Gelatin-Based Hydrogels Containing Microcrystalline and Nanocrystalline Cellulose as Moisture Absorbers for Food Packaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cellulose Microcrystalline Isolation
Cellulose Yield (%)
2.3. Hydrogel Development
2.4. Hydrogel Characterization
2.4.1. Thickness
2.4.2. Morphology
2.4.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.4. Moisture Content
2.4.5. Swelling Test
2.4.6. Color
2.4.7. Gloss
2.4.8. Mechanical Test
2.5. Application of Hydrogels in the Preservation of Chicken Breast
2.5.1. Chicken Breast Samples
2.5.2. Weight Loss (%)
2.5.3. Color
2.5.4. pH
2.6. Statistical analysis
3. Results and Discussion
3.1. Morphology
3.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.3. Moisture Content and Swelling
3.4. Color and Gloss
3.5. Mechanical Properties of Hydrogels
3.6. Application of Hydrogels in the Preservation of Fresh Chicken Breast
3.6.1. Weight Loss (%)
3.6.2. Color
3.6.3. pH
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganeson, K.; Kothandaraman, G.; Bhubalan, K.; Razali, M.; Jazmín, R.; Sowmiya, S.; Abdalá, A.A.; Vigneswari, S.; Ramakrishna, S. Smart packaging—A pragmatic solution to approach sustainable food waste management. Food Packag. Shelf Life 2023, 36, 101044. [Google Scholar] [CrossRef]
- Cárdenas-Alcaide, M.F.; Godínez-Alemán, J.A.; González-González, R.B.; Iqbal, H.M.; Parra-Saldívar, R. Environmental impact and mitigation of micro(nano)plastics pollution using green catalytic tools and green analytical methods. Green Chem. 2022, 3, 100031. [Google Scholar] [CrossRef]
- Wang, S. International law-making process of combating plastic pollution: Status Quo, debates and prospects. Mar. Policy 2023, 147, 105376. [Google Scholar] [CrossRef]
- Leslie, H.; Van-Velzen, M.; Brandsma, S.; Vethaak, A.; Garcia-Vallejo, J.; Lamoree, M. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- United Nations Environment Program (UNEP). Available online: https://www.unep.org/es/resources/informe/plasticos-de-un-solo-uso-una-hoja-de-ruta-para-la-sostenibilidad. (accessed on 15 November 2022).
- Noticias ONU. 2021. Available online: https://news.un.org/es/story/2021/03/1490302 (accessed on 15 November 2022).
- Sunday, E.; Obinwanne, C.; Okokon, E.; Ekeng, R.; Nyaruaba, R.; Linda, C.; Donald, O. Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Resour. Conserv. Recycl. 2022, 177, 105961. [Google Scholar]
- Yin, Y.; Weston, K.; Suratman, S. The effect of storage conditions and washing on microplastic release from food and drink containers. Food Packag. Shelf Life 2022, 32, 100826. [Google Scholar]
- Jadhav, E.; Singh, M.; Ahmad, R.; Bhagat, D. Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100608. [Google Scholar] [CrossRef]
- Jiand, Z.; Ngai, T. Recent Advances in Chemically Modified Cellulose and Its Derivatives for Food Packaging Applications: A Review. Polymers 2022, 14, 1533. [Google Scholar]
