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Abstract: In this paper, the influence of the different clamping zones of a web on the vibration
of I-shaped composite beams is discussed. This current study is divided into two steps. In the
first step, according to the different clamping spacings, through vibration simulation analysis, the
optimal clamping spacing was selected. In the second step, the optimal new fixture was designed
by means of different clamping positions and shapes. The analysis also reveals that a reduction in
the clamping space does not contribute to a reduction in vibration. A newly selected fixture was
designed based on the results that were delivered by the finite element model analysis of the L
fixture in the upper and lower. Based on static analysis, the improved fixture was able to significantly
reduce displacement, stress, and strain compared with the original one. By using dynamic analysis,
modes, the frequency response, and random analyses, we found that the improved fixture could
enhance the natural frequencies of the structure and reduce vibration displacement and acceleration
during manufacturing. From the 2000 Hz sweep, the peak values of the power spectral density of
displacement and acceleration went down by about 100 and 10 times, respectively.

Keywords: I-shaped composite beam; fixture; mode analysis; vibration analysis; random vibration
analysis

1. Introduction

Manufacturing is the major pillar of the national economy and occupies an important
position in the economic growth of both developed and developing countries. With increas-
ing market competition and increasing attention to social and environmental protection
issues, governments, enterprises, and users around the world prioritize high-efficiency,
eco-friendly, and low-cost manufacturing.

Composite thin-walled parts have been widely used in many fields due to their
advantages, such as lightweight, high specific strength, relatively high specific stiffness,
and low machining tolerance. However, these materials are difficult to machine due to their
poor rigidity and large vibration amplitude and deformation, often limiting the machining
quality. Given their importance and extensive application, the vibration deformation of
thin-walled composites in processing has always been a concern. There has been a lot
of effort to find solutions to overcome these problems, with many ideas and solutions
proposed and implemented in practice.

Under actual practice, the preparation cycle of the equipment for the process accounts
for about half of the total and about 70% of the time spent during the process of fixture
design, which is an element that significantly affects the design process. The fixture quality
also greatly affects the product process.

In more recent years, with regard to fixture design, some studies show the use of
direct static analysis in conjunction with modal analysis. Other research presents the use of
optimization methods in designing fixtures, while others propose new methods including
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intelligent tools for fixture design. Additionally, engineers have come forward with online
health monitoring for fixtures.

Prajwal Shenoy et al. [1] investigated the behavior and analyzed a split fixture un-
der varying static loading conditions. They considered the effect of dynamic loads on
the split fixture, including auxiliary assembly components in design analysis. Olabanji
Olayinka et al. [2] proposed a detailed design of the parts of the fixture. The stress and
displacement analysis of the parts were performed using Solid Works to express simulation.
The parameters of the hydraulic components were evaluated from force requirements, and
the hydraulic system was physically modeled using MATLAB Simscape hydraulics.

Amaral N.R. et al. [3] used ANSYS parametric design language (APDL) code to de-
velop an algorithm to automatically optimize fixture support, clamping locations, and
clamping forces with the scope to minimize workpiece deformation, subsequently increas-
ing machining accuracy. Khan A. et al. [4] used the ANSYS parametric design language
optimization tool to automatically identify locator and clamp positions that yielded the
minimum workpiece deformation. YanFeng Xing [5] showed that a proposed optimiza-
tion algorithm suitably generated the optimal fixture layout with excellent efficiency for
engineering applications. Xing Yanfeng et al. [6] proposed a new method to optimize the
fixture scheme by a non-domination sorting social radiation algorithm (NSSRA). Zoppi
Matteo et al. [7] concluded that the optimization procedure for the fixture layout combined
with a genetic algorithm and a finite element analysis yielded good output results for the
simulation in a case study.

