Film Properties of Pectin Obtained from Various Fruits’ (Lemon, Pomelo, Pitaya) Peels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Pectin
2.3. The Determination of the Degree of Esterification (DE) of Pectin
2.4. The Monosaccharide Composition of Peel Pectin
2.5. The Antioxidant Activities of Pectin
2.6. The Preparation of the Films Based on Prepared Pectin
2.7. The Thickness and Color of Pectin Films
2.8. The Moisture Contents of Pectin Films
2.9. The Opacity of Pectin Films
2.10. Water Vapor Permeability (WVP) of Films
2.11. Mechanical Properties of Films
2.12. Morphological Analysis of Films using Scanning Electron Microscopy (SEM)
2.13. The Fourier Transform Infrared (FTIR) Spectroscopy of Films
2.14. Statistical Analysis
3. Results
3.1. The Yield and DE of Pectin
3.2. The Monosaccharide Composition of Peel Pectin
3.3. The Antioxidant Capacities of Peel Pectin
3.4. The Color and Opacity of Peel Pectin Films
3.5. The Thickness, Moisture Contents, and WVP of Peel Pectin Films
3.6. The Mechanical Properties of Peel Pectin Films
3.7. SEM Analysis of Peel Pectin Films
3.8. FITR Analysis of Pectin Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Alavi, F.; Chen, L. Complexation of nanofibrillated egg white protein and low methoxy pectin improves microstructure, stability, and rheology of oil-in-water emulsions. Food Hydrocoll. 2022, 124, 107262. [Google Scholar] [CrossRef]
- Nastasi, J.R.; Kontogiorgos, V.; Daygon, V.D.; Fitzgerald, M.A. Pectin based films and coatings with plant extracts as natural preservatives: A systematic review. Trends Food Sci. Technol. 2022, 120, 193–211. [Google Scholar] [CrossRef]
- Cao, T.L.; Song, K.B. Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll. 2019, 97, 105198. [Google Scholar] [CrossRef]
- Rodrigues, A.A.M.; Santos, L.F.D.; Costa, R.R.D.; Félix, D.T.; Nascimento, J.H.B.; Lima, M.A.C.D. Characterization of starch from different non-traditional sources and its application as coating in ‘Palmer’ mango fruit. Cienc. e Agrotecnol. 2020, 44, e011220. [Google Scholar] [CrossRef]
- Nawab, A.; Alam, F.; Hasnain, A. Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum lycopersicum) fruit. Int. J. Biol. Macromol. 2017, 103, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Song, K.B. Antioxidant activities of mandarin (Citrus unshiu) peel pectin films containing sage (Salvia officinalis) leaf extract. Int. J. Biol. Macromol. 2020, 55, 3173–3181. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Lime peel pectin integrated with coconut water and lime peel extract as a new bioactive film sachet to retard soybean oil oxidation. Food Hydrocoll. 2019, 97, 105173. [Google Scholar] [CrossRef]
- Liew, S.Q.; Ngoh, G.C.; Yusoff, R.; Teoh, W.H. Sequential ultrasound microwave-assisted acid extraction (UMAE) of pectin from pomelo peels. Int. J. Biol. Macromol. 2016, 93, 426–435. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Pu, Y.; Chen, L.; Cao, J.; Jiang, W. Development and characterization of a novel active and intelligent film based on pectin and betacyanins from peel waste of pitaya (Hylocereus undatus). Food Chem. 2023, 404, 134444. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Cao, J.; Jiang, W. Effect of purple sugarcane peel extracts on properties of films based on lemon peel waste pectin and the application in the visible detection of food freshness. Food Hydrocoll. 2022, 133, 107982. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Jiang, W. Effects of purple passion fruit peel extracts on characteristics of Pouteria campechiana seed starch films and the application in discernible detection of shrimp freshness. Food Hydrocoll. 2023, 138, 108477. [Google Scholar] [CrossRef]
