Extraction and Physicochemical Characterization of an Environmentally Friendly Biopolymer: Chitosan for Composite Matrix Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Chitosan Film Preparation
2.3. Characterizations
3. Results and Discussion
3.1. FTIR and XRD Analysis
3.2. Molecular Weight Determination
- K and α are constants that depend on the polymer-solvent system at a given temperature;
- is the molecular weight in dalton (Da);
- η is the intrinsic viscosity.
3.3. Deacetylation Degree Determination
3.3.1. Determination of the Degree of Deacetylation by Conductometric Titration
- Conductometric titration in basic medium
- N is the normality of the NaOH solution (mol·L−1);
- V2 and V1 are the equivalent volumes of NaOH representing two inflection points;
- M is the mass of chitosan;
- 203 (g·mol−1) is the molar mass of acetylated monomer;
- 42 (g·mol−1) is the difference between the molecular weight of the acetylated monomer and the molecular weight of the deacetylated monomer.
- Conductometric titration in acid medium
- ⋅
- N is the normality of the HCl solution (mol·L−1);
- ⋅
- V is the volume corresponding to the inflection point as shown in Figure 5;
- ⋅
- m is the mass of chitosan (g);
- ⋅
- 42 (g·mol−1) is the difference between the molecular weight of the acetylated monomer and the molecular weight of the deacetylated monomer.
3.3.2. Determination of the Degree of Deacetylation by pH Titration pH Second Derivative Method
3.3.3. Determination of the Degree of Deacetylation by Infrared Spectroscopy
3.4. Mechanical Characterization
3.5. Thermal Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cabrera, F.C. Eco-friendly Polymer Composites: A Review of Suitable Methods for Waste Management. Polym. Compos. 2021, 42, 2653–2677. [Google Scholar] [CrossRef]
- Najihi, I.; Ennawaoui, C.; Hajjaji, A.; Boughaleb, Y. 3D Printed Cellular Piezoelectric Polymers for Smart Sensors/Autonomous Energy Harvesters. Mater. Today Proc. 2022, 66, 437–440. [Google Scholar] [CrossRef]
- Najihi, I.; Ennawaoui, C.; Hajjaji, A.; Boughaleb, Y. Theoretical Modeling of Longitudinal Piezoelectric Characteristic for Cellular Polymers. Cell. Polym. 2022, 41, 39–50. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; Lackner, M. Biopolymer Composites: A Review. Int. J. Biobased Plast. 2021, 3, 40–84. [Google Scholar] [CrossRef]
- Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science 2006, 314, 1107–1110. [Google Scholar] [CrossRef]
- Ennawaoui, C.; Lifi, H.; Hajjaji, A.; Samuel, C.; Rguiti, M.; Touhtouh, S.; Azim, A.; Courtois, C. Dielectric and Mechanical Optimization Properties of Porous Poly(Ethylene-Co-vinyl Acetate) Copolymer Films for Pseudo-piezoelectric Effect. Polym. Eng. Sci. 2019, 59, 1455–1461. [Google Scholar] [CrossRef]
- Improved Mechanical Properties of Epoxy-Based Composites with Hyperbranched Polymer Grafting Glass-Fiber-Li—2016—Polymers for Advanced Technologies—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/pat.3746 (accessed on 18 April 2023).
- Zheng, N.; Song, Y.; Wang, L.; Gao, J.; Wang, Y.; Dong, X. Improved Electrical and Mechanical Properties for the Reduced Graphene Oxide-Decorated Polymer Nanofiber Composite with a Core–Shell Structure. Ind. Eng. Chem. Res. 2019, 58, 15470–15478. [Google Scholar] [CrossRef]
- Malki, Z.; Ennawaoui, C.; Hajjaji, A.; Eljouad, M.; Boughaleb, Y. Wave Energy Harvesting System Using Piezocomposite Materials. Trans. Marit. Sci. 2022, 11, 67–78. [Google Scholar] [CrossRef]
- Pedestrian Crossing System for the Mechanical Energy Harvesting Using Piezoelectric Materials—IOPscience. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/948/1/012030/meta (accessed on 14 January 2023).
