Application of Acoustic Metamaterials in Pulse-Echo Ultrasonic Evaluation of Thick Hybrid Composite Laminates
Abstract
:1. Introduction
2. Problem Statement
3. Acoustic Metamaterials: Design Specifications
- The lengths of the metamaterials and the composite laminate (in the x-direction, as shown in Figure 4) are equal. Therefore, ;
- The thickness of each of the metamaterials is set arbitrarily to be half that of the composite laminate, which results in , where the negative sign is to cancel out the acoustic information of the composite laminate. It should be noted that the thickness of the metamaterials does not depend on the thickness of the composite laminate;
- The transformations in the x- and y-directions are independent, then .
4. Pulse-Echo Ultrasonic Testing Simulation
4.1. Effective Acoustic Properties of Metamaterials
4.2. Frequency Domain to Time Domain Conversion
4.3. Signature Scan: Composite Laminate without Delamination
5. Results and Discussion
5.1. Location of Delamination
5.2. Size of the Delamination
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, M. Non-destructive evaluation of thick-section composites and sandwich structures: A review. Compos. Part A Appl. Sci. Manuf. 2014, 64, 36–48. [Google Scholar] [CrossRef]
- Senthil, K.; Arockiarajan, A.; Palaninathan, R.; Santhosh, B.; Usha, K. Defects in composite structures: Its effects and prediction methods—A comprehensive review. Compos. Struct. 2013, 106, 139–149. [Google Scholar] [CrossRef]
- Gholizadeh, S. A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 2016, 1, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, N.; Rose, R.; Croxford, A.J.; Ward, C. Understanding System Complexity in the Non-Destructive Testing of Advanced Composite Products. J. Manuf. Mater. Process. 2022, 6, 71. [Google Scholar] [CrossRef]
- Hassani, S.; Dackermann, U. A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors 2023, 23, 2204. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Mitchell, D.; Blanche, J.; Harper, S.; Tang, W.; Pancholi, K.; Baines, L.; Bucknall, D.G.; Flynn, D. A Review of Sensing Technologies for Non-Destructive Evaluation of Structural Composite Materials. J. Compos. Sci. 2021, 5, 319. [Google Scholar] [CrossRef]
- Wronkowicz-Katunin, A.; Katunin, A.; Dragan, K. Reconstruction of Barely Visible Impact Damage in Composite Structures Based on Non-Destructive Evaluation Results. Sensors 2019, 19, 4629. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, N.; Rose, R.; Croxford, A.; Ward, C. Developing a high-fidelity knowledge base for improvements in the non-destructive testing of advanced composite material products. Procedia Manuf. 2020, 51, 345–352. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Karbhari, V.M. Non-Destructive Evaluation (NDE) of Polymer Matrix Composites; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Fahr, A.; Roge, B.; Brothers, M.; Zimcik, D. Inspection of Thick Composites for Near Surface Flaws. Sci. Eng. Compos. Mater. 2004, 11, 177–184. [Google Scholar] [CrossRef]
- Vizentin, G.; Vukelić, G.; Božić, Ž.; Ivošević, Š. Environmentally induced changes in fatigue life and durability of marine structures and vessels. Procedia Struct. Integr. 2022, 42, 793–798. [Google Scholar] [CrossRef]
- Gupta, M.K.; Srivastava, R.K. Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polym.-Plast. Technol. Eng. 2016, 55, 626–642. [Google Scholar] [CrossRef]
- Pérez-Martín, M.J.; Enfedaque, A.; Dickson, W.; Gálvez, F. Impact Behavior of Hybrid Glass/Carbon Epoxy Composites. J. Appl. Mech. 2013, 80, 031803. [Google Scholar] [CrossRef]
- Sevkat, E.; Liaw, B.; Delale, F.; Raju, B.B. Effect of repeated impacts on the response of plain-woven hybrid composites. Compos. Part B Eng. 2010, 41, 403–413. [Google Scholar] [CrossRef]
- Imielińska, K.; Castaings, M.; Wojtyra, R.; Haras, J.; Le Clezio, E.; Hosten, B. Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: Glass, carbon and Kevlar/epoxy composites. J. Mater. Process. Technol. 2004, 157–158, 513–522. [Google Scholar] [CrossRef]
- Grabovac, I.; Whittaker, D. Application of bonded composites in the repair of ships structures—A 15-year service experience. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1381–1398. [Google Scholar] [CrossRef]
- Ibrahim, M.E. Ultrasonic inspection of hybrid polymer matrix composites. Compos. Sci. Technol. 2021, 208, 108755. [Google Scholar] [CrossRef]
