Exploring the Thermophysical Properties of the Thermal Conductivity of Pigmented Polymer Matrix Composites with Barium Titanate: A Comparative Numerical and Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Thermal Conductivity Models
4. Problem Formulation and Boundary Conditions
- −
- Two faces perpendicular to the direction of heat flow: isothermal with temperatures T1 = 298 K and T2 = 323 K.
- −
- Faces parallel to the direction of heat flow: adiabatic.
- −
- Transfers by radiation and convection: negligible.
- −
- Thermal contact resistance between matrices and loads: negligible.
- −
- Dispersion of spherical particles in matrices: homogeneous.
- −
- Q is the heat flux; k is the thermal conductivity of the composite;
- −
- is the temperature variation along the z direction;
- −
- x and y represent the exchange surface.
5. Results and Discussion
- −
- Thermal conductivity of BaTiO3 is kch = k(BaTiO3) = 2.7–4.5 W/m·K;
- −
- Particle radius of BaTiO3 is r = 0.25–0.6 μm;
- −
- Thermal conductivity of PSU km = k(PSU) = 0.17–0.22 W/m·K;
- −
- Pigment fraction is φ = 3%.
5.1. Temperature Distribution in the Composite Material
5.2. Effect of Filler Volume Fraction and Thermal Contact Resistance
5.3. The Effect of the Filler Thermal Conductivity
5.4. Effect of Particle Size
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benin, S.R.; Kannan, S.; Bright, R.J.; Moses, A.J. A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres. Mater. Today 2020, 33, 798–805. [Google Scholar] [CrossRef]
- Carson, J.K.; Wang, J.; North, M.F.; Cleland, D.J. Effective thermal conductivity prediction of foods using composition and temperature data. J. Food Eng. 2016, 175, 65–73. [Google Scholar] [CrossRef]
- Tarfaoui, M.; El Moumen, A.; Lafdi, K.; Hassoon, O.H.; Nachtane, M. Inter laminar failure behavior in laminate carbon nanotubes-based polymer composites. J. Compos. Mater. 2018, 52, 3655–3667. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Nachtane, M. Can a three-dimensional composite really provide better mechanical performance compared to two-dimensional composite under compressive loading? J. Reinf. Plast. Compos. 2019, 38, 49–61. [Google Scholar] [CrossRef]
- Rouway, M.; Nachtane, M.; Tarfaoui, M.; Chakhchaoui, N.; Omari, L.E.H.; Fraija, F.; Cherkaoui, O. Mechanical properties of a biocomposite based on carbon nanotube and graphene nanoplatelet reinforced polymers: Analytical and numerical study. J. Compos. Sci. 2021, 5, 234. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Nachtane, M.; Stanishevskiy, Y.M.; Dodina, E.P.; Rejepov, D.T.; Vetcher, A.A. The Effect of Multi-Walled Carbon Nanotubes on the Heat-Release Properties of Elastic Nanocomposites. J. Compos. Sci. 2022, 6, 333. [Google Scholar] [CrossRef]
- Mojisola, T.; Ramakokovhu, M.M.; Olubambi, P.A.; Matizamhuka, W.R. In-situ synthesis and purification of high grade titanium carbonitride powder via carbonitrothermic reduction of low grade titanium ore. Sci. Afr. 2021, 13, e00972. [Google Scholar] [CrossRef]
- Khattari, Y.; El Rhafiki, T.; Choab, N.; Kousksou, T.; Alaphilippe, M.; Zeraouli, Y. Apparent heat capacity method to investigate heat transfer in a composite phase change material. J. Eng. Storage 2020, 28, 101239. [Google Scholar] [CrossRef]
- Wang, J.; Carson, J.K.; North, M.F.; Cleland, D.J. A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int. J. Heat Mass Tran. 2006, 49, 3075–3083. [Google Scholar] [CrossRef]
- Lachheb, M.; Karkri, M.; Albouchi, F.; Mzali, F.; Nasrallah, S.B. Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method. Eng. Convers. Manag. 2014, 82, 229–237. [Google Scholar] [CrossRef]
- Kumlutas, D.; Tavman, I.H. A numerical and experimental study on thermal conductivity of particle filled polymer composites. J. Thermoplast. Compos. Mater. 2006, 19, 441–455. [Google Scholar] [CrossRef]
- Zhai, S.; Zhang, P.; Xian, Y.; Zeng, J.; Shi, B. Effective thermal conductivity of polymer composites: Theoretical models and simulation models. Int. J. Heat Mass Tran. 2018, 117, 358–374. [Google Scholar] [CrossRef]
- Floury, J.; Carson, J.; Pham, Q.T. Modelling thermal conductivity in heterogeneous media with the finite element method. Food Bioprocess Technol. 2008, 1, 161–170. [Google Scholar] [CrossRef]
- Hatta, H.; Taya, M. Effective thermal conductivity of a misoriented short fiber composite. J. Appl. Phys. 1985, 58, 2478–2486. [Google Scholar] [CrossRef]
- Fang, W.Z.; Gou, J.J.; Zhang, H.; Kang, Q.; Tao, W.Q. Numerical predictions of the effective thermal conductivity for needled C/C-SiC composite materials. Numer. Heat Transfer A. 2016, 70, 1101–1117. [Google Scholar] [CrossRef]