- Wang, X.; Zheng, K.; Cheng, W.; Li, J.; Liang, X.; Shen, J.; Dou, D.; Yin, M.; Yan, S. Field Application of Star Polymer-Delivered Chitosan to Amplify Plant Defense against Potato Late Blight. Chem. Eng. J. 2021, 417, 129327. [Google Scholar] [CrossRef]
- Shaumbwa, V.R.; Liu, D.; Archer, B.; Li, J.; Su, F. Preparation and Application of Magnetic Chitosan in Environmental Remediation and Other Fields: A Review. J. Appl. Polym. Sci. 2021, 138, 51241. [Google Scholar] [CrossRef]
- Mittal, H.; Ray, S.S.; Kaith, B.S.; Bhatia, J.K.; Sharma, J.; Alhassan, S.M. Recent Progress in the Structural Modification of Chitosan for Applications in Diversified Biomedical Fields. Eur. Polym. J. 2018, 109, 402–434. [Google Scholar] [CrossRef]
- Kato, Y.; Onishi, H.; Machida, Y. Application of Chitin and Chitosan Derivatives in the Pharmaceutical Field. Curr. Pharm. Biotechnol. 2003, 4, 303–309. [Google Scholar] [CrossRef]
- Chopra, L.; Singh Chohan, J.; Sharma, S.; Pelc, M.; Kawala-Sterniuk, A. Multifunctional Modified Chitosan Biopolymers for Dual Applications in Biomedical and Industrial Field: Synthesis and Evaluation of Thermal, Chemical, Morphological, Structural, In Vitro Drug-Release Rate, Swelling and Metal Uptake Studies. Sensors 2022, 22, 3454. [Google Scholar] [CrossRef]
- Aljawish, A.; Chevalot, I.; Jasniewski, J.; Scher, J.; Muniglia, L. Enzymatic Synthesis of Chitosan Derivatives and Their Potential Applications. J. Mol. Catal. B Enzym. 2015, 112, 25–39. [Google Scholar] [CrossRef]
- Xue, C.; Wilson, L.D. An Overview of the Design of Chitosan-Based Fiber Composite Materials. J. Compos. Sci. 2021, 5, 160. [Google Scholar] [CrossRef]
- Kozma, M.; Acharya, B.; Bissessur, R. Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers 2022, 14, 3989. [Google Scholar] [CrossRef]
- Kadouche, S.; Farhat, M.; Lounici, H.; Fiallo, M.; Sharrock, P.; Mecherri, M.; Hadioui, M. Low Cost Chitosan Biopolymer for Environmental Use Made from Abundant Shrimp Wastes. Waste Biomass Valor 2017, 8, 401–406. [Google Scholar] [CrossRef]
- de Menezes, F.L.; Andrade Neto, D.M.; Rodrigues, M.D.L.L.; Lima, H.L.S.; Paiva, D.V.M.; da Silva, M.A.S.; Fechine, L.M.U.D.; Sombra, A.S.B.; Freire, R.M.; Denardin, J.C.; et al. From Magneto-Dielectric Biocomposite Films to Microstrip Antenna Devices. J. Compos. Sci. 2020, 4, 144. [Google Scholar] [CrossRef]
- Kou, S.G.; Peters, L.M.; Mucalo, M.R. Chitosan: A Review of Sources and Preparation Methods. Int. J. Biol. Macromol. 2021, 169, 85–94. [Google Scholar] [CrossRef]
- El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. Extraction, Chemical Modification and Characterization of Chitin and Chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.; Izzah, Z.; Jawaid, M.; Hassan, A. Effect of Degree of Deacetylation of Chitosan on Thermal Stability and Compatibility of Chitosan-Polyamide Blend. BioResources 2012, 7, 5568–5580. [Google Scholar] [CrossRef]
- Seda Tığlı, R.; Karakeçili, A.; Gümüşderelioğlu, M. In Vitro Characterization of Chitosan Scaffolds: Influence of Composition and Deacetylation Degree. J. Mater. Sci. Mater. Med. 2007, 18, 1665–1674. [Google Scholar] [CrossRef]