- Mouritz, A.; Townsend, C.; Khan, M.S. Non-destructive detection of fatigue damage in thick composites by pulse-echo ultrasonics. Compos. Sci. Technol. 2000, 60, 23–32. [Google Scholar] [CrossRef]
- Mal, A.; Yin, C.-C.; Bar-Cohen, Y. Ultrasonic non-destructive evaluation of cracked composite laminates. Compos. Eng. 1991, 1, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Holmes, C.; Drinkwater, B.W.; Wilcox, P.D. Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDT E Int. 2005, 38, 701–711. [Google Scholar] [CrossRef]
- Hsu, D.K.; Barnard, D.J. Inspecting composites with airborne ultrasound: Through thick and thin. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2006. [Google Scholar] [CrossRef]
- Costigan, G.; Whalley, P.B. Measurements of the speed of sound in air-water flows. Chem. Eng. J. 1997, 66, 131–135. [Google Scholar] [CrossRef]
- Cummer, S.A.; Schurig, D. One path to acoustic cloaking. New J. Phys. 2007, 9, 45. [Google Scholar] [CrossRef]
- Chen, H.; Chan, C.T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 2007, 91, 183518. [Google Scholar] [CrossRef]
- Chen, H.; Chan, C.T. Acoustic cloaking and transformation acoustics. J. Phys. D Appl. Phys. 2010, 43, 113001. [Google Scholar] [CrossRef]
- Aubry, A.; Lei, D.Y.; Maier, S.A.; Pendry, J.B. Interaction between Plasmonic Nanoparticles Revisited with Transformation Optics. Phys. Rev. Lett. 2010, 105, 233901. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef] [Green Version]
- Haberman, M.R.; Guild, M.D. Acoustic metamaterials. Phys. Today 2016, 69, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Guild, M.D.; Haberman, M.R.; Aluù, A. Cancellation of the acoustic field scattered from an elastic sphere using periodic isotropic elastic layers. J. Acoust. Soc. Am. 2010, 128, 2374. [Google Scholar] [CrossRef]
- Guild, M.D.; Alù, A.; Haberman, M.R. Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 2011, 129, 1355–1365. [Google Scholar] [CrossRef]
- García-Chocano, V.M.; Sanchis, L.; Díaz-Rubio, A.; Martínez-Pastor, J.; Cervera, F.; Llopis-Pontiveros, R.; Sánchez-Dehesa, J. Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett. 2011, 99, 074102. [Google Scholar] [CrossRef]
- Sanchis, L.; García-Chocano, V.M.; Llopis-Pontiveros, R.; Climente, A.; Martínez-Pastor, J.; Cervera, F.; Sánchez-Dehesa, J. Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Phys. Rev. Lett. 2013, 110, 124301. [Google Scholar] [CrossRef]
- Lu, Z.; Wilson, T.W.; Lu, Y.; Ho, C.S.; Zhang, M.W.; Ho, R.C. Acoustic cloak based on Bézier scatterers. Sci. Rep. 2018, 8, 12924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Liu, X.J. Three dimensional multilayered acoustic cloak with homogeneous isotropic materials. Appl. Phys. A 2008, 94, 25–30. [Google Scholar] [CrossRef]
- Yu, Z.; Feng, Y.; Xu, X.; Zhao, J.; Jiang, T. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. J. Phys. D Appl. Phys. 2011, 44, 185102. [Google Scholar] [CrossRef]
- COMSOL. Acoustics Module User’s Guide; COMSOL AB: Stockholm, Sweden, 2007. [Google Scholar]
Material/Medium | Density () | Speed of Sound () |
---|---|---|
Glass fiber/epoxy composite [18] | ) | ) |
Carbon fiber/epoxy composite [18] | ) | ) |
Water [23] | 1000 | 1481 |
Air [23] | 1.225 | 343 |
AMM | Orientation | Density () | Speed of Sound () |
---|---|---|---|
AMM1 | x | ||
y | |||
AMM2 | x | ||
y |
Delamination Length (mm) | 8 | 5 | 4 | |
---|---|---|---|---|
Detected defect length (mm) | Conventional PEUT method | 13.2 (65%) | 10.2 (104%) | 9.6 (140%) |
PEUT with AMMs | 8 (0%) | 5 (0%) | 2 (50%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Das, R.; Khatibi, A.A. Application of Acoustic Metamaterials in Pulse-Echo Ultrasonic Evaluation of Thick Hybrid Composite Laminates. J. Compos. Sci. 2023, 7, 257. https://doi.org/10.3390/jcs7060257
Zhao J, Das R, Khatibi AA. Application of Acoustic Metamaterials in Pulse-Echo Ultrasonic Evaluation of Thick Hybrid Composite Laminates. Journal of Composites Science. 2023; 7(6):257. https://doi.org/10.3390/jcs7060257
Chicago/Turabian StyleZhao, Jingwen, Raj Das, and Akbar A. Khatibi. 2023. "Application of Acoustic Metamaterials in Pulse-Echo Ultrasonic Evaluation of Thick Hybrid Composite Laminates" Journal of Composites Science 7, no. 6: 257. https://doi.org/10.3390/jcs7060257
APA StyleZhao, J., Das, R., & Khatibi, A. A. (2023). Application of Acoustic Metamaterials in Pulse-Echo Ultrasonic Evaluation of Thick Hybrid Composite Laminates. Journal of Composites Science, 7(6), 257. https://doi.org/10.3390/jcs7060257