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Abstract: Due to the COVID-19 epidemic, biomedical waste management has overwhelmed both
developed and developing nations. It is now a critical issue that has to be addressed with minimal
possible adverse impact on the environment. This study introduced a technique of recycling face
masks into polypropylene fibers for use in concrete. This proposed recycling process provides
complete disinfection of contaminated clinical waste and offers the opportunity to transform the
characteristics of an end product. Microfibers manufactured from recycled medical masks were
subjected to testing. According to the results, polypropylene is the primary component of this research
program. Two batches of concrete were made, one with the inclusion of masks as polypropylene
fibers and another that performed as a control mix. The modified mortar was compared to the
control mix in split tensile, flexure, compressive strength, and water absorption. Compressive
strength was found to be improved by about 17%, and tensile strength to be increased by around 22%
when mask fibers were incorporated. This research introduced a novel approach for disposing of
waste masks and established the preliminary viability of upcycling trash face masks towards mortar
concrete production.

Keywords: cement; face mask; polypropylene; UPV; sorptivity

1. Introduction

More than half of the world countries have mandated the usage of face masks in re-
sponse to the COVID-19 outbreak [1]. Indeed, India uses about 380 million face masks every
day, and Asia uses over 2.2 billion [2,3]. Around 6.88 billion face masks produced every day
worldwide during the epidemic of COVID-19 creates tons of plastic garbage, which threat-
ens environmental and marine life owing to its nonbiodegradable nature [2,4]. According
to estimates provided by the WHO, controlling COVID-19 would need close to 89 million
masks per month [5]. Few of the masks are thrown away, burned, or buried, but most of
the face masks are visible on streets, parks, and beaches due to their lightweight nature,
which allows wind and water to carry them [6–8]. The most common kind of face mask is
the disposable surgical type, which is made mostly of polypropylene [9–11], a material that
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contributes to microplastic contamination in the environment [12]. It causes major health
issues for humans and the environment [13]. Thus, the circular economy concept should
be encouraged in medical waste management policies, particularly for single-use face
masks [14–19]. Researchers have assessed recycled face masks through various methods
since the epidemic began. Most of the research has concentrated on reusing and disinfection
of masks [20–24]. Waste masks were often discarded via a combination of ways rather than
being processed as biomedical waste [25]. The collection and disposal of infectious trash
in developing countries pose a serious threat to public health [26]. Since harmful gases
(furan and dioxin) are released due to the combustion of plastics, this disposal option is
not suggested for used face masks. Researchers are now facing a new challenge in prop-
erly disposing of used masks so as to minimize environmental impact [27,28]. Recycling
discarded sanitary masks and reusing them as an admixture in building materials is one
potential approach that might be used to address these concerns [29]. It improves certain
concrete qualities while also helping the worldwide reduction in mask waste. Several
researchers have experimented with incorporating masks into concrete by combining paper
pulp and admixtures [30]. The waste mask was used by Rehman et al. in fat clay in order
to enhance the clay’s mechanical qualities [31]. In addition, researchers have investigated
the possibility of using crushed fiber in the bases of roads and pavements. Fragmented
face masks were included in the recycled aggregate concrete used for the subbase of the
road and road base [32–34]. Face masks are made from polypropylene fibers which have
a high Young’s modulus and tensile strength, making them ideal for use in the concrete
industry [35–39]. The addition of fibers to concrete improves its strength and durability.
Concrete’s qualities change depending on its composition, shape, placement, orientation,
and density [40–42]. Fibers prevent shattering and breaking caused by plastic shrinkage.
Optimal results are achieved by adding fibers to concrete at a volume percentage of between
0.1% and 2% [41]. Islam and Gupta tested polypropylene-fiber reinforced concrete in their
research; they found that the 0.30% volume addition of polypropylene fibers decreased
compressive strength by 10% over the testing period. With 0.1% polypropylene fiber by
volume, splitting tensile strength increased 39%, but compressive strength decreased [43].
Xu et al. observed that cellulose fiber (CTF) doses of 1.5 kg/m3 enhanced concrete compres-
sive strength by 12%, whereas polyvinyl alcohol fiber (PF) dosages of 4.0 kg/m3 decreased
the strength by 35% [44,45]. CTF’s splitting tensile strength decreased by 23% at the same
dose, whereas PF’s decreased by 55% and polyolefin fiber’s decreased when the dosage
was 2.0 kg/m3 [46]. Zivanovic et al. examined structural concrete’s mechanical qualities
using high-density recycled polyethylene fibers (HPDE). In addition to a control mixture,
