Laboratory Investigation of the Dynamic Response of a Prestressed Composite Steel Cylindrical Tank Subjected to Horizontal Loading
Abstract
:1. Introduction
2. Materials and Methods
№ | Name | Dimensions (mm) | Number, pcs. |
---|---|---|---|
1 | Tube 60 mm × 30 mm × 2.0 mm | 1140 | 4 |
2 | Tube 60 mm × 30 mm × 2.0 mm | 657 | 4 |
3 | Tube 20 mm × 20 mm × 1.2 mm | 1274 | 4 |
4 | Plane 80 mm × 80 mm | S = 6 mm | 4 |
5 | Plane 80 mm × 80 mm | S = 6 mm | 4 |
6 | Plane 220 mm × 180 mm | S = 8 mm | 1 |
- −
- The specimen diameter, height, and thickness;
- −
- The span, angle, and tensile force of the coil thread; the diameter of the coil wire strand;
- −
- The vibration frequency, horizontal displacements, and time of vibration.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimizu, N. Advances and Trends in Seismic Design of Cylindrical Liquid Storage Tanks. JSME 1990, 2, 111–124. Available online: https://www.academia.edu/56068593/Advances_and_trends_in_seismic_design_of_cylindrical_liquid_storage_tanks (accessed on 28 April 2023). [CrossRef]
- Zhangabay, N.; Suleimenov, U.; Utelbayeva, A.; Buganova, S. Experimental research of the stress-strain state of prestressed cylindrical shells taking into account temperature effects. Case Stud. Constr. Mater. 2022, 18, e01776. [Google Scholar] [CrossRef]
- Haroun, M.A.; Mourad, S.A.; Izzeddine, W. Performance of liquid storage tanks during the 1989 Loma Prieta earthquake. Proc. Lifeline Earthq. Eng. 1991, 1152–1160. Available online: https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0074227 (accessed on 26 April 2023).
- Shigapov, R.; Kovalchuk, A. Review of characteristic accidents of vertical cylindrical tanks as a result of earthquakes. Seism. Constr. Build. Saf. 2018, 1, 14–19. Available online: https://inform.seismoconstruction.ru/articles/obzor_kharakternykh_avariy_vertikalnykh_tsilindricheskikh_rezervuarov_v_rezultate_zemletryaseniy/ (accessed on 30 April 2023).
- Marwan, M.; Muthana, M.; Al-Jumialya, A.; Al-Muhammadia, A.; Ismaila, S. Development of a New Method for Reducing the Loss of Light Hydrocarbons at Breather Valve of Oil Tanks. Energy Proc. 2017, 141, 471–478. [Google Scholar] [CrossRef]
- Hong, F.; Jiang, L.; Zhuo, Q.; Zhang, F.; Lu, X.; Ma, X.; Hao, J. Types of abnormal high-pressure gas reservoir in foreland basins of China. J. Nat. Gas Geosci. 2018, 3, 191–201. [Google Scholar] [CrossRef]
- Filipov, V.; Prokhorov, V.; Argunov, S.; Buslaeva, I. The technical condition of the tanks for the storage of oil products of Yakutsknefteprodukt association. News Univ. Constn. 1993, 8, 13–16. Available online: https://cyberleninka.ru/article/n/tehnicheskaya-diagnostika-i-otsenka-ekspluatatsionnoy-nadezhnosti-rezervuarov-bolshogo-obema (accessed on 25 April 2023).
