V Scaffolds with improved surface bioactivity. Materials 2017, 10, 1244. [Google Scholar] [CrossRef]
- Pang, K.; Seo, Y.-K.; Lee, J.-H. Effects of the combination of bone morphogenetic protein-2 and nano-hydroxyapatite on the osseointegration of dental implants. J. Korean Assoc. Oral Maxillofac. Surg. 2021, 47, 454–464. [Google Scholar] [CrossRef]
- Maeda, T. Structures and applications of thermoresponsive hydrogels and nanocomposite-hydrogels based on copolymers with poly (Ethylene glycol) and poly (lactide-co-glycolide) blocks. Bioengineering 2019, 6, 107. [Google Scholar] [CrossRef]
- Wu, M.; Chen, F.; Wu, P.; Yang, Z.; Zhang, S.; Xiao, L.; Deng, Z.; Zhang, C.; Chen, Y.; Cai, L. Nanoclay mineral-reinforced macroporous nanocomposite scaffolds for in situ bone regeneration: In vitro and in vivo studies. Mater. Des. 2021, 205, 109734. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, G.; Zhang, S.; Chen, B.; Wu, Z.; Zhang, C. A bioactive poly(ether-ether-ketone) nanocomposite scaffold regulates osteoblast/osteoclast activity for the regeneration of osteoporotic bone. J. Mater. Chem. B 2022, 10, 8719–8732. [Google Scholar] [CrossRef]
- Hunt, N.C.; Shelton, R.M.; Henderson, D.J.; Grover, L.M. Calcium-alginate hydrogel-encapsulated fibroblasts provide sustained release of vascular endothelial growth factor. Tissue Eng. Part A 2013, 19, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yuan, N.; Li, N.; Wei, Q.; Qian, Y.; Zhang, J.; Qin, M.; Wang, Y.; Dong, S. Vascular Endothelial Growth Factor Mimetic Peptide and Parathyroid Hormone (1–34) Delivered via a Blue-Light-Curable Hydrogel Synergistically Accelerate Bone Regeneration. ACS Appl. Mater. Interfaces 2022, 14, 35319–35332. [Google Scholar] [CrossRef]
- Nicolas, J.; Magli, S.; Rabbachin, L.; Sampaolesi, S.; Nicotra, F.; Russo, L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020, 21, 1968–1994. [Google Scholar] [CrossRef] [PubMed]
- Azaza, Y.B.; Van der Lee, A.; Li, S.; Nasri, M.; Nasri, R. Chitosan/collagen-based hydrogels for sustainable development: Phycocyanin controlled release. Sustain. Chem. Pharm. 2023, 31, 100905. [Google Scholar] [CrossRef]
- Mao, X.; Chen, K.; Zhao, Y.; Xiong, C.; Luo, J.; Wang, Y.; Wang, B.; Zhang, H. Bioinspired surface functionalization of biodegradable mesoporous silica nanoparticles for enhanced lubrication and drug release. Friction 2023, 11, 1194–1211. [Google Scholar] [CrossRef]
- Sydow, S.; De Cassan, D.; Hänsch, R.; Gengenbach, T.R.; Easton, C.D.; Thissen, H.; Menzel, H. Layer-by-layer deposition of chitosan nanoparticles as drug-release coatings for PCL nanofibers. Biomater. Sci. 2019, 7, 233–246. [Google Scholar] [CrossRef]
- Gheysoori, P.; Paydayesh, A.; Jafari, M.; Peidayesh, H. Thermoresponsive nanocomposite hydrogels based on Gelatin/poly (N–isopropylacrylamide) (PNIPAM) for controlled drug delivery. Eur. Polym. J. 2023, 186, 111846. [Google Scholar] [CrossRef]
- Visan, A.I.; Popescu-Pelin, G.; Gherasim, O.; Grumezescu, V.; Socol, M.; Zgura, I.; Florica, C.; Popescu, R.C.; Savu, D.; Holban, A.M.; et al. Laser processed antimicrobial nanocomposite based on polyaniline grafted lignin loaded with Gentamicin-functionalized magnetite. Polymers 2019, 11, 283. [Google Scholar] [CrossRef]
- Saraf, A.; Padave, O.; Sharma, S.; Jha, P.; Jobby, R.; Ali, A.; Sachar, S. Low-frequency ultrasound responsive release and enhanced antibacterial efficacy of sulfamethoxazole decked silver nanocomposite. Polyhedron 2021, 195, 114945. [Google Scholar] [CrossRef]
- Singh, N.; Kim, J.; Kim, J.; Lee, K.; Zunbul, Z.; Lee, I.; Kim, E.; Chi, S.-G.; Kim, J.S. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact. Mater. 2023, 21, 358–380. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chiu, L.-H.; Chang, W.H.; Lin, C.-A.J.; Chen, R.-M.; Ho, Y.-S.; Zuo, C.S.; Changou, A.; Cheng, Y.-F.; Lai, W.-F.T. A Non-Invasive Method for Monitoring Osteogenesis and Osseointegration Using Near-Infrared Fluorescent Imaging: A Model of Maxilla Implantation in Rats. Int. J. Mol. Sci. 2023, 24, 5032. [Google Scholar] [CrossRef]
- Hill, L.K.; Britton, D.; Jihad, T.; Punia, K.; Xie, X.; Delgado-Fukushima, E.; Liu, C.F.; Mishkit, O.; Liu, C.; Hu, C.; et al. Engineered protein-iron oxide hybrid biomaterial for MRI-traceable drug encapsulation. Mol. Syst. Des. Eng. 2022, 7, 915–932. [Google Scholar] [CrossRef]