tests were conducted on two different fiber diameters using HDPE that was added to the
mix at volumes of 0.40%, 0.75%, and 1.25%, respectively, for each fiber diameter. It was
found that the compressive strength and Young’s modulus are unaffected; HPDE fibers at
0.40% and 1.25% in the concrete mix increased tensile and flexural strengths by 3% and 14%,
respectively. [47]. It is also worth noting that the mix composition may need to be adjusted
if fiber reinforcement is included in the concrete [48,49]. The quantity, size, and thinness of
the fibers all have a role in the workability of concrete, together with the mix composition.
Al-Hadithi and Hilal [50] incorporated waste plastic fibers (WPF) from plastic containers
into self-compacting concrete (SCC) to study its influence behavior. WPF was added in
volumetric ratios between 0% and 2% to a control mix. At 7, 14, and 28 days, flexural and
compressive strengths were tested. The compressive strength of WPF was found to be
greater throughout all mixes over the control mix at 7, 14, and 28 days, with compressive
values of 43 and 55 MPa, 52–66 MPa, and 52–76 MPa. WPF increased flexural strength in all
combination compositions [50]. Due to their reinforcing effect, virgin polypropylene fibers
reduce workability and enhance tensile and flexural strength, reducing cracking. Short
fiber may increase compressive strength. Durability and dimensional stability increase and
controls shrink when propylene fiber is incorporated into concrete [51,52]. Polypropylene
fiber improves chloride resistance and freeze-thaw resistance [53,54].
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Wastes from disposable face masks can be recycled into artificial aggregates for use in
the building industry, thereby limiting some of the environmental damage caused by waste
disposal [55]. Every year, humankind’s need for natural resources expands. The building
sector consumes lots of natural resources and has a major environmental effect. As a result,
making use of recycled materials to create new products is considered one of the most
important steps in the journey of sustainable economic growth [56]. The decommissioning
of discarded masks is a major environmental concern on a worldwide scale, and our study
is an essential first step in solving this problem. In addition to this, it investigates the
possibilities of recycling waste materials by including them in the manufacturing of concrete.
In addition, the fiber that is added to concrete in order to improve its qualities comes at
a high cost. Because of the substantial amounts of energy and carbon that are emitted
during its manufacturing, the manufacture of carbon fibers is seen as environmentally
destructive and expensive. Recycling discarded masks into fiber form offers a supply of
fibers that may be used as building materials at a lower cost and may eventually replace
the present virgin fibers. In addition, the incorporation of utilized facemasks in building
materials seems to have the potential to enhance the microstructure of mortar and concrete,
which would lead to an increase in the mechanical and long-term durability properties
of concrete. A study conducted by Ahmed et al. [57] shows that adding single-use face
mask (SUM) fibers to concrete enhances its mechanical properties, particularly the ultimate
compressive strength (UCS), by 9.4% at an optimal 2% PPE volume. The fibers also con-
tribute significantly to calculating the splitting tensile strength (STS) and flexural strength
(FS) of the reinforced concrete. The effect of PPE fibers on concrete performance starts to
diminish after 2% volume. Marcin et al. [58] explored the recycling of personal protective
face masks into polypropylene fibers to be added to a concrete mixture. The addition of
processed masks slightly increased compressive strength by 5%, did not affect frost resis-
tance, water permeability, or fire performance, but slightly decreased tensile strength by
3%. The study showed that incorporating processed masks into concrete is a viable way
to recycle them without deteriorating the concrete’s properties, and further optimization
and modification of PP strings are needed to improve hardened concrete properties. Wisal
et al. [59] developed an ecofriendly recycling technique using waste disposable medical
face masks (DMFMs) in sustainable green concrete. A new fiber hybridization approach
was introduced by incorporating DMFM and basalt fibers in fiber-reinforced recycled ag-
gregate concrete (FRAC). Test results showed an increase in compressive, split tensile, and
flexural strengths of FRAC containing hybrid fibers and mineral admixtures. The water
absorption rate gradually increased with an increase in the volume fractions of fibers, but
it remained within the allowable water absorption limit for construction materials. The
microstructure investigation indicated excellent concrete quality and good compatibility of
the host concrete matrix with both DMFM and BF fibers. The study by Miah et al. [60] on
recycling shredded and cut mask fibers (MF) from COVID-19 single-use surgical face masks
in mortar mixes resulted in a decrease in compressive strength due to increased voids but
significantly higher flexural strength. MFs also reduced shrinkage and water absorption
rate, suggesting enhanced mortar durability. Proper handling of waste face masks can limit
their environmental impact while providing new sustainable materials for construction.