- Zhangabay, N.; Sapargaliyeva, B.; Suleimenov, U.; Abshenov, K.; Utelbayeva, A.; Kolesnikov, A.; Baibolov, K.; Fediuk, R.; Arinova, D.; Duissenbekov, B.; et al. Analysis of Stress-Strain State for a Cylindrical Tank Wall Defected Zone. Materials 2022, 15, 5732. [Google Scholar] [CrossRef]
- Fiori, S.R.; Kendall, D.R.; Mulligan, S.B. Rehabilitation of prestressed concrete cylinder pipe—A utility perspective. In Proceedings of the 2001 ASCE Meeting, Houston, TX, USA, 10–13 October 2001; Volume 17. [Google Scholar] [CrossRef]
- Bonopera, M.; Chang, K.-C.; Tullini, N. Vibration of prestressed beams: Experimental and finite-element analysis of post-tensioned thin-walled box-girders. J. Constr. Steel Res. 2023, 205, 107854. [Google Scholar] [CrossRef]
- Bonopera, M.; Liao, W.-C.; Perceka, W. Experimental-theoretical investigation of the short-term vibration response of uncracked prestressed concrete members under long-age conditions. Structures 2022, 35, 260–273. [Google Scholar] [CrossRef]
- Bonopera, M.; Chang, K.-C.; Lin, T.-K.; Tullini, N. Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon. Struct. Eng. Mech. 2021, 77, 1–17. [Google Scholar] [CrossRef]
- Bonopera, M.; Chang, K.-C.; Chen, C.-C.; Sung, Y.-C.; Tullini, N. Prestress force effect on fundamental frequency and de-flection shape of PCI beams. Struct. Eng. Mech. 2018, 3, 255–265. [Google Scholar] [CrossRef]
- Hosseinzadeh, N.; Kazem, H.; Ghahremannejad, M.; Ahmadi, E.; Kazem, N. Comparison of API650-2008 provisions with FEM analyses for seismic assessment of existing steel oil storage tanks. J. Loss Prev. Process Ind. 2013, 4, 666–675. [Google Scholar] [CrossRef]
- Mehretehran, A.; Maleki, S. Seismic response and failure modes of steel silos with isotropic stepped walls: The effect of vertical component of ground motion and comparison of buckling resistances under seismic actions with those under wind or discharge loads. Eng. Fail. Anal. 2021, 120, 105100. [Google Scholar] [CrossRef]
- Korkmaz, K.; Sari, A.; Carhoglu, A. Seismic risk assessment of storage tanks in Turkish industrial facilities. J. Loss Prev. Process Ind. 2011, 4, 314–320. [Google Scholar] [CrossRef]
- Hamdan, F.H. Seismic behavior of cylindrical steel liquid storage tanks. J. Constr. Steel Res. 2000, 3, 307–333. [Google Scholar] [CrossRef]
- Eurocode 8: Design of Structures for Earthquake Resistance. Part 4: Silos, Tanks, and Pipelines. 2006. Available online: https://www.phd.eng.br/wp-content/uploads/2014/12/en.1998.4.2006.pdf (accessed on 25 April 2023).
- Chang, J.; Lin, C. A study of storage tank accidents. J. Loss Prev. Process Ind. 2006, 1, 51–59. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, M.; Liu, Q.; Zhou, Y.; Wang, Z. Experiment and numerical simulation of thin-walled cylindrical containers subjected to lateral impact. J. Constr. Steel Res. 2022, 199, 107591. [Google Scholar] [CrossRef]
- Ansys LS-DYNA. Available online: https://www.ansys.com/products/structures/ansys-ls-dyna (accessed on 10 June 2023).
- Wang, J.; Kusunoki, K. Study on the Flexural Strength of Interior Thick Wall-Thick Slab Joints Subjected to Lateral Force Using Finite-Element Analysis. Buildings 2022, 12, 535. [Google Scholar] [CrossRef]
- Li, Z.; Song, B.; Li, D. Safety Risk Recognition Method Based on Abnormal Scenarios. Buildings 2022, 12, 562. [Google Scholar] [CrossRef]
- Thongchom, C.; Jearsiripongkul, T.; Refahati, N.; Roudgar Saffari, P.; Roodgar Saffari, P.; Sirimontree, S.; Keawsawasvong, S. Sound Transmission Loss of a Honeycomb Sandwich Cylindrical Shell with Functionally Graded Porous Layers. Buildings 2022, 12, 151. [Google Scholar] [CrossRef]
- Idesman, A.; Bhuiyan, A.; Foley, J. Accurate finite element simulation of stresses for stationary dynamic cracks under impact loading. Finite Elem. Anal. Des. 2017, 126, 26–38. [Google Scholar] [CrossRef]
- Altenbach, H.; Breslavsky, D.; Chernobryvko, M.; Senko, A.; Tatarinova, O. Advances in Mechanical and Power Engineering. In Proceedings of the Fast Fracture of Conic Shell under the Action of Belt Explosive International Conference on Advanced Mechanical and Power Engineering, Kharkiv, Ukraine, 18–21 October 2021; pp. 366–376. [Google Scholar] [CrossRef]