- Singh, N.; Agarwal, S.; Jain, A.; Khan, S. 3-Dimensional cross linked hydrophilic polymeric network “hydrogels”: An agriculture boom. Agric. Water Manag. 2021, 253, 106939. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Roy, P.; Bonilla-Petriciolet, A.; Badawi, M.; Ganachari, S.V.; Shetti, N.P.; Aminabhavi, T.M. Polymeric hydrogels-based materials for wastewater treatment. Chemosphere 2023, 36, 138743. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, S.; Xia, X.; Tan, M.; Lv, Y.; Cheng, Y.; Tao, Y.; Lu, J.; Du, J.; Wang, H. High-performance carboxymethyl cellulose-based hydrogel film for food packaging and preservation system. Int. J. Biol. Macromol. 2022, 223, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Wang, Y. Recent applications of regenerated cellulose films and hydrogels in food packaging. Curr. Opin. 2022, 43, 7–17. [Google Scholar] [CrossRef]
- El Bourakadi, K.; Qaiss, A.; Bouhfid, R. Chapter 13—Sustainable hydrogels in food packaging systems. In Sustainable Hydrogels Synthesis, Properties, and Applications, 1st ed.; Sabu, T., Bhasha, S., Purnima, J., Shashank, S., Eds.; Matthew Deans: Oxford, UK, 2023; Volume 1, pp. 355–374. [Google Scholar]
- Rather, J.A.; Akhter, N.; Ashraf, Q.S.; Mir, S.A.; Makroo, H.A.; Majid, D.; Barba, F.J.; Khaneghah, A.M.; Dar, B.N. A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packag. Shelf Life 2022, 34, 100945. [Google Scholar] [CrossRef]
- Chen, L.; Qiang, T.; Ren, W.; Tian, Q.; Zhang, X.; Zhang, H.J. Strong, water-repellent, and recyclable gelatin-based bioplastic film as sustainable express packaging film. J. Clean. Prod. 2023, 385, 135705. [Google Scholar] [CrossRef]
- Lin, L.; Mei, C.; Shi, C.; Li, C.; Abdel-Samie, M.A.; Cui, H. Preparation and characterization of gelatin active packaging film loaded with eugenol nanoparticles and its application in chicken preservation. Food Biosci. 2023, 53, 102778. [Google Scholar] [CrossRef]
- Yadav, M.P.; Kale, M.S.; Hicks, K.B.; Hanah, K. Isolation, characterization and the functional properties of cellulosic arabinoxylan fiber isolated from agricultural processing by-products, agricultural residues and energy crops. Food Hydrocoll. 2017, 63, 545–551. [Google Scholar] [CrossRef]
- Freixo, R.; Casanova, F.; Ribeiro, A.B.; Pereira, C.F.; Costa, E.M.; Pintado, M.E.; Ramos, Ó.L. Extraction methods and characterization of cellulose fractions from a sugarcane by-product for potential industry applications. Ind. Crops Prod. 2023, 197, 116615. [Google Scholar] [CrossRef]
- Liu, A.; Wu, H.; Naeem, A.; Du, Q.; Ni, B.; Liu, H.; Li, Z.; Ming, L. Cellulose nanocrystalline from biomass wastes: An overview of extraction, functionalization and applications in drug delivery. Int. J. Biol. Macromol. 2023, 241, 124557. [Google Scholar] [CrossRef]
- Ren, H.; Xu, Z.; Gao, M.; Xing, X.; Ling, Z.; Pan, L.; Tian, Y.; Zheng, Y.; Fan, W.; Yang, W. Preparation of microcrystalline cellulose from agricultural residues and their application as polylactic acid/microcrystalline cellulose composite films for the preservation of Lanzhou lily. Int. J. Biol. Macromol. 2023, 227, 827–838. [Google Scholar] [CrossRef]
- Bangar, S.P.; Esua, O.J.; Nickhil, C.; Whiteside, W.S. Microcrystalline cellulose for active food packaging applications: A review. Food Packag. Shelf Life. 2023, 36, 101048. [Google Scholar] [CrossRef]