The study found that recycled face masks can be transformed into polypropylene fibers
for use in concrete, providing a way to dispose clinical waste. Incorporating mask fibers
improved compressive strength by about 17% and tensile strength by around 22%. This
novel approach offers a promising solution for addressing the overwhelming biomedical
waste management issue caused by the COVID-19 epidemic. On the other hand, other
studies, such as Ahmed et al., Marcin et al., and Wisal et al., also explored the recycling of
face masks into concrete. However, they focused on different aspects, such as the optimal
volume of face mask fibers for concrete, the effect of processed masks on concrete properties,
and the use of hybrid fibers and mineral admixtures to improve concrete strength. These
studies suggest that incorporating waste face masks into concrete can be an ecofriendly and
sustainable approach to waste management while providing new materials for construction.
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The novelty of this study lies in the proposed technique of recycling used face masks
into polypropylene fibers that can be incorporated into concrete for construction purposes.
This method not only provides a solution for the overwhelming amount of biomedical
waste generated due to the COVID-19 epidemic but also offers the opportunity to transform
the characteristics of the end product concrete. The study demonstrates that incorporating
shredded mask fibers into concrete can improve its compressive strength by 17% and tensile
strength by around 22%. Additionally, the study suggests that using waste face masks in
construction does not pose any special risks, as the low pH of concrete makes it hard for
the virus to survive on concrete surfaces. Overall, the study presents a novel approach for
disposing of waste masks and establishes the preliminary viability of upcycling trash face
masks towards mortar concrete production.

2. Materials and Methods
2.1. Materials

In this study, recycled polypropylene fibers from used face masks are incorporated into
a concrete mortar. The method of recycling masks is described initially and the mortar with
polypropylene fiber composition and experimental study are described in the rest of the section.
It was decided to utilize 3-ply disposable face masks for this research since they are widely used
and very cheap. Fabric made of spun-bond polypropylene is used for the face mask’s innermost
and outermost layers, while the majority of the fabric used for the mask’s intermediate layer is
made of melt-blown polypropylene. Polypropylene of spun-bond fibers might well be utilized
in triple layers of the product in order to save costs in some circumstances. The inner layer,
which is made of meltdown polypropylene, is the major substance that provides protection
against contaminated particles and viruses. At the beginning of the epidemic of COVID-19,
melt-blown materials were in short supply, which caused prices to rise everywhere around the
globe. Either polyester or nylon is used in the production of the face mask’s ear loop. Because
it has a plastic foundation, the material that is used to make face masks is resistant to water
as well as heat, and this property contributes to the material’s overall durability. In building
materials, all of these qualities are considered to be desirable.

2.1.1. Treatment of Waste Face Mask

The risk of transmission of COVID-19 from surfaces is one hundred times lower than
the risk of contracting the virus directly from an infected individual [61]. According to the
findings of other investigations, coronavirus may survive on plastics for up to three days
and a day on cardboard [62]. Since COVID-19 is not known to survive on plastics for
extended periods of time, using face masks in construction does not pose any special risks.
On the other hand, the World Health Organization (WHO) suggests that a steam treatment
may also be used to sterilize the masks. The low pH of concrete makes it hard for the
virus to thrive on concrete surfaces. The masks were gathered together, and then they were
left for a week. Masks were sprayed with an alcohol-based disinfectant to ensure their
safety. The application of waste face masks as an efficient building composite material is
something that researchers are investigating at the current [63]. The waste masks undergo
processing that results in shredded mask fiber waste, as shown in Figure 1.

