Design and Analysis of an Automobile Disc Brake Rotor by Using Hybrid Aluminium Metal Matrix Composite for High Reliability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
3. Finite Element Analysis
4. Result and Discussion
4.1. Thermal Analysis
4.2. Structural Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MMC | Metal Matrix Composites |
AMC | Aluminium Matrix Composite |
HMMC | Hybrid Metal Matrix Composites |
FEA | Finite Element Analysis |
SiC | Silicon Carbide |
Gr | Graphite |
SEM | Scanning Electron Microscope |
A1 | Aluminium |
References
- Knight, M.; Curliss, D. Composite materials. In Encyclopedia of Physical Science and Technology, 3rd ed.; Academic Press: New York, NY, USA, 2003; pp. 455–468. [Google Scholar]
- Dev Srivyas, P.; Charoo, M.S. Application of hybrid aluminum matrix composite in automotive industry. Mater. Today Proc. 2019, 18, 3189–3200. [Google Scholar] [CrossRef]
- Anandaraj, T.; Sethusundaram, P.P.; Chanakyan, C.; Sakthivelu, S.; Meignanamoorthy, M. Influence of different reinforcements on properties of metal matrix composites: A review. Mater. Today Proc. 2021, 37, 3480–3484. [Google Scholar] [CrossRef]
- Das, S.; Das, S. Properties for polymer, metal and ceramic based composite materials. In Encyclopedia of Materials: Composites; Elsevier: Oxford, UK, 2021; pp. 815–821. [Google Scholar]
- Koli, D.K.; Agnihotri, G.; Purohit, R. Advanced aluminium matrix composites: The critical need of automotive and aerospace engineering fields. Mater. Today Proc. 2015, 2, 3032–3041. [Google Scholar] [CrossRef]
- Fatchurrohman, N.; Iskandar, I.; Suraya, S.; Johan, K. Sustainable analysis in the product development of Al-metal matrix composites automotive component. Appl. Mech. Mater. 2014, 695, 32–35. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, M.; Jayaram-Babu, N.; Rao, K.V.; Singh, J. Investigation of properties of Mg and Al based nano hybrid-metallic composites processed through liquid processing technique. In Advances in Design, Simulation and Manufacturing II; Springer International Publishing: Cham, Switzerland, 2020; pp. 466–476. [Google Scholar]
- Singh, G.; Sidhu, S.S.; Bains, P.S.; Singh, M.; Bhui, A.S. On surface modification of Ti Alloy by electro discharge coating using hydroxyapatite powder mixed dielectric with graphite tool. J. Bio-Tribo-Corros. 2020, 6, 91. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Khanduja, D. A study on microstructure of aluminium matrix composites. J. Asian Ceram. Soc. 2015, 3, 240–244. [Google Scholar] [CrossRef]
- John, K.M.; Thirumalai Kumaran, S. Backup support technique towards damage-free drilling of composite materials: A review. Int. J. Lightweight Mater. Manuf. 2020, 3, 357–364. [Google Scholar] [CrossRef]
- Onyenanu, I.U.; Nwigbo, S.C. Optimization of aluminium metal matrix composite (AMMC) for use in automobile brake disc. Int. J. Eng. Res. Technol. 2021, 10. Available online: https://www.ijert.org/optimization-of-aluminium-metal-matrix-composite-ammc-for-use-in-automobile-brake-disc (accessed on 1 June 2023).