- Kian, L.K.; Saba, N.; Jawaid, M.; Alothman, O.Y.; Fouad, H. Properties and characteristics of nanocrystalline cellulose isolated from olive fiber. Carbohydr. Polym. 2020, 241, 116423. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, R.; Wang, D.; Sun, Z.; Liu, F.; Zhang, D.; Wang, D. Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken. Food Hydrocoll. 2022, 127, 107546. [Google Scholar] [CrossRef]
- Alessandroni, L.; Caprioli, G.; Faiella, F.; Fiorini, D.; Galli, R.; Huang, X.; Marinelli, G.; Nzekoue, F.; Ricciutelli, M.; Scortichini, S.; et al. A shelf-life study for the evaluation of a new biopackaging to preserve the quality of organic chicken meat. Food Chem. 2022, 371, 131134. [Google Scholar] [CrossRef] [PubMed]
- Mai, X.; Zhang, X.; Wang, W.; Zheng, Y.; Wang, D.; Xu, W.; Liu, F.; Sun, Z. Novel PVA/carboxylated cellulose antimicrobial hydrogel grafted with curcumin and ε-polylysine for chilled chicken preservation. Food Chem. 2023, 424, 136345. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Yang, Y.; Liu, R.; Liu, X.; Ma, J.; Wu, M.; Wang, S. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym. 2020, 249, 116831. [Google Scholar] [CrossRef]
- Nadhirah, N.; Jai, J. Response surface methodology for optimization of cellulose extraction from banana stem using NaOH-EDTA for pulp and papermaking. Heliyon 2022, 8, e09114. [Google Scholar]
- Sukmawana, R.; Kusmono; Perdana, A.; Hetalesi, L. The effect of repeated alkali pretreatments on the morphological characteristics of cellulose from oil palm empty fruit bunch fiber-reinforced epoxy adhesive composite. Int. J. Adhes Adhes 2022, 114, 103095. [Google Scholar] [CrossRef]
- Yin, S.; Ahmad, I.; Mohd, C. Effect of cellulose nanocrystals content and ph on swelling behaviour of gelatin based hidrogel. Sains Malays. 2015, 44, 793–799. [Google Scholar]
- Ganguly, S.; Mondal, S.; Das, P.; Bhawal, P.; Maity, P.; Ghosh, S.; Dhara, S.; Das, N. Design of psyllium-g-poly (acrylic acid-co-sodium acrylate)/cloisite 10A semi-IPN nanocomposite hydrogel and its mechanical, rheological and controlled drug release behaviour. Int. J. Biol. Macromol. 2018, 111, 983–998. [Google Scholar] [CrossRef] [PubMed]
- ASTM. Standard Test Method for Moisture Content of Paper and Paperboard by Oven Drying (Withdrawn 2010). 2007. Available online: https://www.astm.org/standards/d644 (accessed on 7 June 2023).
- Song, Z.; Ma, T.; Zhi, X.; Du, B. Cellulosic films reinforced by chitosan-citric complex for meat preservation: Influence of nonenzymatic browning. Carbohydr. Polym. 2021, 272, 118476. [Google Scholar] [CrossRef]
- Dai, L.; Xi, L.; Li, X.; Li, W.; Du, Y.; Lv, Y.; Wang, W.; Ni, Y. Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydr. Polym. 2021, 271, 118425. [Google Scholar] [CrossRef] [PubMed]
- ASTM. Standard Test Method for Specular Gloss. 1999. Available online: https://www.astm.org/d0523-89r99.html (accessed on 7 June 2023).
- ASTM. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. 2001. Available online: https://www.astm.org/d0882-02.html (accessed on 7 June 2023).