- Zeybek, Ö.; Özkılıç, Y. Effects of reinforcing steel tanks with intermediate ring stiffeners on wind buckling during construction. J. Constr. Steel Res. 2023, 203, 107832. [Google Scholar] [CrossRef]
- Sierikova, O.; Strelnikov, E.; Degtyarev, K. Srength Characteristics of Liquid Storage Tanks with Nanocomposites as Reservoir Materials. In Proceedings of the 2022 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 3–7 October 2022; pp. 151–157. [Google Scholar]
- Tursunkululy, T.; Zhangabay, N.; Avramov, K.; Chernobryvko, M.; Suleimenov, U.; Utelbayeva, A.; Duissenbekov, B.; Aikozov, Y.; Dauitbek, B.; Abdimanat, Z. Strength analysis of prestressed vertical cylindrical steel oil tanks under operational and dynamic loads. East.-Eur. J. Enterp. Technol. 2022, 2, 14–21. [Google Scholar] [CrossRef]
- Tursunkululy, T.; Zhangabay, N.; Avramov, K.; Chernobryvko, M.; Suleimenov, U.; Utelbayeva, A. Influence of the parameters of the pre-stressed winding on the oscillations of vertical cylindrical steel oil tanks. East.-Eur. J. Enterp. Technol. 2022, 5, 6–13. [Google Scholar] [CrossRef]
- Tursunkululy, T.; Zhangabay, N.; Suleimenov, U.; Abshenov, K.; Chernobryvko, M.; Utelbayeva, A. Analysis of strength and eigenfrequencies of a steel vertical cylindrical tank without liquid, reinforced by a plain composite thread. Case Stud. Constr. Mater. 2023, 18, e01776. [Google Scholar] [CrossRef]
- Rastgar, M.; Showkati, H. Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection. J. Constr. Steel Res. 2018, 145, 289–299. [Google Scholar] [CrossRef]
- Fan, Y.; Hunt, J.; Wang, Q.; Yin, S.; Li, Y. Water tank modelling of variations in inversion breakup over a circular city. Build. Environ. 2019, 164, 106342. [Google Scholar] [CrossRef]
- Martynenko, G.; Avramov, K.; Martynenko, V.; Chernobryvko, M.; Tonkonozhenko, A.; Kozharin, V. Numerical simulation of warhead transportation. Def. Technol. 2021, 17, 478–494. [Google Scholar] [CrossRef]
- Tursunkululy, T.; Zhangabay, N.; Avramov, K.; Chernobryvko, M.; Kambarov, M.; Abildabekov, A.; Narikov, K.; Azatkulov, O. Oscillation frequencies of the reinforced wall of a steel vertical cylindrical tank for petroleum products depending on winding pre-tension. East.-Eur. J. Enterp. Technol. 2023, 3, 14–25. [Google Scholar] [CrossRef]
- American Petroleum Institute. API Standard 650 Welded Steel Tanks for Oil Storage, 10th ed.; American Petroleum Institute: Washington, DC, USA, 2012; p. 449. Available online: https://vzrk.ru/public/images/api.650.2007.pdf (accessed on 25 April 2023).
- Industry-Specific Construction Standards B.2.2-58.2-94; Reservoirs Vertical Steel for Storage of Oil and Oil Products with Saturated Vapor Pressure Not Higher Than 93.3 kPa. JSC “Institute of Oil Transport”: Kyiv, Ukraine, 1994; p. 98. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=4889 (accessed on 21 April 2023).
- Sanitary Standards of the Republic of Kazakhstan 3.05-24-2004; Instructions for Design, Manufacture and Installation of Vertical Cylindrical Steel Reservoirs for Oil and Oil Products. Astana, Kazakhstan, 2004; p. 78. Available online: https://online.zakon.kz/Document/?doc_id=30056879 (accessed on 11 December 2019).
- Sanitary Rules of the Republic of Kazakhstan EN 1998-4:2006/2012; Seismic Design. Part 4. Bunkers, Reservoirs and Pipelines. Astana, Kazakhstan, 2012. Available online: https://online.zakon.kz/Document/?doc_id=37105813&doc_id2=37807474#activate_doc=2&pos=1;-0.0999908447265625&pos2=3;-100.09999084472656 (accessed on 25 April 2022).
- Safety Regulations 03-605-03; Rules for Construction of Vertical Cylindrical Steel Reservoirs for Oil and Oil Products. Astana, Kazakhstan, 2008; p. 173. Available online: https://ohranatruda.ru/upload/iblock/0cc/4294816744.pdf (accessed on 25 April 2023).
- GOST 16523-70; Thin Sheet. Council of Ministers of the USSR. Available online: https://lador.ru/gost/gost-16523-70.pdf (accessed on 25 April 2023).
- GOST 28033-89; X-ray Fluorescence Analysis Method. Available online: https://internet-law.ru/gosts/gost/38667/ (accessed on 28 April 2023).
- GOST 5663-79; Wire. Available online: https://www.optprommetiz.ru/GOSTI_PDF/gost_5663-79.pdf (accessed on 28 April 2023).