Andrew Illidge and Glen Bright [8] proved in a selected condition that a fixture known
as an automated flexible fixture system (AFFS) could be designed to meet all set require-
ments. Vijaya Ramnath Elanchezhian et al. [9] developed a milling fixture and its clamping
setup for a vertical milling machine in which friction stir welding operations were per-
formed. Zhipeng Liang et al. [10] proposed a novel fixture configuration scheme providing
a new approach for automatic up and down machining of the long ladder shaft gear.
Kuigang Yu et al. [11] proposed a design method of the flexible fixture system for specific
automotive body parts, which contained a structure and locating control algorithm design
of compliant fixtures. Aiming at providing an effective mechanism for the representation,
organization, and reuse of fixture design knowledge, F. P. Zhang et al. [12] proposed an
intelligent methodology for fixture design based on knowledge component technology.

Denkena Berend et al. [13] introduced a sensory workpiece clamping system that uti-
lized sensory swing clamps. The device was developed in prior research work in order to
provide monitoring capabilities for the cutting forces. They took up the experimental anal-
ysis of the multiple integrated sensors of the sensory swing clamp and the characterization
of their measuring capability toward different measures.

The above review indicates that the fixture is the principal part of the process equip-
ment, which is indispensable in the fabrication process. It is also in the machining process
to fix parts of a process device, whose role is to ensure that parts in the processing project
have the correct and accurate position. The main functions of the fixture are as follows:

1. Provide processing quality;
2. Improve productivity and reduce cost;
3. Expand the scope of machining.

According to the power source of the clamping device, a fixture can be classified as a
manual fixture, pneumatic fixture, hydraulic fixture, electromagnetic fixture, etc. As the
object of interest is the large-scale thin-walled composite I-shaped beam, such geometry
could be easily deformed before and after processing. In order to ensure processing
stability, improve productivity and reduce labor effort, the parts’ holders in this paper
use a pneumatic fixture. The following principles should be followed when the fixture is
designed:

1. The clamping of the fixture must be stable and reliable;
2. The fixture must be of good operability;
3. The fixture must deliver sufficient holding strength and stiffness;
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4. The fixture design must be reasonably economical while meeting the requirements of
sufficient strength and rigidity.

Static and dynamic structural assessment by use of finite element analysis is typical in
fixture design to examine the deformation and stress distribution of workpieces, fixtures or
the major stressed parts of the fixture. Generally speaking, the workflow of fixture design
is illustrated in Figure 1.
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Figure 1. The flow chart of fixture design.

This paper focuses on the third and fourth steps of the exhaustive introduction. At
present, in the processing of an I-shaped beam, the induced vibration is relatively large,
which may cause defects in the processing parts. To improve the stiffness of the machined
parts, we propose a reduction in the distance between the fixtures on the webs to increase
the rigidity. Three distances, 0.2 m, 0.3 m, and 0.4 m are considered for the clamping spacing.
After comparison and analysis, we optimally choose the 0.4 m clamping distance. Through
the static and dynamic analysis using finite element models of the different clamping
locations and modes and under actual working conditions, the natural frequency, stress,
deformation, and vibration response during machining are analyzed, and the coherence of
the design along with the response characteristics of the key parts are checked. This paper
proposes a novel processing fixture, which changes the clamping pattern and position of
the I-shaped beam but reduces its vibration and tool wear.
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2. Design of the Fixture with Different Spacing
2.1. The Finite Element Model

In the finite element model, the workpiece’s boundary condition and the loaded model
with the discrete spacing of clamping in the machining process are established. According
to the current machining scenario, the I-beam is clamped on the web as illustrated on the
left side of Figure 2. The cross-sectional view of the right side is also shown in Figure 2.
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Figure 2. The illustration of the present approach in clamping on the web.

The workpiece is 1.5 m long. The clamping position is identified as a constraint of
the web in the model. The meshing dimension is 2 mm X 2 mm. There are 42,750 2-D
elements and 43,558 nodes. The dynamic model of the original fixture clamping spacing
model (Case 1) is shown in Figure 3.
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A finite element dynamic analysis model (Case 2) is established by using a reduced
clamping distance of 0.3 m, as shown in Figure 4.
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The above models’ material parameters are given in Table 1.