- Foster, L.J.R.; Ho, S.; Hook, J.; Basuki, M.; Marçal, H. Chitosan as a Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties. PLoS ONE 2015, 10, e0135153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, L.D.; Dickwella Widanage, M.C.; Penfield, J.; Lipton, A.S.; Washton, N.; Latgé, J.-P.; Wang, P.; Zhang, L.; Wang, T. Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Front. Mol. Biosci. 2021, 8, 727053. [Google Scholar] [CrossRef]
- Saito, H.; Tabeta, R.; Ogawa, K. High-Resolution Solid-State Carbon-13 NMR Study of Chitosan and Its Salts with Acids: Conformational Characterization of Polymorphs and Helical Structures as Viewed from the Conformation-Dependent Carbon-13 Chemical Shifts. Macromolecules 1987, 20, 2424–2430. [Google Scholar] [CrossRef]
- Ogawa, K.; Yui, T.; Okuyama, K. Three D Structures of Chitosan. Int. J. Biol. Macromol. 2004, 34, 1–8. [Google Scholar] [CrossRef]
- Kasaai, M.R. Bio-Nano-Composites Containing at Least Two Components, Chitosan and Zein, for Food Packaging Applications: A Review of the Nano-Composites in Comparison with the Conventional Counterparts. Carbohydr. Polym. 2022, 280, 119027. [Google Scholar] [CrossRef] [PubMed]
- Kamal, S.; Rehman, S.; Bibi, I.; Akhter, N.; Amir, R.; Alsanie, W.F.; Iqbal, H.M.N. Graphene Oxide/Chitosan Composites as Novel Support to Provide High Yield and Stable Formulations of Pectinase for Industrial Applications. Int. J. Biol. Macromol. 2022, 220, 683–691. [Google Scholar] [CrossRef]
- Fu, R.; Cheng, B.; Ji, X.; Ren, Y.; Yang, L.; Wang, G.; Fei, P. Research Progress of the Preparation and Application of Cellulose/Chitosan Composite Materials. Cailiao Daobao/Mater. Rev. 2016, 30, 124–129. [Google Scholar]
- Chadha, U.; Bhardwaj, P.; Selvaraj, S.K.; Kumari, K.; Isaac, T.S.; Panjwani, M.; Kulkarni, K.; Mathew, R.M.; Satheesh, A.M.; Pal, A.; et al. Advances in Chitosan Biopolymer Composite Materials: From Bioengineering, Wastewater Treatment to Agricultural Applications. Mater. Res. Express 2022, 9, 052002. [Google Scholar] [CrossRef]
- de Marzo, G.; Mastronardi, V.M.; Algieri, L.; Vergari, F.; Pisano, F.; Fachechi, L.; Marras, S.; Natta, L.; Spagnolo, B.; Brunetti, V.; et al. Sustainable, Flexible, and Biocompatible Enhanced Piezoelectric Chitosan Thin Film for Compliant Piezosensors for Human Health. Adv. Elect. Mater. 2022, 2200069. [Google Scholar] [CrossRef]
- Fernandes, S.C.M.; Freire, C.S.R.; Silvestre, A.J.D.; Pascoal Neto, C.; Gandini, A.; Berglund, L.A.; Salmén, L. Transparent Chitosan Films Reinforced with a High Content of Nanofibrillated Cellulose. Carbohydr. Polym. 2010, 81, 394–401. [Google Scholar] [CrossRef]
- Mohammed, N.S.S.; Harttar, M.A.M.; Ahmad, F. Fabrication of Biopolymer-Based Piezoelectric Thin Film From Chitosan Using Solvent Casting Method. J. Adv. Res. Appl. Sci. Eng. Technol. 2022, 28, 80–89. [Google Scholar] [CrossRef]
- Derraz, M.; Sabani, E.; Ennawaoui, C.; Loualid, E.M.; Laadissi, E.M.; Balhamri, A.; Hajjaji, A.; Azim, A.E. Morphological and Ferroelectric Characterizations of Porous Poly (Ethylene-co-vinyl Acetate) Copolymer Films Prepared by Coextrusion and Pressing Methods for Pseudo-piezoelectric Effect. Mater. Today Proc. 2022, 66, 196–201. [Google Scholar] [CrossRef]
- Zeeshan Soomro, A.M.; Cho, S. Design and Fabrication of a Robust Chitosan/Polyvinyl Alcohol-Based Humidity Sensor Energized by a Piezoelectric Generator. Energies 2022, 15, 7609. [Google Scholar] [CrossRef]