- Cui, H.; Wang, Y.; Li, C.; Chen, X.; Lin, L. Antibacterial efficacy of Satureja montana L. essential oil encapsulated in methyl-β-cyclodextrin/soy soluble polysaccharide hydrogel and its assessment as meat preservative. LWT 2021, 152, 112427. [Google Scholar] [CrossRef]
- Pirsa, S. Nanocomposite base on carboxymethylcellulose hydrogel: Simultaneous absorbent of ethylene and humidity to increase the shelf life of banana fruit. Int. J. Biol. Macromol. 2021, 1, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, X.; Long, Z.; Wang, S.; Zhang, J.; Wang, L. Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. Int. J. Biol. Macromol. 2020, 165, 2295–2302. [Google Scholar] [CrossRef]
- Boughriba, S.; Souissi, N.; Nasri, R.; Nasri, M.; Li, S. pH sensitive composite hydrogels based on gelatin and reinforced with cellulose microcrystals: In depth physicochemical and microstructural analyses for controlled release of vitamin B2. Mater. Today Commun. 2021, 27, 102334. [Google Scholar] [CrossRef]
- Favatela, F.; Horst, M.F.; Bracone, M.; Gonzalez, J.; Alvarez, V.; Lassalle, V. Gelatin/Cellulose nanowhiskers hydrogels intended for the administration of drugs in dental treatments: Study of lidocaine as model case. J. Drug Deliv. Sci. Technol. 2021, 61, 101886. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Prieto, C.; Pardo-Figuerez, M.; Cabedo, L.; Lagaron, J. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. Nanomaterials 2023, 13, 823. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Lopez, K.J.; Enescu, D.; Torres-Giner, S.; Cabedo, L.; Cerqueira, M.A.; Pastrana, L.; Fuciños, P.; Lagaron, J.M. Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocoll. 2020, 108, 106013. [Google Scholar] [CrossRef]
- Yin, S.; Ahmad, I.; Mohd, C. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind. Crops Prod. 2016, 93, 227–234. [Google Scholar]
- Ventura-Cruz, S.; Tecanteb, A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices. Food Hydrocoll. 2021, 118, 106771. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, Y.; He, X.; Qin, Y.; Dai, L.; Ji, N.; Xiong, L.; Sun, Q. Efficient preparation of cellulose nanocrystals with a high yield through simultaneous acidolysis with a heat–moisture treatment. Food Chem. 2022, 391, 133285. [Google Scholar] [CrossRef] [PubMed]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr. Polym. 2018, 191, 205–215. [Google Scholar] [CrossRef] [PubMed]
- El Achaby, M.; El Miri, N.; Aboulkas, A.; Zahouily, M.; Bilal, E.; Barakat, A.; Solhy, A. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int. J. Biol. Macromol. 2017, 96, 340–352. [Google Scholar] [CrossRef]
- Andrade, R.; Perez, P.; Siqueira, J.; Machado, M.; Cerqueria, M.; Teixeira, J.; Cordeiro, J. Hydrogel as an alternative structure for food packaging systems. Carbohydr. Polym. 2019, 205, 106–116. [Google Scholar]