Table 1. The material properties table.

Mechanics
Properties

E1
(GPa)

E2
(GPa)

E3
(GPa)

G12
(GPa)

G13
(GPa)

G23
(GPa) v12 v13 v23

Parameters 169 4.49 4.49 1.628 1.628 0.5435 0.33 0.33 0.45

Flange and web laminations are presented in Figure 5 and Table 2 below.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 6 of 38 
 

 

Table 1. The material properties table. 

Mechanics 
Properties 

E1 

(GPa) 
E2 

(GPa) 
E3 

(GPa) 
G12 

(GPa) 
G13 

(GPa) 
G23 

(GPa) 
𝒗𝟏𝟐 𝒗𝟏𝟑 𝒗𝟐𝟑 

Parameters 169 4.49 4.49 1.628 1.628 0.5435 0.33 0.33 0.45 

Flange and web laminations are presented in Figure 5 and Table 2 below.  

 
Figure 5. The cross-section of the I-shaped beam. 

Table 2. Lamination information of the I-shaped beam. 

Items Parameters 
Lamination, ° (t1) [+45/−45/0/0/0/−45/0/0/0/+45] 
Thickness, mm (t1) 1.85 
Web lamination, ° (2×t2) [+45/−45/0/0/−45/0/0/+45]s 
Thickness, mm (2*t2) 2.96 
Flange lamination, ° (t2) [+45/−45/0/0/−45/0/0/+45] 
Flange thickness, mm (t2) 1.48 
Reinforcement area, °  [±45] 
Flange thickness, mm (t3) 0.37 
L1, mm 13 
L2, mm 23 
L3, mm 23 
H, mm 30 
H(total), mm 35.18 

2.2. Analysis Principle  
In this paper, the vibration of the I-shaped beam is analyzed under various dynam-

ic conditions (Case 1 and Case 2). 

2.2.1. Modal Analysis 
Modal analysis is one of the most thoughtful methods that enables the study of the 

dynamic performance of structures. The modal characteristics include the natural fre-
quency and modal shape. Modal analysis is not merely the basis of the structural dy-
namic design, vibration control, and fault diagnosis but also is an effective way to study 
various structural vibrations. The equation of motion for a multi-degree-of-freedom sys-
tem without constraints is illustrated below [14]: 

Figure 5. The cross-section of the I-shaped beam.



J. Compos. Sci. 2023, 7, 369 6 of 36

Table 2. Lamination information of the I-shaped beam.

Items Parameters

Lamination, ◦ (t1) [+45/−45/0/0/0/−45/0/0/0/+45]
Thickness, mm (t1) 1.85
Web lamination, ◦ (2 × t2) [+45/−45/0/0/−45/0/0/+45]
Thickness, mm (2 × t2) 2.96
Flange lamination, ◦ (t2) [+45/−45/0/0/−45/0/0/+45]
Flange thickness, mm (t2) 1.48
Reinforcement area, ◦ [±45]
Flange thickness, mm (t3) 0.37
L1, mm 13
L2, mm 23
L3, mm 23
H, mm 30
H(total), mm 35.18

2.2. Analysis Principle

In this paper, the vibration of the I-shaped beam is analyzed under various dynamic
conditions (Case 1 and Case 2).

2.2.1. Modal Analysis

Modal analysis is one of the most thoughtful methods that enables the study of
the dynamic performance of structures. The modal characteristics include the natural
frequency and modal shape. Modal analysis is not merely the basis of the structural
dynamic design, vibration control, and fault diagnosis but also is an effective way to study
various structural vibrations. The equation of motion for a multi-degree-of-freedom system
without constraints is illustrated below [14]:

[M]
{ ..

u
}
+ [K]{u} = 0 (1)

where M represents the mass matrix, and K is the stiffness matrix.