- Anisimov, Y.A.; Cree, D.E.; Wilson, L.D. Preparation of Multicomponent Biocomposites and Characterization of Their Physicochemical and Mechanical Properties. J. Compos. Sci. 2020, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Sabzevari, M.; Cree, D.E.; Wilson, L.D. Gas and Solution Uptake Properties of Graphene Oxide-Based Composite Materials: Organic vs. Inorganic Cross-Linkers. J. Compos. Sci. 2019, 3, 80. [Google Scholar] [CrossRef] [Green Version]
- Ennawaoui, C.; Hajjaji, A.; Samuel, C.; Sabani, E.; Rjafallah, A.; Najihi, I.; Laadissi, E.M.; Loualid, E.M.; Rguiti, M.; Ballouti, A.E.; et al. Piezoelectric and Electromechanical Characteristics of Porous Poly(Ethylene-Co-Vinyl Acetate) Copolymer Films for Smart Sensors and Mechanical Energy Harvesting Applications. Appl. Syst. Innov. 2021, 4, 57. [Google Scholar] [CrossRef]
- Preparation and Solubility in Acid and Water of Partially Deacetylated Chitins|Biomacromolecules. Available online: https://pubs.acs.org/doi/abs/10.1021/bm000036j (accessed on 6 March 2023).
- Govindan, S.; Nivethaa, E.A.K.; Saravanan, R.; Narayanan, V.; Stephen, A. Synthesis and Characterization of Chitosan–Silver Nanocomposite. Appl. Nanosci. 2012, 2, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Prashanth, K.V.H.; Kittur, F.S.; Tharanathan, R.N. Solid State Structure of Chitosan Prepared under Different N-Deacetylating Conditions. Carbohydr. Polym. 2002, 50, 27–33. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, P.; Jin, H.-J.; Kim, J. The Effect of Chitosan Content on the Crystallinity, Thermal Stability, and Mechanical Properties of Bacterial Cellulose—Chitosan Composites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 2225–2230. [Google Scholar] [CrossRef]
- Khan, T.A.; Peh, K.K.; Ch’ng, H.S. Mechanical, Bioadhesive Strength and Biological Evaluations of Chitosan Films for Wound Dressing. J. Pharm. Pharm. Sci. 2000, 3, 303–311. [Google Scholar]
- Gupta, K.C.; Jabrail, F.H. Effects of Degree of Deacetylation and Cross-Linking on Physical Characteristics, Swelling and Release Behavior of Chitosan Microspheres. Carbohydr. Polym. 2006, 66, 43–54. [Google Scholar] [CrossRef]
- Jia-hui, Y.; Yu-min, D.; Hua, Z. Blend films of chitosan-gelatin. Wuhan Univ. J. Nat. Sci. 1999, 4, 476. [Google Scholar] [CrossRef]
- Tolaimate, A.; Desbrières, J.; Rhazi, M.; Alagui, A.; Vincendon, M.; Vottero, P. On the Influence of Deacetylation Process on the Physicochemical Characteristics of Chitosan from Squid Chitin. Polymer 2000, 41, 2463–2469. [Google Scholar] [CrossRef]
- Broussignac, P. Chitosan: A natural polymer not well known by the industry. Chim. Ind. Genie Chim. 1968, 99, 1241–1247. [Google Scholar]
- Muzzarelli, R.A.A. Chitin; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-1-4831-5946-1. [Google Scholar]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An Infrared Investigation in Relation with Chitin and Chitosan Characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnakumar, B.; Sobral, A.J.F.N.; Koh, J. Bio-Based (Chitosan/PVA/ZnO) Nanocomposites Film: Thermally Stable and Photoluminescence Material for Removal of Organic Dye. Carbohydr. Polym. 2019, 205, 559–564. [Google Scholar] [CrossRef]
- Kasai, D.; Chougale, R.; Masti, S.; Chalannavar, R.; Malabadi, R.B.; Gani, R.; Gouripur, G. An Investigation into the Influence of Filler Piper Nigrum Leaves Extract on Physicochemical and Antimicrobial Properties of Chitosan/Poly (Vinyl Alcohol) Blend Films. J. Polym. Environ. 2019, 27, 472–488. [Google Scholar] [CrossRef]