- Mavhungu, S.T.; Akinlabi, E.T.; Onitiri, M.A.; Varachia, F.M. Matrix composites for industrial use: Advances and Trends. Procedia Manuf. 2017, 7, 178–182. [Google Scholar] [CrossRef]
- Prasad, S.V.; Asthana, R. Aluminium metal-matrix composites for automotive applications: Tribological Considerations. Tribol. Lett. 2004, 17, 445–453. [Google Scholar] [CrossRef]
- Bansal, M.; Sindhu, N.; Anand, S.K. Structural and model analysis of a composite material differential gearbox assembly. Int. J. Eng. Sci. Res. Technol. 2016, 5, 575–592. [Google Scholar]
- Ramasubramanian, S.; Chandrasekaran, M.; Sridhar, R.; Karunakaran, K. Design, manufacture and analysis of Al/SiC MMCs for connecting rod. IOP Conf. Ser. Mater. Sci. Eng. 2017, 183, 012009. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.S. Design and analysis of IC engine piston and piston ring on composite material using Creo and Ansys software. J. Eng. Sci. 2016, 1, 39–51. [Google Scholar]
- Mohammadnejad, A.; Bahrami, A.; Goli, M.; Dehbashi Nia, H.; Taheri, P. Wear induced failure of automotive disc brakes-A Case Study. Materials 2019, 12, 4214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yevtushenko, A.A.; Grzes, P. Initial selection of disc brake pads material based on the temperature mode. Materials 2020, 13, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Bao, J.; Liu, J.; Guo, C.; Liu, T.; Ji, Y. Braking performance of a novel frictional-magnetic compound disc brake for automobiles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 233, 2443–2454. [Google Scholar] [CrossRef]
- Cai, R.; Zhang, J.; Nie, X.; Tjong, J.; Matthews, D.T.A. Wear mechanism evolution on brake discs for reduced wear and particulate emissions. Wear 2020, 452–453, 203283. [Google Scholar] [CrossRef]
- Nakanishi, H.; Kakihara, K.; Nakayama, A.; Murayama, T. Development of Aluminium metal matrix composites (Al-MMC) brake rotor and pad. JSAE Rev. 2002, 23, 365–370. [Google Scholar] [CrossRef]
- Sadagopan, P.; Natarajan, H.K.; Praveen Kumar, J. Study of silicon carbide-reinforced Aluminium matrix composite brake rotor for motorcycle application. Int. J. Adv. Manuf. Technol. 2018, 94, 1461–1475. [Google Scholar]
- Porlekar, S.; Bhatwadekar, S.; Kulkarni, G. Design, analysis and optimization of brake disc made of composite material for a motorcycle. Int. J. Res. Publ. Eng. Technol. 2017, 3, 63–69. [Google Scholar]
- Kulkarni, A.S.; Hegade, K.C.; Karale, O.V.; Joshi, P. Coupled thermal and structural analysis of brake disc rotor manufactured from Aluminium metal matrix composite (AMMC) reinforced with silicon carbide. Imp. J. Interdiscip. Res. 2016, 2, 1188–1194. [Google Scholar]
- Kumar Sharma, A.; Bhandari, R.; Aherwar, A.; Rimašauskienė, R.; Pinca-Bretotean, C. A study of advancement in application opportunities of Aluminium metal matrix composites. Mater. Today Proc. 2020, 26, 2419–2424. [Google Scholar] [CrossRef]
- Shiva Shanker, P. A review on properties of conventional and metal matrix composite materials in manufacturing of disc brake. Mater. Today Proc. 2018, 5, 5864–5869. [Google Scholar] [CrossRef]
- Loganathan, M.K.; Gandhi, O.P. Reliability evaluation and analysis of CNC cam shaft grinding machine. J. Eng. Des. Technol. 2015, 13, 37–73. [Google Scholar] [CrossRef]
- Loganathan, M.K.; Ming Tan, C.; Mishra, B.; Msagati, T.A.M.; Snyman, L.W. Review and selection of advanced battery technologies for post 2020 era electric vehicles. In Proceedings of the 2019 IEEE Transportation Electrification Conference (ITEC-India), Bengaluru, India, 17–19 December 2019; pp. 1–5. [Google Scholar]