- Dolidze, D.E. Testing Constructions and Structures: Textbook for Universities; USSR; Higher School, 1975; 253p, Available online: https://elima.ru/books/?id=4559 (accessed on 28 April 2023).
- Aronov, R.I. Testing Structures: Textbook for Universities; Higher School, 1974; 1987p, Available online: https://djvu.online/file/55pwPsTF0Amo6 (accessed on 30 April 2023).
- Polyakov, L.P.; Feinburd, V.M. Modeling of Building Structures; Budivelnik: Kyiv, Ukraine, 1975; 160p, Available online: https://search.rsl.ru/ru/record/01007013105 (accessed on 30 April 2023).
- GOST R 50779.21-2004; Rules for Determining and Methods for Calculating Statistical Characteristics from Selected Data. Part 1. Normal Distribution. IPK Publishing of Standards, 2004; 44p. Available online: https://files.stroyinf.ru/Data2/1/4294813/4294813224.pdf (accessed on 30 April 2023).
- Kirnos, D.P. Some Questions of Instrumental Seismology; Publishing House of the Academy of Sciences of the USSR, 1955; 165p, Available online: https://search.rsl.ru/ru/record/01005884033 (accessed on 30 April 2023).
- Aranovich, Z.I. Equipment and Methods of Seismometric Observations in the USSR; Nauka: Moscow, Russia, 1974; 245p, Available online: https://search.rsl.ru/ru/record/01007226613 (accessed on 30 April 2023).
- Patent of the Republic of Kazakhstan for Invention. Method for Increasing the Seismic Stability of Vertical Steel Cylindrical Reservoirs Using a Pre-Tensioned Winding; No. 35915; Patent of the Republic of Kazakhstan for Invention, 2022; Available online: https://qazpatent.kz/ru (accessed on 30 April 2023).
- Patent of the Republic of Kazakhstan for Utility Model. Cylindrical Shell for Storage and Transportation of Liquid and Hydrocarbon Raw Materials; No. 6208; Patent of the Republic of Kazakhstan for Utility Model, 2021; Available online: https://qazpatent.kz/ru (accessed on 30 April 2023).
Name | CE | Fe | C | Mn | Si | Co | Ni | Cr | V | Nb | Cu | Al | Suitable for Steel |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tank (specimen) | 0.087 | 99.476 | 0.006 | 0.398 | 0.015 | - | 0.035 | 0.042 | 0.004 | 0.002 | 0.047 | - | Sv-08AA Sv-08A Sv-08 |
Name | CE | Fe | C | Mn | Si | Co | Ni | Cr | V | Nb | Cu | Al | Suitable for Steel |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wire strand (coil) material | 0.206 | 99.247 | 0.098 | 0.491 | 0.086 | - | 0.038 | 0.095 | 0.003 | 0.022 | 0.057 | - | 10 ps 08 ps St1 ps |
Characteristics | Steel | (MPa) | Hardness, Not Above | ||
---|---|---|---|---|---|
% | |||||
Material of the wire strand Material of the coil and tank specimen | Sv-08 | 310–410 | 24 | 60 | 115 |
Material of the coil and tank specimen | St08ps | 310–410 | 24 | 60 | 115 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), Sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 11.24 | 0.088 | 2.2924 | 2.2089 | 0.0835 | 0.0118 |
2 | 1.0 | 11.89 | 0.083 | 2.4529 | 2.3755 | 0.0774 | 0.0102 |
3 | 1.5 | 12.18 | 0.081 | 2.6246 | 2.5457 | 0.0739 | 0.0091 |
4 | 2.0 | 13.26 | 0.075 | 2.8083 | 2.7377 | 0.0706 | 0.0081 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), Sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 12.92 | 0.076 | 1.5170 | 1.4779 | 0.0391 | 0.0083 |
2 | 1.0 | 14.14 | 0.070 | 1.6231 | 1.5833 | 0.0398 | 0.0079 |
3 | 1.5 | 12.48 | 0.080 | 1.7354 | 1.6944 | 0.0411 | 0.0076 |
4 | 2.0 | 13.58 | 0.072 | 1.8568 | 1.8155 | 0.0413 | 0.0072 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), Sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 12.72 | 0.077 | 1.3247 | 1.2979 | 0.0269 | 0.0065 |