- Li, X.; Zou, Q.; Man, Y.; Li, W. Synergistic Effects of Novel Superparamagnetic/Upconversion HA Material and Ti/Magnet Implant on Biological Performance and Long-Term In Vivo Tracking. Small 2019, 15, 1901617. [Google Scholar] [CrossRef] [PubMed]
- Tesch, A.; Wenisch, C.; Herrmann, K.-H.; Reichenbach, J.R.; Warncke, P.; Fischer, D.; Müller, F.A. Luminomagnetic Eu3 +- and Dy3 +-doped hydroxyapatite for multimodal imaging. Mater. Sci. Eng. C 2017, 81, 422–431. [Google Scholar] [CrossRef]
- Wolf, F.; Paefgen, V.; Winz, O.; Mertens, M.; Koch, S.; Gross-Weege, N.; Morgenroth, A.; Rix, A.; Schnoering, H.; Chalabi, K.; et al. MR and PET-CT monitoring of tissue-engineered vascular grafts in the ovine carotid artery. Biomaterials 2019, 216, 119228. [Google Scholar] [CrossRef]
- Arkaban, H.; Karimi Shervedani, R.; Torabi, M.; Norouzi-Barough, L. Fabrication of a biocompatible & biodegradable targeted theranostic nanocomposite with pH-Controlled drug release ability. J. Drug Deliv. Sci. Technol. 2022, 72, 103403. [Google Scholar] [CrossRef]
- Lu, T.; Wen, J.; Qian, S.; Cao, H.; Ning, C.; Pan, X.; Jiang, X.; Liu, X.; Chu, P.K. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials 2015, 51, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Claaßen, C.; Sewald, L.; Tovar, G.E.M.; Borchers, K. Controlled release of vascular endothelial growth factor from heparin-functionalized gelatin type A and albumin hydrogels. Gels 2017, 3, 35. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Shao, C.; Chen, L.; Yi, L.; Zhang, B.; Tang, J.; Ma, W. A novel CKIP-1 SiRNA slow-release coating on porous titanium implants for enhanced osseointegration. Biomater. Adv. 2022, 137, 212864. [Google Scholar] [CrossRef]
- Bardajee, G.R.; Khamooshi, N.; Nasri, S.; Vancaeyzeele, C. Multi-stimuli responsive nanogel/hydrogel nanocomposites based on κ-carrageenan for prolonged release of levodopa as model drug. Int. J. Biol. Macromol. 2020, 153, 180–189. [Google Scholar] [CrossRef]
Nanofiller | Size (Approx.) | Shape | Surface Area (Approx.) | Unique Properties |
---|---|---|---|---|
Carbon Nanotubes | 0.4–2 nm (diameter) | Cylindrical | 50–1315 m²/g | High strength, electrical and thermal conductivity, lightweight, chemical stability |
Graphene | Less than 1 nm (interlayer) | 2D sheets | 2630 m²/g | Exceptional strength, electrical and thermal conductivity, flexible, transparent |
Nanoclay | 1–100 nm (thickness) | Platelets | 50–800 m²/g | Barrier properties, flame retardancy, dimensional stability, reinforcement |
Metal Oxide NPs | 1–100 nm | Spherical | Varies | Enhanced mechanical strength, biocompatibility, corrosion resistance, antimicrobial |
Hydroxyapatite | 20–80 nm | Needle-like | 50–100 m²/g | Biocompatibility, bioactivity, osteoconductivity, promotes bone growth |
Silica Nanoparticles | 5–100 nm | Spherical | 100–400 m²/g | Biocompatibility, reinforcement, transparency, mechanical strength |
Gold Nanoparticles | 1–00 nm | Spherical | Varies | Biocompatibility, drug delivery, photothermal therapy, imaging |
Silver Nanoparticles | 1–100 nm | Spherical | Varies | Antimicrobial, biocompatibility, drug delivery, imaging |
Titanium Dioxide NPs | 5–100 nm | Spherical/Rods | 50–200 m²/g | Biocompatibility, antimicrobial, photocatalytic activity, UV protection |
Zinc Oxide NPs | 1–100 nm | Spherical/Rods | Varies | Antimicrobial, biocompatibility, UV protection, drug delivery |
Quantum Dots | 2–10 nm | Spherical | Varies | Fluorescent properties, imaging, drug delivery, sensing |
Polymeric Nanoparticles | 10–200 nm | Spherical | Varies | Drug delivery, biocompatibility, customisable properties |
Chitosan NPs | 1–100 nm | Spherical | Varies | Biocompatibility, drug delivery, antimicrobial, wound healing |
Medical Implant | Nanocomposite Material | Enhancements |
---|---|---|
Orthopaedic Implants | Carbon nanotube-reinforced polymer | Increased mechanical strength and durability |
Hydroxyapatite/polymer composite | Enhanced bone integration and bioactivity | |
Dental Implants | Graphene oxide-coated titanium | Improved osseointegration and antimicrobial effect |
Nanoclay-reinforced dental resin | Higher mechanical performance and wear resistance | |