2.1.2. Slashing of Faces Masks

Shredding machines have gained popularity as an effective solution for processing large
volumes of face masks and other medical waste. These machines use sharp blades or cutters
to cut masks into smaller shreds. They typically feature a double shaft configuration, with
two sets of blades rotating in opposite directions to ensure thorough shredding. Once the
shreds are collected, they can be further processed or incorporated into other materials. For
example, shredded face masks can be added to concrete to enhance its qualities. Shredding
machines come in varying capacities, power requirements, and features. The Maxin Hodis
Plasto—750 Dual, for instance, is a high-capacity shredding machine that can shred up to
500–1000 kg of face masks per hour. It comes equipped with a double-stage cleaner, heavy-
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duty tapered roller bearings, a chain coupling drive, and a helical gearbox for efficient and
reliable operation. Using fibers derived from trash is an effective way to contribute to sustain-
ability and promote a circular economy, as fibers are often expensive. When incorporating face
masks into concrete, fibers are crucial in enhancing their qualities. To achieve this, a specially
designed shredder is used to pull fibers from the mask. The percentages of mask fibers mixed
into the concrete can range from 0.5% to 2.0% of the volume of the concrete. Figure 1 shows
the shredded mask fibers incorporated into the concrete mix. This not only helps to reduce
waste but also promotes sustainability in the construction industry.
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2.1.3. Cement and Aggregate

For this study, we utilized regular Portland cement that met the standards of ASTM
C150 [64]. Mineral and chemical compositions are shown in Table 1. The natural sand
used for the fine aggregate comes from a river basin in the vicinity. Testing the materials in
accordance with American standards allows for the determination of initial properties of
materials such as specific gravity and fineness modulus. A specific gravity of 2.6 has been
determined for fine aggregate. The sieve analysis test is used to figure out the composition
of the sand, and one of its results is the fineness modulus. It has a fineness modulus of 2.9,
which places it in the medium sand group. The fine aggregate falls into Zone II on the basis
of the fineness modulus limitations that are specified in the international standard ASTM
C 33 [65]. Figure 2 shows the particle size distribution of fine aggregate.

Table 1. Mineral composition and chemical composition of cement.

Mineral Composition Chemical Composition

C3S C2S C3A SiO2 Al2O3 Fe2O3 MgO CaO K2O SO3 Na2O
52 22.1 8.75 20.4 6.55 3.56 1.75 65 0.54 0.42 0.25
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2.1.4. Mixing and Casting

Regular Portland cement with locally accessible natural sand in a 1:2 weight ratio is
used for casting the specimens. After the shredded mask fibers, cement, and sand had been
dry mixed for one minute, superplasticizer (Plastiment BV-40, Sika, Baar, Switzerland) and
water were added to the mixture maintaining the w/c ratio 0.4; the mix proportions are
shown in Table 2. Two more minutes were spent combining the ingredients. After taking
a short pause, the mixing process then continued for another two minutes as per ACI
211-91 [66]. Slump measurements for each combination came within an acceptable range
(80–120 mm). For each batch of concrete, cubes, cylinders, and prisms of 50 × 50 × 50 mm,
50 × 100 mm, and 40 × 40 × 100 mm were cast. In preparation for testing, cast samples are
unmolded and placed in water at room temperature in the laboratory.

Table 2. Mix proportion and workability mask fiber mortar.

S.No Fiber
Content %

Cement
Weight (kg)

Sand Weight
(kg)

Fiber Weight
(kg)

Water
Weight (kg)

Superplasticizer
Weight (kg) Workability

MF0 0 480 960 0 192 4.8 254
MF1 0.5 480 960 2.4 192 4.8 231
MF2 1 480 960 4.8 192 4.8 219
MF3 1.5 480 960 7.2 192 4.8 204
MF4 2 480 960 9.6 192 4.8 191

2.2. Methods
2.2.1. Strength Tests

The mortar cubes’ sides were smoothed down using sandpaper so that the stress ap-
plied by the testing equipment would be distributed uniformly throughout the specimen’s
face (Figure 3). Before carrying out the tests, the specimens were removed from the curing
water and allowed to dry to a saturated surface state. The procedures for conducting the
tests were in line with those outlined in ASTM C109 [67]. In this test, compression testing
equipment manufactured by Lawrence & Mayo was used. The rate of the application of
the load was 0.6 MPa/s. Three samples were analyzed at 7 and 28 days of life.
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Figure 3. Compressive strength test on mask fiber mortar blocks.