- Wu, Y.; Li, C. A double-layer smart film based on gellan gum/modified anthocyanin and sodium carboxymethyl cellulose/starch/Nisin for application in chicken breast. Int. J. Biol. Macromol. 2023, 232, 123464. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liao, X.; Cui, H. Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat. Food Packag. Shelf Life 2019, 21, 100337. [Google Scholar] [CrossRef]
Sample | Gelatin | MCC | NCC | Glycerol | Glutaraldehyde |
---|---|---|---|---|---|
F1 | 0.847 | 0 | 0 | 0.127 | 0.025 |
F2 | 0.830 | 0.021 | 0 | 0.124 | 0.025 |
F3 | 0.813 | 0.041 | 0 | 0.122 | 0.024 |
F4 | 0.830 | 0 | 0.021 | 0.124 | 0.025 |
F5 | 0.813 | 0 | 0.041 | 0.122 | 0.024 |
Sample | W1 (g) | W2 (g) | W3 (g) | Absorbed Water (%) | Moisture Content (%) | Swelling (%) |
---|---|---|---|---|---|---|
F1 | 0.53 ± 0.07 | 0.47 ± 0.06 | 2.23 ± 0.30 | 1.769 | 12.522 | 375.912 |
F2 | 0.44 ± 0.03 | 0.39 ± 0.03 | 1.71 ± 0.14 | 1.319 | 12.252 | 334.435 |
F3 | 0.39 ± 0.02 | 0.35 ± 0.02 | 1.40 ± 0.13 | 1.056 | 11.611 | 300.950 |
F4 | 0.42 ± 0.06 | 0.37 ± 0.05 | 1.68 ± 0.28 | 1.316 | 12.104 | 354.122 |
F5 | 0.48 ± 0.09 | 0.42 ± 0.08 | 1.66 ± 0.32 | 1.237 | 11.979 | 291.847 |
Sample | L* | a* | b* | c* | h* | ΔE* | Gloss (GU) |
---|---|---|---|---|---|---|---|
F1 | 78.84 ± 3.38 | 8.67 ± 2.54 | 44.09 ± 7.84 | 44.94 ± 8.20 | 79.01 ± 1.16 | 0 | 94.8 ± 3.89 |
F2 | 78.88 ± 0.49 | 7.25 ± 0.70 | 39.24 ± 2.54 | 39.90 ± 2.63 | 79.54 ± 0.32 | 5.047 | 75.6 ± 4.92 |
F3 | 74.91 ± 1.43 | 11.88 ± 1.21 | 50.44 ± 2.54 | 51.82 ± 2.74 | 76.76 ± 0.65 | 8.140 | 78.6 ± 7.23 |
F4 | 76.27 ± 2.89 | 10.36 ± 2.46 | 48.31 ± 6.98 | 49.42 ± 7.34 | 77.99 ± 1.17 | 5.226 | 97.8 ± 1.78 |
F5 | 78.25 ± 2.61 | 7.41 ± 1.24 | 40.93 ± 5.91 | 41.6 ± 6.03 | 79.75 ± 0.31 | 3.445 | 71.4 ± 7.76 |
Sample | Thickness (µm) | TS (MPa) | EM (MPa) | E (%) |
---|---|---|---|---|
F1 | 352 ± 7 b | 22.2 ± 0.8 a | 350 ± 5 a | 93.0 ± 2.0 a |
F2 | 326 ± 5 a | 26.2 ± 0.9 b | 361 ± 7 b | 90.6 ± 1.2 a |
F3 | 335 ± 6 a | 28.3 ± 1.0 b | 366 ± 3 b | 86.0 ± 2.0 b |
F4 | 363 ± 8 b | 42.2 ± 2.1 c | 420 ± 8 c | 83.0 ± 2.0 c |
F5 | 337 ± 5 a | 46.1 ± 0.9 d | 435 ± 4 d | 79.2 ± 1.3 d |
Sample | Total Weight Loss (g) | Initial Weight Loss (%) | Weight Gain of Hydrogel (g) |
---|---|---|---|
Control | 26.996 | 54.47 | --- |
F1 | 33.240 | 67.52 | 6.141 |
F3 | 33.489 | 66.77 | 5.913 |
F5 | 33.152 | 65.52 | 6.281 |
Sample | Day | L* | a* | b* | c* | h* | ΔE* |
---|---|---|---|---|---|---|---|
Control | 0 | 52.71 ± 3.11 | −0.4 ± 1.30 | 4.12 ± 0.68 | 4.34 ± 0.59 | 95.18 ± 18.66 | 0 |
1 | 52.95 ± 1.92 | −1.3 ± 1.89 | 4.69 ± 0.42 | 5.15 ± 0.84 | 103.70 ± 19.82 | 1.120 | |
2 | 53.80 ± 1.61 | −2.0 ± 1.62 | 4.18 ± 0.97 | 4.87 ± 1.11 | 114.30 ± 18.16 | 1.953 | |
3 | 51.35 ± 2.63 | −5.2 ± 2.87 | 4.48 ± 0.73 | 7.06 ± 2.56 | 135.70 ± 13.10 | 5.050 | |