Cardiovascular Stents | Sirolimus-eluting nanocomposite | Controlled drug release and biocompatibility |
Magnesium-based nanocomposites | Degradable, mechanical strength, biocompatibility | |
Cochlear Implants | Titania nanotube coating | Enhanced bioactivity and biocompatibility |
Soft Tissue Implants | Nanofiber-reinforced hydrogel | Mechanical strength and tissue integration |
Bone Cements | Hydroxyapatite/zinc oxide composite | Improved mechanical properties and antimicrobial |
Spinal Implants | Carbon nanotube/polyetheretherketone composite | Increased mechanical strength and biocompatibility |
Sutures | Silver nanoparticle-coated sutures | Antimicrobial properties and improved tissue healing |
Wound Dressings | Chitosan/silver nanoparticle composite | Antimicrobial, biodegradable, and wound healing |
Drug Delivery Systems | Polymeric nanoparticles | Targeted drug delivery and controlled release |
Nerve Conduits | Chitosan/gold nanoparticle composite | Enhanced electrical conductivity and nerve regeneration |
Ocular Implants | Polymeric nanoparticles | Controlled drug release and biocompatibility |
Craniofacial Implants | Bioactive glass/polymer composite | Enhanced osteointegration and bioactivity |
Tissue Scaffolds | Nanofiber-based scaffolds | Improved cell adhesion, proliferation, and differentiation |
Challenges | Potential Solutions |
---|---|
Biocompatibility and Toxicity | - Investigate and optimise the composition, size, and surface properties of nanofillers |
- Develop coatings or surface treatments to enhance biocompatibility | |
- Conduct long-term in vivo studies to assess safety, biocompatibility, and implant lifetime | |
Long-term Stability | - Investigate the effects of implant geometry, loading, and environmental conditions on stability |
- Optimise nanofiller loading and dispersion to achieve desired mechanical performance | |
- Study degradation mechanisms and develop strategies to prevent premature implant failure | |
Manufacturing and Scalability | - Develop advanced manufacturing methods such as 3D printing and electrospinning |
- Optimise existing processing techniques to better control nanofiller dispersion and size | |
- Investigate scalable and eco-friendly fabrication approaches | |
Regulatory Approval | - Conduct comprehensive safety and biocompatibility studies |
- Collaborate with regulatory agencies to establish clear guidelines and standards | |
- Develop standardised testing protocols for nanocomposite implants | |
Standardisation and Quality Control | - Establish industry standards for nanocomposite materials and their characterisation |
- Implement robust quality control measures throughout the manufacturing process | |
- Develop standardised testing protocols for assessing the performance of nanocomposite implants | |
Interdisciplinary Collaboration | - Encourage collaborations between researchers, manufacturers, and regulatory agencies |
- Promote interdisciplinary research involving materials science, biology, and engineering | |
- Foster partnerships between academia and industry to accelerate the translation of research into clinical applications | |
Public Perception and Acceptance | - Communicate the benefits and potential risks of nanocomposite implants to the public |
- Engage with patients and healthcare professionals to address concerns and gather feedback | |
- Promote transparency and open dialogue between researchers, industry, and the public |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramezani, M.; Ripin, Z.M. An Overview of Enhancing the Performance of Medical Implants with Nanocomposites. J. Compos. Sci. 2023, 7, 199. https://doi.org/10.3390/jcs7050199
Ramezani M, Ripin ZM. An Overview of Enhancing the Performance of Medical Implants with Nanocomposites. Journal of Composites Science. 2023; 7(5):199. https://doi.org/10.3390/jcs7050199
Chicago/Turabian StyleRamezani, Maziar, and Zaidi Mohd Ripin. 2023. "An Overview of Enhancing the Performance of Medical Implants with Nanocomposites" Journal of Composites Science 7, no. 5: 199. https://doi.org/10.3390/jcs7050199
APA StyleRamezani, M., & Ripin, Z. M. (2023). An Overview of Enhancing the Performance of Medical Implants with Nanocomposites. Journal of Composites Science, 7(5), 199. https://doi.org/10.3390/jcs7050199