Before beginning the testing process, the specimens were removed from the curing
tank and allowed to reach the saturated surface dry state on their own. A minimum of
3 specimens prepared were molded from each mix. Concrete cylinders were 50 mm wide
and 100 mm height. The samples were then tested on a universal testing machine (UTM) for
splitting tensile strength at 7 and 28 days after being constructed (Figure 4). An evaluation
of shredded mask fiber concrete’s flexural strength was carried out in a manner that was
compliant with ASTM 293-02 [65]. Beam specimens measuring 40 mm × 40 mm × 160 mm
in thickness were subjected to a flexural strength test utilizing a UTM at 7 and 28 days after
casting for comparison (Figure 5).
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2.2.2. An Ultrasonic Pulse Velocity (UPV)

In order to conduct nondestructive tests on mortar samples, nondestructive studies
were performed via the use of ultrasonic pulse velocity [44,45]. Measurements of ultrasonic
pulse velocity (UPV) were carried out with the assistance of a commercially available
handheld ultrasonic testing tool. Model 58-E4800 UPV tester with (rate of pulse 5 Hz,
resolution 0.1 s, transmitter output 1200 V) is utilized. An amplifier, an electrical pulse
generator, and a timing circuit were linked to a pair of transducers operating at a frequency
of 150 kHz in order to measure the amount of time that elapsed between the arrival at the
transducer and the beginning of a pulse that was receiving it. The following procedures
were carried out in order to obtain the UPV values.

i. Each mortar cement specimen has a transmitter and receiver placed at opposing ends
of the specimen (Figure 6). Then, ultrasonic pulses of low frequency are produced by
this equipment.
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ii. The amount of time it took for a signal to move from one transducer to the other via
a sample of pulses was measured.

iii. This equation (V (km/s) = path length/transit time) was used to calculate the longitu-
dinal ultrasonic velocities of the samples.

3. Sorptivity Test

In accordance with EN ISO 15148, the water absorption coefficient, also known as
sorptivity, of the specimens was calculated using the partial immersion approach. Samples
were dried and sealed with hot paraffin wax before testing. The water level was maintained
throughout the measurement at a level that was about 5 mm higher than the highest point
on the bottom side of the specimen (Figure 7). Capillary suction is the primary factor that
contributes to the water being drawn into the concrete sample. The increase in specimen mass,
denoted by the symbol ∆mt, was calculated at various intervals up to 24 h and then plotted
against the square root of the weighing time denoted by the symbol

√
t. After that, the water

absorption coefficient, denoted by Ww, 24 h, was computed. It is also defined as the product
of the water amount exerted by the samples per unit area and the square root of time.
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Figure 7. Sorptivity test on mortar.

4. Results and Discussion
4.1. Workability

Mortar mixes can be evaluated for consistency using a flow table test. The flow
test was used to calculate the quantity of water that must be added to plain mortar or
fiber-reinforced mortar in order to achieve the specified consistency. The flow table that
will be used in the testing of hydraulic cement was created in accordance with ASTM
C1437-01 [68]. In order to achieve a typical mortar consistency, the quantity of water
needed was represented as a (w/c) ratio. The impact that fibers have on the flow of mortar
mixtures is seen in Table 2 and Figure 8. Adding polypropylene fiber to cement mortar
significantly slows down the consistency. However, the fluidity decreases with increasing
amounts of polypropylene fiber to a certain limit. In conclusion, polypropylene fiber has
a negligible impact on cement mortar flow and workability.
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4.2. Compressive Strength