- Pan, Q.; Zhou, C.; Yang, Z.; Wang, C.; He, Z.; Liu, Y.; Song, S.; Chen, Y.; Xie, M.; Li, P. Preparation and Characterization of Functionalized Chitosan/Polyvinyl Alcohol Composite Films Incorporated with Cinnamon Essential Oil as an Active Packaging Material. Int. J. Biol. Macromol. 2023, 235, 123914. [Google Scholar] [CrossRef] [PubMed]
- Sarasam, A.; Madihally, S.V. Characterization of Chitosan–Polycaprolactone Blends for Tissue Engineering Applications. Biomaterials 2005, 26, 5500–5508. [Google Scholar] [CrossRef] [PubMed]
- Wiles, J.L.; Vergano, P.J.; Barron, F.H.; Bunn, J.M.; Testin, R.F. Water Vapor Transmission Rates and Sorption Behavior of Chitosan Films. J. Food Sci. 2000, 65, 1175–1179. [Google Scholar] [CrossRef]
Wavenumber cm−1 | Functional Group |
---|---|
500–900 | Structure sensitive region |
1028 | Stretching of the C-O-C of the glycosidic in ring |
1089 | Stretching of -OH |
895 and 1153 | Glycosidic bend |
1254 | Distortion vibration of -O-H |
1423 | Symmetrical deformation of -CH3 and -CH2 |
1557 | Amide II |
1652 | Amide I |
523.741 and 1652 | Chitin identification |
2880 and 2923 | Elongation of -CH and -CH2 |
3105 | Intermolecular hydrogen bending (2) NH……. O=C (7) |
3246 | Intermolecular hydrogen bending C(6)-OH…HO-C(6) |
3100–3500 | Elongation of -NH and -OH, including hydrogen bonds |
Titration Method | DD % |
---|---|
Conductometric titration (basic) | 76 |
Conductometric titration (acid) | 77 |
pH titration pH second derivative | 77 |
Infrared spectroscopy | 78 |
Average | 77 |
Molecular weight (KDa) | 700 |
Deacetylation degree (%) | 77 |
Intrinsic viscosity (cps) | 30 |
Tensile strength (MPa) | 43.9 |
Elongation at break (%) | 3.14 |
Thermal degradation temperature (°C) | 320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derraz, M.; Elouahli, A.; Ennawaoui, C.; Ben Achour, M.A.; Rjafallah, A.; Laadissi, E.M.; Khallok, H.; Hatim, Z.; Hajjaji, A. Extraction and Physicochemical Characterization of an Environmentally Friendly Biopolymer: Chitosan for Composite Matrix Application. J. Compos. Sci. 2023, 7, 260. https://doi.org/10.3390/jcs7060260
Derraz M, Elouahli A, Ennawaoui C, Ben Achour MA, Rjafallah A, Laadissi EM, Khallok H, Hatim Z, Hajjaji A. Extraction and Physicochemical Characterization of an Environmentally Friendly Biopolymer: Chitosan for Composite Matrix Application. Journal of Composites Science. 2023; 7(6):260. https://doi.org/10.3390/jcs7060260
Chicago/Turabian StyleDerraz, Meryiem, Abdelaziz Elouahli, Chouaib Ennawaoui, Mohamed Aymen Ben Achour, Abdelkader Rjafallah, El Mehdi Laadissi, Hamza Khallok, Zineb Hatim, and Abdelowahed Hajjaji. 2023. "Extraction and Physicochemical Characterization of an Environmentally Friendly Biopolymer: Chitosan for Composite Matrix Application" Journal of Composites Science 7, no. 6: 260. https://doi.org/10.3390/jcs7060260
APA StyleDerraz, M., Elouahli, A., Ennawaoui, C., Ben Achour, M. A., Rjafallah, A., Laadissi, E. M., Khallok, H., Hatim, Z., & Hajjaji, A. (2023). Extraction and Physicochemical Characterization of an Environmentally Friendly Biopolymer: Chitosan for Composite Matrix Application. Journal of Composites Science, 7(6), 260. https://doi.org/10.3390/jcs7060260