4 | 51.21 ± 1.52 | −7.4 ± 1.96 | 5.06 ± 1.15 | 9.09 ± 1.72 | 144.90 ± 9.17 | 7.224 | |
F1 | 0 | 54.21 ± 0.92 | 0.28 ± 1.33 | 5.59 ± 0.43 | 5.73 ± 0.50 | 87.32 ± 12.78 | 0 |
1 | 51.16 ± 1.84 | −0.40 ± 1.31 | 5.90 ± 0.96 | 6.06 ± 0.84 | 95.45 ± 13.72 | 3.163 | |
2 | 51.19 ± 2.15 | −1.80 ± 1.93 | 5.56 ± 1.41 | 6.17 ± 1.31 | 109.7 ± 18.57 | 3.717 | |
3 | 50.41 ± 1.87 | −3.40 ± 2.90 | 5.10 ± 1.17 | 6.72 ± 1.29 | 130.2 ± 7.42 | 5.344 | |
4 | 52.45 ± 2.11 | −4.40 ± 1.15 | 5.05 ± 1.07 | 6.85 ± 0.58 | 131.3 ± 12.40 | 5.059 | |
F3 | 0 | 52.35 ± 2.60 | 0.75 ± 1.10 | 4.51 ± 0.70 | 4.70 ± 0.68 | 80.15 ± 14.05 | 0 |
1 | 50.83 ± 1.71 | −1.50 ± 0.67 | 5.73 ± 1.26 | 5.98 ± 1.16 | 105.70 ± 8.07 | 2.992 | |
2 | 49.40 ± 1.77 | −1.60 ± 1.70 | 5.46 ± 1.09 | 5.96 ± 0.94 | 107.40 ± 17.50 | 3.937 | |
3 | 50.69 ± 1.90 | −2.70 ± 1.31 | 5.46 ± 1.12 | 6.24 ± 0.98 | 116.40 ± 13.20 | 3.950 | |
4 | 50.57 ± 1.93 | −3.30 ± 1.23 | 4.98 ± 1.07 | 6.10 ± 1.00 | 112.50 ± 39.47 | 4.453 | |
F5 | 0 | 49.93 ± 2.59 | −1.50 ± 0.98 | 5.09 ± 0.91 | 5.41 ± 0.85 | 107.20 ± 11.32 | 0 |
1 | 48.58 ± 3.57 | −1.70 ± 1.62 | 6.09 ± 1.12 | 6.51 ± 1.27 | 105.50 ± 13.57 | 1.697 | |
2 | 49.04 ± 4.15 | −1.80 ± 2.83 | 5.49 ± 1.07 | 6.37 ± 1.12 | 114.80 ± 18.03 | 1.021 | |
3 | 48.3 ± 2.31 | −3.20 ± 0.71 | 6.04 ± 1.07 | 6.96 ± 0.85 | 118.60 ± 8.56 | 2.535 | |
4 | 49.74 ± 2.35 | −2.80 ± 0.90 | 5.50 ± 0.53 | 6.29 ± 0.37 | 117.80 ± 8.60 | 1.391 |
Sample | Day 0 | Day 1 | Day 2 | Day 3 | Day 4 |
---|---|---|---|---|---|
Control | 6.00 | 6.10 | 6.21 | 6.30 | 6.44 |
F1 | 5.97 | 6.06 | 6.03 | 5.99 | 6.00 |
F3 | 6.03 | 6.07 | 6.03 | 6.02 | 6.00 |
F5 | 6.20 | 6.05 | 6.10 | 6.12 | 6.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acevedo-Puello, V.; Figueroa-López, K.J.; Ortega-Toro, R. Gelatin-Based Hydrogels Containing Microcrystalline and Nanocrystalline Cellulose as Moisture Absorbers for Food Packaging Applications. J. Compos. Sci. 2023, 7, 337. https://doi.org/10.3390/jcs7080337
Acevedo-Puello V, Figueroa-López KJ, Ortega-Toro R. Gelatin-Based Hydrogels Containing Microcrystalline and Nanocrystalline Cellulose as Moisture Absorbers for Food Packaging Applications. Journal of Composites Science. 2023; 7(8):337. https://doi.org/10.3390/jcs7080337
Chicago/Turabian StyleAcevedo-Puello, Vanessa, Kelly J. Figueroa-López, and Rodrigo Ortega-Toro. 2023. "Gelatin-Based Hydrogels Containing Microcrystalline and Nanocrystalline Cellulose as Moisture Absorbers for Food Packaging Applications" Journal of Composites Science 7, no. 8: 337. https://doi.org/10.3390/jcs7080337
APA StyleAcevedo-Puello, V., Figueroa-López, K. J., & Ortega-Toro, R. (2023). Gelatin-Based Hydrogels Containing Microcrystalline and Nanocrystalline Cellulose as Moisture Absorbers for Food Packaging Applications. Journal of Composites Science, 7(8), 337. https://doi.org/10.3390/jcs7080337