- Tongkham, N.; Juntasalay, B.; Lasunon, P.; Sengkhamparn, N. Dragon fruit peel pectin: Microwave-assisted extraction and fuzzy assessment. Agric. Nat. Resour. 2017, 51, 262–267. [Google Scholar] [CrossRef]
- Zaid, R.M.; Mishra, P.; Noredyani, A.S.; Tabassum, S.; Ab Wahid, Z.; Sakinah, A.M. Proximate characteristics and statistical optimization of ultrasound-assisted extraction of high-methoxyl-pectin from Hylocereus polyrhizus peels. Food Bioprod. Process. 2020, 123, 134–149. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef]
- Rahmati, S.; Abdullah, A.; Kang, O.L. Effects of different microwave intensity on the extraction yield and physicochemical properties of pectin from dragon fruit (Hylocereus polyrhizus) peels. Bioact. Carbohydr. Diet. Fibre 2019, 18, 100186. [Google Scholar] [CrossRef]
- Dao, T.A.T.; Webb, H.K.; Malherbe, F. Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocoll. 2021, 113, 106475. [Google Scholar]
- Rahmani, Z.; Khodaiyan, F.; Kazemi, M.; Sharifan, A. Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. Int. J. Biol. Macromol. 2020, 147, 1107–1115. [Google Scholar] [CrossRef]
- Wandee, Y.; Uttapap, D.; Mischnick, P. Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocoll. 2019, 87, 237–244. [Google Scholar] [CrossRef]
- Muhammad, K.; Zahari, N.I.M.; Gannasin, S.P.; Adzahan, N.M.; Bakar, J. High methoxyl pectin from dragon fruit (Hylocereus polyrhizus) peel. Food Hydrocoll. 2014, 42, 289–297. [Google Scholar] [CrossRef]
- Zaid, R.M.; Mishra, P.; Tabassum, S.; Ab Wahid, Z.; Sakinah, A.M. High methoxyl pectin extracts from Hylocereus polyrhizus’s peels: Extraction kinetics and thermodynamic studies. Int. J. Biol. Macromol. 2019, 141, 1147–1157. [Google Scholar] [CrossRef]
- Han, H.S.; Song, K.B. Antioxidant properties of watermelon (Citrullus lanatus) rind pectin films containing kiwifruit (Actinidia chinensis) peel extract and their application as chicken thigh packaging. Food Packag. Shelf Life 2021, 28, 100636. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Xu, Y.; Cao, J.; Jiang, W. Properties of pectin-based films from white-fleshed pitaya (Hylocereus undatus) peel waste as affected by montmorillonite. Food Packag. Shelf Life 2021, 34, 100952. [Google Scholar] [CrossRef]
- Sood, A.; Saini, C.S. Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocoll. 2022, 123, 107135. [Google Scholar] [CrossRef]
- Sood, A.; Saini, C.S. Utilization of peel of white pomelo for the development of pectin based biodegradable composite films blended with casein and egg albumen. Food Chem. Adv. 2022, 1, 100054. [Google Scholar] [CrossRef]
- Rojas-Lema, S.; Nilsson, K.; Trifol, J.; Langton, M.; Gomez-Caturla, J.; Balart, R.; Garcia-Garcia, D.; Moriana, R. Faba bean protein films reinforced with cellulose nanocrystals as edible food packaging material. Food Hydrocoll. 2021, 121, 107019. [Google Scholar] [CrossRef]