Results for compressive strength are shown in Figure 9. According to the results
shown in the table, the mortar’s compressive strength is not much improved by including
fibers, but it is improved by 17% after 28 days when the shredded mask fibers have been
added to the mix (MF2). The addition of 0.5% fiber content to the mix increases the mortar’s
compressive strength by 10.03% after 28 days compared to the same mortar without fibers.
Whereas the mortar strength decreases when the fiber content increases from 1% to 1.5%,
no significant changes in the compressive strength values are obtained, suggesting that
fibers have no discernible effect (Figure 9). It is to be anticipated that the cement hydration
of mortar samples will proceed at a leisurely pace and that the matrix will not dramatically
strengthen when the mask fiber has been added more than 1%. The addition of fiber to
mortar or concrete may either increase or decrease the compressive strength, depending on
a number of circumstances. The fiber-to-matrix distribution is one such factor. The pore
size in a matrix may be decreased by ensuring that fibers are evenly distributed throughout
the mixture [69]. Because of this, the fibers enhance the energy required for microcracks to
spread through the specimen, making the specimen more resistant to destruction. Because
of this occurrence, compressive strength can increase. However, if the matrix is compacted
highly, such as concrete of high strength with a low pore ratio, adding fibers creates pores
that weaken the concrete and cause fractures [70]. Concrete strength is further weakened
by fibers’ softness compared to natural aggregates [71]. The plastic functions as voids in the
matrix under stress, triggering the initiation of fractures around the fibers. Compressive
strength is influenced by the amount to which cementitious matrix and plastic fibers adhere
to one another. In summary, plastic waste strengthens concrete by creating additional
voids, adhering to the cement matrix, and stopping crack openings. Polypropylene fibers
added to concrete yielded comparable outcomes to this investigation. For instance, adding
1.5% and 2% polypropylene to concrete decreased compressive strength. Khatib, et al.
found that concrete containing polypropylene fibers had higher compressive strength up
to 2 kg/m3 [71].
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Figure 9. Compressive strength at 7 days and 28 days.

4.3. Tensile Strength

In Figure 1. the splitting tensile strength of the cement mortars is presented. It
is evident that the splitting tensile strengths of the cement mortars were increased by
approximately 22% by adding 1.5% of the shredded mask fiber. It is found that when
compared to the control sample (Figure 10), this is a desirable result because it indicates
that a mortar with a more ductile behavior can be obtained by using shredded mask fibers.
In the same way, increasing the fiber content of the cement mortar up to 1.5% does not
significantly lower the splitting tensile strength, but it does improve the ductility properties
of the cement mortars. Increasing the percentage of mask fibers used in the mortar from
1.5 to 2% results in a reduction in the mortar’s splitting strength after 28-day tests. In the
scenario when there was no fiber present, an unexpected failure occurred, but there was
no such failure in the scenario where there was fiber present. Figure 5 illustrates a typical
failure mode for the test specimen.
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Figure 10. Split tensile strength at 7 days and 28 days.

4.4. Flexural Strength

The improvement in flexural strength due to the addition of the mask fibers is seen in
Figure 11. Overall, the incorporation of shredded fibers of mask results in an increase in
flexural strength when compared to the control mix mortar. It can be seen in the results that
the mortar has been strengthened with shredded fibers of masks and have greater flexural
strength. The rise in flexural strength does not go over 26%, even when using 1% of fibers;
however, when it comes to more than 1.5%, this percentage increment in strength starts to
decrease (Figure 11). Incorporating Shredded mask fibers into concrete or cement mortar
has been shown to improve flexural strength in a number of different recent studies [70].
The mask pieces added to the mix also have an immense impact on the outcome of the
failure. Indeed, the fibers in the sample of fiber-reinforced mortar prevent the two halves
from splitting apart from one another upon cracking shown in Figure 5.
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Figure 11. Flexural strength test at 7 days and 28 days.

4.5. Ultrasonic Pulse Velocity (UPV)

The UPV test results are shown in Table 3 and Figure 12. As can be observed, UPV
increased continuously along with mask content by volume up until volume passed 1%,
after which it slightly decreased at 1.5% and 2% volume of mask fiber. Results for com-
pressive strength are similar to those found for the volume of mask content. UPV result
showing over 4000 m/s is regarded to be concrete of good quality and of higher strength,
as stated by Khatib et al. (2019) and Sims et al. (2019) [71,72]. Again, the concrete quality
declined at a 1.5 percent volume rate, although it should be noted that, when compared to
the control specimen, all of the mixed designs produced concrete have improved attributes.
According to Yap et al. [73], if a concrete’s quality falls within the aforementioned ranges, it
signifies the concrete specimen has no major cracks or voids. Based on the results of the
studies conducted by Shen et al. [74], it is proved that the shredded face masks added to
the concrete helped to enhance its quality by decreasing the number of microfissures.