- Rocha, R.P.; Cruz, M.A.E. Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. Numer. Heat Transfer A 2001, 39, 179–203. [Google Scholar] [CrossRef]
- Matt, C.F.; Cruz, M.E. Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance. Numer. Heat Transfer A 2007, 53, 577–604. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 1962, 33, 3125–3131. [Google Scholar] [CrossRef]
- Mohammad, H.; Stepashkin, A.A.; Tcherdyntsev, V.V. Effect of Graphite Filler Type on the Thermal Conductivity and Mechanical Behavior of Polysulfone-Based Composites. Polymers 2022, 14, 399. [Google Scholar] [CrossRef]
- Halimi, Y.; Inchaouh, M.; Zyade, S.; Tahiri, M. Development and characterization of a composite material reinforced by plastic waste: Application in the construction sector. Int. J. Geomate 2017, 13, 172–178. [Google Scholar] [CrossRef]
- Belhaouzi, A.; Halimi, Y.; Zyade, S.; Mostapha, T.; Rouway, M. Tahiri, Modeling effective elastic and thermal conductivity of composite materials reinforced with plastic waste: Analytical and numerical ap-proaches. Polym. Compos. 2023. [Google Scholar] [CrossRef]
- Olmos, D.; Prolongo, S.G.; González-Benito, J. Thermo-mechanical properties of polysulfone based nanocomposites with well dispersed silica nanoparticles. Compos. Part B Eng. 2014, 61, 307–314. [Google Scholar] [CrossRef]
- Braiek, A.; Karkri, M.; Adili, A.; Ibos, L.; Nasrallah, S.B. Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Eng. Build. 2017, 140, 268–279. [Google Scholar] [CrossRef]
- Subhani, S.; Ghali, V.S. Measurement of thermal diffusivity of fiber reinforced polymers using quadratic frequency modulated thermal wave imaging. Infrared Phys. Technol. 2019, 99, 187–192. [Google Scholar] [CrossRef]
- Boudenne, A.; Ibos, L.; Gehin, E.; Candau, Y. A simultaneous characterization of thermal conductivity and diffusivity of polymer materials by a periodic method. J. Phys. D Appl. Phys. 2003, 37, 132. [Google Scholar] [CrossRef]
- Garnier, B.; Agoudjil, B.; Boudenne, A. Metallic particle–Filled polymer microcomposites. Polym. Compos. 2012, 575–612. [Google Scholar] [CrossRef]
- Chikhi, M.; Agoudjil, B.; Haddadi, M.; Boudenne, A. Numerical modelling of the effective thermal conductivity of heterogeneous materials. J. Thermoplast. Compos. 2013, 26, 336–345. [Google Scholar] [CrossRef]
- Ngo, I.L.; Truong, V.A. An investigation on effective thermal conductivity of hybrid-filler polymer composites under effects of random particle distribution, particle size and thermal contact resistance. Int. J. Heat Mass Tran. 2019, 144, 118605. [Google Scholar] [CrossRef]
Models | Equation | Description |
---|---|---|
Maxwell | 1- Valid for spheres dispersed in a matrix 2- Not valid at finite particle concentrations 3- Interaction between particles is not taken into account | |
Bruggeman | 1- d = 3 for spherical loads 2- d = 2 for cylindrical loads | |
Hatta and Taya | with: | 1- S11 + S22+ S33 = 1 2- Disk: S11 = S22 = 0, S33 = 1 3- Sphere: S11 = S22 = S33 = 1/3 4- Fibers, rods, or long cylinders: S11 = S22 = 1/2, S33 = 0 5- Randomly oriented short fibers (length L and diameter D) 6- Spheres randomly dispersed in a continuous matrix, R = 2 − |
Hashin and Shtrikman | For spherical loads |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhaouzi, A.; Laaouidi, H.; Zyade, S.; Raji, Y.; Halimi, Y.; Tahiri, M. Exploring the Thermophysical Properties of the Thermal Conductivity of Pigmented Polymer Matrix Composites with Barium Titanate: A Comparative Numerical and Experimental Study. J. Compos. Sci. 2023, 7, 220. https://doi.org/10.3390/jcs7060220
Belhaouzi A, Laaouidi H, Zyade S, Raji Y, Halimi Y, Tahiri M. Exploring the Thermophysical Properties of the Thermal Conductivity of Pigmented Polymer Matrix Composites with Barium Titanate: A Comparative Numerical and Experimental Study. Journal of Composites Science. 2023; 7(6):220. https://doi.org/10.3390/jcs7060220
Chicago/Turabian StyleBelhaouzi, Abdessamad, Houda Laaouidi, Souad Zyade, Yosra Raji, Youssef Halimi, and Mohamed Tahiri. 2023. "Exploring the Thermophysical Properties of the Thermal Conductivity of Pigmented Polymer Matrix Composites with Barium Titanate: A Comparative Numerical and Experimental Study" Journal of Composites Science 7, no. 6: 220. https://doi.org/10.3390/jcs7060220
APA StyleBelhaouzi, A., Laaouidi, H., Zyade, S., Raji, Y., Halimi, Y., & Tahiri, M. (2023). Exploring the Thermophysical Properties of the Thermal Conductivity of Pigmented Polymer Matrix Composites with Barium Titanate: A Comparative Numerical and Experimental Study. Journal of Composites Science, 7(6), 220. https://doi.org/10.3390/jcs7060220