2.2.2. Frequency Response Analysis

Frequency response analysis is a method that looks at the dynamic response of struc-
tures under steady-state excitation. It is usually employed to understand the dynamic
response of a forced vibration excitation system. By frequency response analysis, the
excitation varies with the frequency. There are two classical types of frequency response
analysis methods: direct methods and modal methods. The direct method requires the
integration of the frequency response function directly in the physical space, while the
modal method requires obtaining the frequency response function by the linear superpo-
sition of the modes in the modal space. Compared with the direct method, the modal
frequency response calculation requires less memory, exhibits higher efficiency, and makes
the obtained response curve over frequency smoother and more accurate.

In the frequency domain of the finite element discrete system, the general form of the
dynamic equation is shown in Equation (2) [14]:(

−ω2M + iωB + K
)

U(ω) = F(ω) (2)

In the formula, M is the mass matrix, B is the damping matrix, and K is the stiff-
ness matrix of the n-degree-of-freedom system. In direct frequency response analysis,
Equation (3) [14] is solved for a coupled multi-degree-of-freedom system. However, in
modal frequency response analysis, it is transformed to modal coordinates and solved by
uncoupled one-degree-of-freedom equations.(

−ω2mi + iωbi + ki

)
ui(ω) = fi(ω) (3)
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In the formula, mi are the modal masses, bi are the modal damping values, and ki are
the transformed single-degree-of-freedom modal stiffnesses.

2.2.3. Random Response Analysis

Aircraft structures under non-stationary random excitation generate a dynamic re-
sponse affected by a large number of factors. The random vibration component tends to
increase or decrease under different flight statuses and frequency ranges. Random vibration
is a kind of uncertain and irregular vibration, which cannot be expressed or described
by deterministic time and space functions but only by statistical probability distributions.
Founded on the theory of random process and the method of frequency domain analysis,
the dynamic response of structures under random vibration excitation is described by the
power spectral density (PSD) function.

The PSD function of the acceleration response in the region where the damage failure
occurs can be given in Equation (4) [14]:

G(f) = W(f)H2( f ) (4)

In the formula, H(f) is the frequency response vector, and W(f) is the power spectral
density function (PSD) with the input random acceleration. The n-order spectral moment
of inertia of the PSD function is described in Equation (5) [14]:

Jn =
∫ ∞

0
f nG( f )d f (5)

When n = 0, J0 can be given as the area of the lower region surrounded by the PSD
curve. Thus, the RMS (root mean square) value of the stochastic process can be achieved as
in Equation (6) [14]:

RMS =
√

J0 (6)

2.3. Dynamic Analysis Results

The results of the dynamic analysis provide information on the performance of the
system subjected to vibration excitation.

As the scope of the paper is to identify the best possible location of the clamping
elements used during cutting, we need to look at the frequency response of the system
when the clamping points are at different locations. Dissimilar results of strain and stress
will reveal the existence of the best possible positions of the clamping points for the
machining part. Hence, the following analysis will investigate the 1st to 10th mode shapes
of the beam. The cutting tool’s rotation speed is 5000 r/min. The natural frequency is
around 83.3344 Hz.

2.3.1. Modal Analysis Results

In the modal analysis of MSC.NASTRAN SOL103, Case 1’s frequency and vibration
modes are shown in Figures 6–15 for a beam with an I cross-section.

In the modal analysis of MSC.NASTRAN SOL103, Case 2’s frequency and vibration
modes are shown in Figures 16–25.

From Figures 6–25, Case 1 and Case 2 present the same intrinsic modal vibration
pattern. The frequencies under 1000 Hz in Case 2 are significantly higher than those of Case
1. However, Case 1 has some frequencies higher than those of Case 2 when the frequency is
higher than 1000 Hz. The lowest frequency of Case 1 is 546.63 Hz, while that of Case 2 is
848.19 Hz, which are considerably higher (about 7- and 10-times higher) than the natural
frequency of 83.33 Hz of the cutting tool. See Table 3 for comparison values of frequencies.
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Table 3. Comparison frequencies of Case 1 vs. Case 2.