- Bodunrin, M.O.; Alaneme, K.K.; Chown, L.H. Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 2015, 4, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Pandi, G.; Muthusamy, S. A review on machining and tribological behaviours of aluminium hybrid composites. Procedia Eng. 2012, 38, 1399–1408. [Google Scholar] [CrossRef]
- Prasad, D.S.; Shoba, C.; Ramanaiah, N. Investigations on mechanical properties of Aluminium hybrid composites. J. Mater. Res. Technol. 2014, 3, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.D.L. 9—Metal-matrix composites. In Carbon Composites, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 532–562. [Google Scholar]
- Mishra, P.K.; Singh, M.; Nayak, S.; Mishra, D. An experimental study of Al-6062, stainless steel, and Inconel-625 using machinability analysis. Int. J. Mech. Prod. Eng. Res. Develop. 2020, 10, 28–38. [Google Scholar]
- Singh, M.; Maharana, S. Investigating the EDM parameter effects on aluminium-based metal matrix composite for high MRR. Mater. Today Proc. 2020, 33, 3858–3863. [Google Scholar] [CrossRef]
- Kannan, A.; Mohan, R.; Viswanathan, R.; Sivashankar, N. Experimental investigation on surface roughness, tool wear and cutting force in turning of hybrid (Al7075 + SiC + Gr) metal matrix composites. J. Mater. Res. Technol. 2020, 9, 16529–16540. [Google Scholar] [CrossRef]
- James, S.J.; Venkatesan, K.; Kuppan, P.; Ramanujam, R. Hybrid aluminium metal matrix composite reinforced with SiC and TiB2. Procedia Eng. 2014, 97, 1018–1026. [Google Scholar] [CrossRef]
- Singh, M.; Mishra, P.K.; Mohaty, P.P.; Singh, R. Experimental investigation of tool wear rate (TWR) during the EDM of hybrid Aluminium metal matrix composite reinforced with SiCp and Grp. In Advances in Materials Processing and Manufacturing Applications; Springer: Singapore, 2021; pp. 409–419. [Google Scholar]
- Singh, M.; Garg, H.K.; Maharana, S.; Yadav, A.; Singh, R.; Maharana, P.; Nguyen, T.V.T.; Yadav, S.; Loganathan, M.K. An experimental investigation on the material removal rate and surface roughness of a hybrid Aluminium metal matrix composite (Al6061/SiC/Gr). Metals 2021, 11, 1449. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Singh, M.; Singh, P.; Singh, R.; Maharana, S.; Khalilpoor, N.; Issakhov, A. Computational fluid dynamics analysis of flow patterns, pressure drop, and heat transfer coefficient in staggered and inline shell-tube heat exchangers. Math. Probl. Eng. 2021, 2021, 6645128. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, S.; Mishra, P.K.; Maharana, S.; Maharana, P. Thermal performance and optimization of paraffin wax as a phase changing materials (PCM)-based heat sink with internal fins using Ansys: An experimental analysis approach. Int. J. Adv. Sci. Technol. 2020, 29, 1990–2002. [Google Scholar]
- David Müzel, S.; Bonhin, E.P.; Guimarães, N.M.; Guidi, E.S. Application of the finite element method in the analysis of composite materials: A Review. Polymers 2020, 12, 818. [Google Scholar] [CrossRef] [Green Version]
- Mestre, F.; Pironato, K.B.; Silva, R.M.; Lee, P.; Moriguchi, S.K.; Malvezzi, F. Brake system performance evaluation of formula type vehicle. In Proceedings of the XXVI Simpósio Internacional de Engenharia Automotiva, São Paulo, Brazil, 1–2 August 2018; Blucher: São Paulo, Brazil, 2018; pp. 253–270. [Google Scholar] [CrossRef]