- Baron, R.D.; Pérez, L.L.; Salcedo, J.M.; Córdoba, L.P.; do Amaral Sobral, P.J. Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from orange (Citrus sinensis Osbeck) peel. Int. J. Biol. Macromol. 2017, 98, 676–683. [Google Scholar] [CrossRef]
- Guo, Z.; Ge, X.; Li, W.; Yang, L.; Han, L.; Yu, Q.L. Active intelligent film based on pectin from watermelon peel containing beetroot extract to monitor the freshness of packaged chilled beef. Food Hydrocoll. 2021, 119, 106751. [Google Scholar] [CrossRef]
- Shivangi, S.; Dorairaj, D.; Negi, P.S.; Shetty, N.P. Development and characterization of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll. 2021, 121, 107046. [Google Scholar] [CrossRef]
PPP | LPP | WPPP | |
---|---|---|---|
Yield (%) | 13.70 ± 0.51 b | 9.35 ± 0.44 c | 20.88 ± 0.74 a |
DE (%) | 55.87 ± 0.34 a | 55.10 ± 0.58 a | 46.06 ± 0.37 b |
Monosaccharide composition (%) | |||
Fucose | 0.03 ± 0.01 b | 0.03 ± 0.01 b | 0.12 ± 0.04 a |
Rhamnose | 2.40 ± 0.00 b | 2.09 ± 0.05 b | 21.11 ± 0.37 a |
Arabinose | 19.35 ± 0.89 a | 19.77 ± 2.33 a | 5.36 ± 0.19 b |
Galactose | 25.86 ± 0.94 a | 11.40 ± 0.75 c | 14.78 ± 0.34 b |
Glucose | 15.09 ± 0.29 b | 18.8 ± 0.89 a | 7.52 ± 0.11 c |
Mannose | 2.14 ± 0.19 a | 2.52 ± 0.52 a | 2.8 ± 0.35 a |
Galacturonic acid | 33.12 ± 1.82 b | 44.27 ± 4.28 a | 47.10 ± 0.69 a |
Glucuronic acid | 1.35 ± 0.01 a | 1.12 ± 0.15 a | 1.22 ± 0.04 a |
Film | a* | b* | ΔE* | WI | Opacity (A. mm−1) |
---|---|---|---|---|---|
PPP | −0.90 ± 0.05 b | 10.92 ± 0.38 a | 8.11 ± 0.36 b | 84.11 ± 0.32 b | 2.44 ± 0.16 c |
LPP | −1.3 ± 0.17 b | 9.23 ± 0.40 b | 6.46 ± 0.39 c | 85.57 ± 0.39 a | 3.21 ± 0.03 b |
WPPP | 2.63 ± 0.66 a | 11.24 ± 0.74 a | 9.79 ± 0.72 a | 81.13 ± 0.70 c | 11.66 ± 0.34 a |
Film | Thickness (μm) | MC (%) | WVP (10−8 g·m−1·s−1·Pa−1) | TS (MPa) | EB (%) |
---|---|---|---|---|---|
PPP | 52.26 ± 1.34 a | 20.81 ± 0.36 a | 16.65 ± 0.30 a | 22.25 ± 1.52 b | 6.48 ± 0.82 b |
LPP | 49.57 ± 1.52 b | 18.53 ± 0.68 b | 16.26 ± 1.35 a | 31.26 ± 2.3 a | 5.71 ± 0.62 b |
WPPP | 53.76 ± 1.71 a | 18.50 ± 0.22 b | 16.47 ± 1.06 a | 32.4 ± 1.65 a | 10.95 ± 1.51 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhang, W.; Khan, M.R.; Ahmad, N.; Rhim, J.-W.; Jiang, W.; Roy, S. Film Properties of Pectin Obtained from Various Fruits’ (Lemon, Pomelo, Pitaya) Peels. J. Compos. Sci. 2023, 7, 366. https://doi.org/10.3390/jcs7090366
Jiang H, Zhang W, Khan MR, Ahmad N, Rhim J-W, Jiang W, Roy S. Film Properties of Pectin Obtained from Various Fruits’ (Lemon, Pomelo, Pitaya) Peels. Journal of Composites Science. 2023; 7(9):366. https://doi.org/10.3390/jcs7090366
Chicago/Turabian StyleJiang, Haitao, Wanli Zhang, Mohammad Rizwan Khan, Naushad Ahmad, Jong-Whan Rhim, Weibo Jiang, and Swarup Roy. 2023. "Film Properties of Pectin Obtained from Various Fruits’ (Lemon, Pomelo, Pitaya) Peels" Journal of Composites Science 7, no. 9: 366. https://doi.org/10.3390/jcs7090366
APA StyleJiang, H., Zhang, W., Khan, M. R., Ahmad, N., Rhim, J. -W., Jiang, W., & Roy, S. (2023). Film Properties of Pectin Obtained from Various Fruits’ (Lemon, Pomelo, Pitaya) Peels. Journal of Composites Science, 7(9), 366. https://doi.org/10.3390/jcs7090366