Cases Case 1 (Hz) Case 2 (Hz) Differences (%)

1st mode 546.63 848.19 ↑ 55.16711
2nd mode 628.59 901.99 ↑ 43.49417
3rd mode 704.81 914.97 ↑ 29.81797
4th mode 733.71 926.52 ↑ 26.27877
5th mode 794.12 934.12 ↑ 17.62958
6th mode 811.84 1016.9 ↑ 25.25867
7th mode 942.03 1068.8 ↑ 13.45711
8th mode 1073.7 1093.3 ↑ 1.825463
9th mode 1214.4 1101.1 ↓ 9.32971

10th mode 1319.9 1232.7 ↓ 6.60656

2.3.2. Results of Frequency Response Analysis

An equal 1-unit impact sine load is applied to the upper flange of the I-shaped beam
with different spacing of the fixture. MSC.NASTRAN SOL111 is utilized to solve these
dynamic models (See Figures 3 and 4). The results are shown in Figures 26–37.
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The displacement and acceleration at the same frequency with different spacing
fixtures are shown in Table 4. Based on Case 1, the result data are normalized.

Table 4. Comparison of the displacement and acceleration of the workpiece.

Cases Displacement (m) Acceleration (m/s2) Frequency (Hz)

Case 1 1.0 1.0
83.3344Case 2 0.9927 0.9947

Case 1 1.0 1.0
875.0017Case 2 1.0247 1.0255

According to the dynamic responses of Case 1 and Case 2, the vibration displacement
and acceleration of Case 1 are slightly higher than those of Case 2 at the frequency of 83.33
Hz. The peak frequency of the vibration displacement and acceleration of Case 1 and Case
2 is about 870 Hz, while the max values of the vibration displacement and acceleration of
Case 2 are slightly larger than those of Case 1. The results show that a reduction in the
fixed distance (Case 2) cannot reduce the vibration of the workpiece.

2.3.3. Random Response Analysis Results

After the frequency response analysis of Case 1 and Case 2, white noise is implemented
to analyze the random response. Figures 38–41 show the consequences of this analysis.
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Figure 38. PSD response along y-axis displacement of the typical node in Case 1.

From the 2000 Hz frequency’s sweep, one could find that the PSD peak of the vibration
displacement and acceleration (about 83 Hz) in Case 1 is almost the same as that of Case
2’s vibration displacement and acceleration. At the higher frequency of 870 Hz, the max
PSD of the displacement and acceleration of Case 2 is slightly higher than that of Case 1. It
is explained again that shortening the clamping space of the fixture has little or no effect to
restrain the vibration.
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2.3.4. Discussion

From the above two dynamic analyses of the different clamping spacings of the fixture,
although at a low frequency (<1000 Hz) the natural frequency of the workpiece can be
increased in Case 2, in the high frequency range, the natural frequency of the system goes
down compared with that of Case 1. From the frequency response analysis, the change in
the fixture spacing in Case 2 does not reduce the vibration displacement and its acceleration,
but it leads to an increase in the peak value of the PSD of the displacement and acceleration
in the higher frequency.

As discussed in Section 2, it is not practicable to reduce the vibration of the workpiece
during machining by shortening the holding distance at the clamping points. After some
studies [15], the weak vibration position of the I-shaped beam is on the up flange of the
1/4, 1/2, and 3/4 I-shaped beam and the junction between the flange and the web. This
demonstrates that weak vibration parts are related to the location and space of the fixture.
At the same time, if we decrease the holding distance to 0.2 m, then two fixtures are not
placed, so 0.4 m of the holding distance is chosen for the fixture.