- Gupta, E.; Bora, D.K.S.; Rammohan, A. Design and analysis of brake system for FSAE race car. Eng. Res. Express 2022, 4, 025039. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, Y.; Zheng, C.; Wang, X.; Cheng, M.; Zhang, H.; Hong, H. Braking Safety Design and Analysis for Railway Vehicles. Volume 14: Safety Engineering, Risk, and Reliability Analysis. In Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition, Virtual Online, 16–19 November 2020; ASME: New York, NY, USA, 2020. V014T14A029. [Google Scholar]
- Muniappan, A.; Jayaraja, B.G.; Vignesh, T.; Singh, M.; Arunkumar, T.; Sekar, S.; Priyadharshini, T.R.; Pant, B.; Paramasivam, P. Artificial Intelligence Optimization of Turning Parameters of Nanoparticle-Reinforced P/M Alloy Tool. J. Nanomater. 2022, 2022, 9225185. [Google Scholar] [CrossRef]
Matrix phase:
|
Dispersed phase:
|
Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Hardness (Hv) | Wear Rate (mm3/Nm) | |
---|---|---|---|---|
Al6061/SiC | 178.1 | 139.4 | 92.5 | 5.21 × 10−3 |
Al6061/SiC/Gr | 192.8 | 152.7 | 101.7 | 4.34 × 10−3 |
Density (kg/m3) | Young’s Modulus E (MPa) | Poisons Ratio | Specific Heat (J·kg−1·K−1) | Thermal Expansion Coefficient (K−1) | Thermal Conductivity (W/m °C) | Hardness by Vickers (N/mm2) | |
---|---|---|---|---|---|---|---|
Al/SiC12%/Gr5% | 2815 | 114 | 0.24 | 820 | 2.3−0.5 | 125 | 101.7 |
Cast iron | 7150 | 119 | 0.27 | 460 | 1.2−0.5 | 52 | 225 |
Rotor’s diameter | 255 mm |
Rotor’s height (H) | 48 mm |
Rotor’s thickness (T) | 20 mm |
Centre hole (Hub) | 60 mm |
No. of bolt holes | 8 |
Contact area | 25% |
Mass of the vehicle | 1275 kg |
Initial velocity | 30 (m/s) |
Time to stop (Bt) | 5 (s) |
Radius of the wheel | 380 (mm) |
Axle weight distribution ratio (Ar) | 0.3 |
Mesh Type | Fine |
---|---|
Total nodes | 190,680 |
Total elements | 131,890 |
Cast Iron | Al/SiC12%/Gr5% | |
---|---|---|
| 125 × 103 (J) | 125 × 103 (J) |
| 245.7 (kW) | 245.7 (kW) |
| 5 N/mm2 | 5 N/mm2 |
| 14,675 N | 14,675 N |
| 5880 N | 5880 N |
| 6114 N | 7510 N |
| 26,684 N | 28,405 N |
| 2795.12 Nm | 2842.3 Nm |
| 47 m | 42 m |
| 200 °C | 320 °C |
| 9241 KW/m2 | 9357 KW/m2 |
| 16 mm2/s | 54 mm2/s |
| 1.7 s | 0.47 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Garg, H.K.; Maharana, S.; Muniappan, A.; Loganathan, M.K.; Nguyen, T.V.T.; Vijayan, V. Design and Analysis of an Automobile Disc Brake Rotor by Using Hybrid Aluminium Metal Matrix Composite for High Reliability. J. Compos. Sci. 2023, 7, 244. https://doi.org/10.3390/jcs7060244
Singh M, Garg HK, Maharana S, Muniappan A, Loganathan MK, Nguyen TVT, Vijayan V. Design and Analysis of an Automobile Disc Brake Rotor by Using Hybrid Aluminium Metal Matrix Composite for High Reliability. Journal of Composites Science. 2023; 7(6):244. https://doi.org/10.3390/jcs7060244
Chicago/Turabian StyleSingh, Mandeep, Harish Kumar Garg, Sthitapragyan Maharana, Appusamy Muniappan, M. K. Loganathan, Tien V. T. Nguyen, and V. Vijayan. 2023. "Design and Analysis of an Automobile Disc Brake Rotor by Using Hybrid Aluminium Metal Matrix Composite for High Reliability" Journal of Composites Science 7, no. 6: 244. https://doi.org/10.3390/jcs7060244
APA StyleSingh, M., Garg, H. K., Maharana, S., Muniappan, A., Loganathan, M. K., Nguyen, T. V. T., & Vijayan, V. (2023). Design and Analysis of an Automobile Disc Brake Rotor by Using Hybrid Aluminium Metal Matrix Composite for High Reliability. Journal of Composites Science, 7(6), 244. https://doi.org/10.3390/jcs7060244