J. Compos. Sci. 2023, 7, 214 11 of 16

Table 3. Water absorption and sorptivity test results.

Mix. ID Water Absorption (%) Sorptivity (mm/
√

Sec) UPV m/s

MF0 3.560 0.0225 4329
MF1 3.780 0.0238 4487
MF2 3.947 0.0256 4652
MF3 4.162 0.0272 4521
MF4 4.338 0.0289 4376
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Figure 12. UPV test results on mask fiber mortar.

4.6. Sorptivity Test

The level of capillary rise in the specimens is seen in the graph of Figure 13. Specimen
incorporated with mask fibers show a greater capillary rise than the reference mortar
from the start of the test until 8 h. However, after 8 h, the rate of growth slows down,
and the amount of this slowdown increases in proportion to the amount of mask present.
Additionally, after eight hours have passed since the beginning of the test, the capillary
increase remains the same for the samples that had 0.5% and 1% masks subjected. It has
also been observed that the rise of water through the capillary in the specimens containing
0.5% and 1% of masks is less than that observed in the specimens containing fiber more
than 1.5%. This is because the small volume of masks occupies the space in the mortar.
Figure 10 illustrates the impact that the shredded mask has on capillary absorption. This
is significant given that capillary absorption is a feature associated with the mask pieces.
It has been discovered that the mortar that contains the mask intake more water than
the mortar that serves as a control mix. The sorptivity of the different mortar mixes can
be determined by utilizing the data from the capillary absorption tests, which measure
the weight of water absorbed per unit area, and applying the Hall model proposed by
Arunachalam et al. [75] for mortars. This method allows for the calculation of the sorptivity
of the various mixtures.
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Figure 13. Water absorption and sorptivity test results on mask fiber mortar.
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These two factors combined allow for the calculation of the sorptivities. Table 3 details
a concise arbitrary of the findings. The increase in sorptivity that is gained by using 2%
of a big mask piece is the greatest at 28%. The variance in sorptivity is substantial. The
presence of mask fibers produces extra capillaries owing to the porous nature of the mask
pieces, which results in an increase in the quantity of water that is absorbed. However, the
presence of mask pieces enhances the sorptivity of the mortar.

5. Conclusions

The aim of this research is to determine a way to reuse the vast quantities of disposable
masks that have accumulated since the start of the COVID epidemic. This is being done for
two reasons: first, to address environmental contamination, and second, to enhance the
cement mortar’s physical and mechanical qualities. Here are the most important takeaways
from this research:

− Some of the mechanical characteristics of concrete can be improved by adding shredded
single-use face masks.
− The compressive strength of the samples rises by 17% when 1% of the shredded mask
fiber has been incorporated in the mortar.
−When the shredded mask fiber content is added in mortar up to 1.5%, the split tensile
strength of the sample specimens increases up to 22%.
− The flexural strength of the mortar beam has an increment of 30% increase in strength
compared to the control specimen when 1% of the shredded mask fiber has been incorpo-
rated in the mortar.
− In comparison to the cement mortar used as a control mix, the impact of shredded mask
fiber on working or flow capacity is much lower.
− As measured by the capillarity test, the mortar’s sorptivity has higher, up to 28%,
compared to the control specimen when 2% of the shredded mask fiber is incorporated in
the mortar.
−When comparing the concrete quality made with the control mix, the UPV findings show
the mortar mix manufactured using shredded face masks has a significant increment in
strength. The fibers from the shredded face masks helped to reduce the number of tiny
fractures in the concrete, improving the cement mortar’s quality.

In conclusion, the incorporation of shredded masks in mortar has superior quality and
excellent structural integrity. The use of disposable face masks in concrete manufacturing
will have a significant positive effect on the environment.
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