3. The Proposed Fixture Design

Therefore, the newly designed fixture changes the holding location, which is shown in
Figure 42. The profile model of the new fixture is shown in Figure 43. The design of the
new fixture is based on static and dynamic analysis. Model materials and laminations are
shown in Table 2 and Figure 5.
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3.1. The Analysis Model
3.1.1. The Static Model

We have several similar beams which have different lengths, and the longest beam
for the statics check here is relatively conservative. The longest workpiece is 5.8 m long,
the clamping position is defined as the constraint in the model, the spacing is 0.4 m, and
100 g overload is applied at the center of gravity of the I-shaped beam according to the
monitoring of the highest load during the machining process. The meshing dimension
is 4 mm × 4 mm. The original fixture finite element model is presented in Figure 44
(Case 3). There are 42,395 nodes and 40,927 2-D elements. The finite element model shown
in Figure 45 is developed based on the machining charts shown in Figures 42 and 43.
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3.1.2. The Dynamic Model

According to processing Figures 42 and 43, the dynamic analysis model (Case 5) of the
finite element model (Figure 46) with a length of 1.5 mm is established for comparing Case 1.
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3.2. The Analysis Principle

The highest overloading capacity of the I-shaped beam is analyzed through static
analysis under different clamping conditions (Case 3 and Case 4).

3.2.1. The Principle of Static Analysis

The static equilibrium equation is as follows:

[K]{x} = {F} (7)

K is the total stiffness matrix, x is the displacement vector, and F is the load vector. In
the static state, the resultant force and moment are zero.

∑ F = 0 (8)
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∑ M = 0 (9)

where M is the moment about three axes of the global coordinate system.

3.2.2. The Principle of Dynamic Analysis

Please see Sections 2.2.1–2.2.3.

3.3. Results

The results presented below include those of the static and the dynamic analyses.

3.3.1. Results for Statics

In MSC.NASTRAN SOL101, it is calculated and analyzed by 100 g (g is the gravita-
tional acceleration) overload. The displacement, stress, and strain of the workpiece in Case
3 and the reaction forces on the fixture are presented in Figures 47–50.
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Figure 50. The reaction force on the fixture in Case 3.

In MSC.NASTRAN SOL101, it is calculated and analyzed by 100 g overload. The
displacement, stress, and strain of the workpiece in Case 4 and the reaction forces on the
fixture are shown in Figures 51–54.
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Figure 52. Stress distribution in Case 4.

From Figures 47–49 and Figures 51–53, it can be observed that the displacement, stress,
and strain of the improved fixture are much lower than those of the original fixture under
the maximum load. From Figures 50 and 54, it is possible to extract the reaction load of the
clamp for checking the strength of the fixture. See Table 5 for a comparison.
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Figure 53. Strain distribution in Case 4.
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Table 5. Comparison of the static results of the fixture before and after modification.

Cases Case 3 Case 4 Difference (%)

Displacement (mm) 1.2 1.06 ↓ 13.21
Stress (MPa) 55.6 50.4 ↓ 10.32

Strain (×10−6) 378 288 ↓ 31.25

3.3.2. Dynamic Analysis Results

1. Modal analysis results

In the modal analysis of MSC.NASTRAN SOL103, Case 5’s frequency and vibration
modes are shown in Figures 55–64.
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Figure 56. 2nd mode.

From Figures 55–64, Case 1 and Case 5 have the same natural mode shapes, and the
model of Case 5 has a higher frequency than that of Case 1. The lowest frequency of Case
1 is 546.63 Hz and that of Case 5 is 891.33 Hz, which are much higher than the natural
frequency of 83.33 Hz of the cutting tool. See Table 6 for a comparison of the natural
frequencies.
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Table 6. Comparison of the natural frequencies in Case 1 and Case 5.