2 | 1.0 | 13.81 | 0.071 | 1.4174 | 1.3912 | 0.0267 | 0.0059 |
3 | 1.5 | 13.98 | 0.076 | 1.5166 | 1.4902 | 0.0264 | 0.0055 |
4 | 2.0 | 13.66 | 0.073 | 1.6227 | 1.5979 | 0.0248 | 0.0049 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), Sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 10.01 | 0.098 | 2.0631 | 1.9798 | 0.0833 | 0.0131 |
2 | 1.0 | 10.34 | 0.096 | 2.2075 | 2.1274 | 0.0801 | 0.0121 |
3 | 1.5 | 11.11 | 0.088 | 2.3620 | 2.2791 | 0.0829 | 0.0113 |
4 | 2.0 | 11.96 | 0.082 | 2.4173 | 2.3479 | 0.0694 | 0.0092 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 10.88 | 0.091 | 1.4259 | 1.3809 | 0.0451 | 0.0102 |
2 | 1.0 | 11.23 | 0.088 | 1.5257 | 1.4801 | 0.0456 | 0.0097 |
3 | 1.5 | 11.64 | 0.085 | 1.6324 | 1.5861 | 0.0463 | 0.0091 |
4 | 2.0 | 12.88 | 0.077 | 1.7140 | 1.6691 | 0.0449 | 0.0084 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), Sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 12.05 | 0.083 | 1.2416 | 1.2093 | 0.0323 | 0.0083 |
2 | 1.0 | 12.08 | 0.082 | 1.3285 | 1.2961 | 0.0324 | 0.0078 |
3 | 1.5 | 13.10 | 0.081 | 1.4582 | 1.4263 | 0.0319 | 0.0072 |
4 | 2.0 | 13.17 | 0.076 | 1.5067 | 1.4748 | 0.0318 | 0.0068 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), Sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 9.08 | 0.110 | 1.8774 | 1.7899 | 0.0875 | 0.0151 |
2 | 1.0 | 9.46 | 0.105 | 1.9901 | 1.9065 | 0.0836 | 0.0136 |
3 | 1.5 | 10.08 | 0.098 | 2.1294 | 2.0471 | 0.0823 | 0.0125 |
4 | 2.0 | 11.10 | 0.090 | 2.2784 | 2.2037 | 0.0747 | 0.0106 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), Sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 11.38 | 0.101 | 1.2833 | 1.2389 | 0.0443 | 0.0112 |
2 | 1.0 | 12.24 | 0.081 | 1.3731 | 1.3279 | 0.0452 | 0.0106 |
3 | 1.5 | 11.28 | 0.088 | 1.4692 | 1.4234 | 0.0458 | 0.0101 |
4 | 2.0 | 13.95 | 0.071 | 1.5721 | 1.5253 | 0.0468 | 0.0096 |
NF№ | Frequency (Hz) | Experimental Data of the Natural Frequencies of the Tank Wall (f), (Hz) | Period (T), Sec | Top Amplitude Value (A1) 10−5 m | Bottom Amplitude Value (A2) 10−5 m | Amplitude Difference (A1 − A2) 10−5 m | Attenuation Coefficient (D) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 12.85 | 0.077 | 0.9561 | 0.9272 | 0.0289 | 0.0097 |
2 | 1.0 | 13.61 | 0.072 | 1.0231 | 0.9941 | 0.0291 | 0.0091 |
3 | 1.5 | 12.20 | 0.070 | 1.1647 | 1.1334 | 0.0313 | 0.0086 |
4 | 2.0 | 16.01 | 0.061 | 1.1922 | 1.1621 | 0.0301 | 0.0081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhangabay, N.; Tursunkululy, T.; Bonopera, M.; Azatkulov, O. Laboratory Investigation of the Dynamic Response of a Prestressed Composite Steel Cylindrical Tank Subjected to Horizontal Loading. J. Compos. Sci. 2023, 7, 373. https://doi.org/10.3390/jcs7090373
Zhangabay N, Tursunkululy T, Bonopera M, Azatkulov O. Laboratory Investigation of the Dynamic Response of a Prestressed Composite Steel Cylindrical Tank Subjected to Horizontal Loading. Journal of Composites Science. 2023; 7(9):373. https://doi.org/10.3390/jcs7090373
Chicago/Turabian StyleZhangabay, Nurlan, Timur Tursunkululy, Marco Bonopera, and Otabek Azatkulov. 2023. "Laboratory Investigation of the Dynamic Response of a Prestressed Composite Steel Cylindrical Tank Subjected to Horizontal Loading" Journal of Composites Science 7, no. 9: 373. https://doi.org/10.3390/jcs7090373
APA StyleZhangabay, N., Tursunkululy, T., Bonopera, M., & Azatkulov, O. (2023). Laboratory Investigation of the Dynamic Response of a Prestressed Composite Steel Cylindrical Tank Subjected to Horizontal Loading. Journal of Composites Science, 7(9), 373. https://doi.org/10.3390/jcs7090373