Cases Case 1 (Hz) Case 5 (Hz) Difference (%)

1st mode 546.63 891.33 ↑ 63.05910762
2nd mode 628.59 927.18 ↑ 47.50155109
3rd mode 704.81 964.44 ↑ 36.83687802
4th mode 733.71 1103.9 ↑ 50.45453926
5th mode 794.12 1245.3 ↑ 56.81509092
6th mode 811.84 1436.5 ↑ 76.94373276
7th mode 942.03 1443.9 ↑ 53.2753734
8th mode 1073.7 1472.4 ↑ 37.13327745
9th mode 1214.4 1489.6 ↑ 22.66139657

10th mode 1319.9 1506.7 ↑ 14.15258732

2. Results of Frequency Response Analysis

An equal 1-unit impact sine load is applied to the upper flange of the I-shaped beam
with the improved fixture. MSC.NASTRAN SOL111 is used to solve this dynamic model
(See Figure 46). The results are shown in Figures 65–70.
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According to the dynamic responses of Case 1 and Case 5, the vibration displacement
and acceleration of Case 1 are higher than those of Case 5 at the natural vibration frequency
of 83.33 Hz. The peak values of the vibration displacement and vibration acceleration of
Case 1 occur at about 870 Hz, while those of the vibration displacement and vibration
acceleration of Case 5 occur at about 1500 Hz. The max vibration displacement and
vibration acceleration of Case 1 are much higher than those of Case 5, whose displacement
is reduced to 1/8 and acceleration is reduced to 1/3.

3. Random Response Analysis Results

After frequency response analysis of Case 5, white noise is implemented to analyze
the random response. Figures 71 and 72 show the results.
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According to the 2000 Hz frequency’s sweep, the vibration displacement and accelera-
tion’s PSD of Case 1 at about 870 Hz are much larger than those of Case 5 at about 1500 Hz.
The displacement of Case 5 is two orders of magnitude smaller than that of Case 1. The
acceleration of Case 5 is one order of magnitude smaller than that of Case 1.
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3.4. Discussion

According to the static and dynamic analysis of the above two different clamping
patterns, the improved “L” clamping mode of Case 4 can reduce the bending moment produced
by the cutting force of the tool. In particular, the cutting load can be directly transmitted to the
fixed upper and lower junctions, so that the load transfer is simple and direct.

According to the static analysis, the displacement, stress, and strain of the improved
fixture decreased greatly under 100 g overload, which are decreased by 13.21%, 10.32%,
and 31.25%, respectively. The static simulation can serve to extract the load at the fixture
and check the strength of the fixture in the future.

From the modal analysis, the improved fixture increases the natural frequency of
the structure (most of the frequencies increased by 50%). From the frequency response
analysis, the improved fixture significantly reduces the vibration displacement by 7/8 and
the acceleration by 2/3 when the workpiece is machined. The improved fixture reduces the
peak PSDs of the displacement and acceleration of the workpiece by two and one orders of
magnitude, respectively.

According to the model analyses of the new and old clamping modes and positions,
whether static or dynamic analysis, the load-bearing capacity and vibration reduction effect
of the new fixture are better than those of the old one.

4. Conclusions

In this paper, the influence of changes in the clamping approach, including the distance
and clamping mode of the fixture, on the vibration of the workpiece is discussed.

Through the contrast analysis of three kinds of clamping distances, we choose the
optimal clamping distance of 0.4 m. The simulation analysis also shows that shortening
the clamping distance does not significantly reduce the vibration of the workpiece, and
therefore, one should actively seek other ways to reduce the vibration of the workpiece
processing, such as not changing the clamping distance but changing the clamping mode
and position.

According to the static and dynamic analyses of the models of new and old clamping
modes and positions, we also select the new fixture as the final design.

The work and results in this paper support the fixture proofing and also lay a founda-
tion for the smooth production of the beam machining. The results presented in this paper
may be relevant to the machining of similar thin-walled elongated beams.
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