
Citation: Dayyoub, T.; Kolesnikov, E.;

Filippova, O.V.; Kaloshkin, S.D.;

Telyshev, D.V.; Maksimkin, A.V. The

Influences of Chemical Modifications

on the Structural, Mechanical,

Tribological and Adhesive Properties

of Oriented UHMWPE Films. J.

Compos. Sci. 2024, 8, 36. https://

10.3390/jcs8010036

Academic Editor: Francesco

Tornabene

Received: 9 December 2023

Revised: 26 December 2023

Accepted: 15 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Influences of Chemical Modifications on the Structural,
Mechanical, Tribological and Adhesive Properties of Oriented
UHMWPE Films
Tarek Dayyoub 1,2,* , Evgeniy Kolesnikov 1 , Olga V. Filippova 2 , Sergey D. Kaloshkin 1,
Dmitry V. Telyshev 2,3 and Aleksey V. Maksimkin 2

1 Department of Physical Chemistry, National University of Science and Technology “MISIS”,
119049 Moscow, Russia; kea.misis@gmail.com (E.K.); kaloshkin@misis.ru (S.D.K.)

2 Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical
University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia;
borisovaolya@yandex.ru (O.V.F.); telyshev@bms.zone (D.V.T.); aleksey_maksimkin@mail.ru (A.V.M.)

3 Institute of Biomedical Systems, National Research University of Electronic Technology,
124498 Moscow, Russia

* Correspondence: tarekzd@windowslive.com

Abstract: Preparing a friction pair “polymer-metal” using improved polymeric composites is contem-
plated a complicated task due to the inert surface of the polymer. Gluing polymer composites with
improved mechanical and tribological properties on metals and saving their unique properties at
the same time is considered the best way to prepare slide bearing products based on polymer/metal.
In this work, ultraviolet initiation is used after a process of mixed acid pre-treatment. The surface
of highly oriented films based on ultra-high molecular weight polyethylene (UHMWPE)/graphene
nanoplatelets (GNP) is grafted with nanocellulose. The grafting treatment is analyzed using Fourier
transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and contact angle
measurements. Mechanical T-peel tests showed that the peel strength for the treated UHMWPE
films increased by three times, up to 1.9 kg/cm, in comparison to the untreated films. The tensile
strength of the treated UHMWPE films decreased by about 6% to 788 MPa. Tribological tests showed
that the values of both friction coefficient and wear intensity of the treated UHMWPE films were
increased insignificantly, which were 0.172 and 15.43 µm/m·m2, respectively. The prepared adhesive
tape based on UHMWPE films, which can withstand a weight of up to 6 kg per 1 cm2 of the bonded
surface, has a low coefficient of friction, high wear resistance, and high strength, and is considered a
promising material for preparing slide bearing products.

Keywords: UHMWPE; adhesion; wear; friction coefficient; mechanical properties; slide bearing

1. Introduction

Currently, preserving the environment is considered the main key in scientific and
technical research throughout the world. The use of mineral and synthetic oils in slide
bearing applications raises concerns about the environmental impact of these lubricants
in cases of pollution [1]. Slide bearing systems based on oil-free lubricants are considered
the main direction for resolving our ecological problems. Bearing materials based on poly-
mers are treated as the most promising materials, since polymers have several interesting
properties, such as being lightweight and having a chemical inertness, low coefficient of
friction, high wear resistance, and good impact toughness [2–4]. Polymeric slide bearing
products can be found in a wide range of industrial applications, such as in the automotive,
aerospace, hydropower, and robotics sectors, and in medical applications, such as total
replacements [5–7].

Due to its excellent tribological and mechanical properties, self-lubricating charac-
teristics, high chemical inertness, and biocompatible characteristics, ultra-high molecular
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weight polyethylene (UHMWPE) is one of the most widely utilized polymers in many
industrial and medical applications [3,4,8,9]. However, UHMWPE, with an isotropic struc-
tural state, has a low elasticity modulus and yield strength and has exhibited a considerable
creep under constant and high loads. UHMWPE outperforms nylon and polyformalde-
hyde, which are frequently used in applications requiring a low coefficient of friction, in
terms of their tribological properties [10–13]. Polytetrafluoroethylene and UHMWPE are
comparable in terms of their friction coefficient; however, UHMWPE outperforms in terms
of wear resistance [14]. Since using isotropic UHMWPE composites as antifriction bearing
components for tribological purposes, improving the mechanical and tribological prop-
erties of UHMWPE composites using the process of orientation hardening, has attracted
more attention from researchers [10,11,15]. A further intriguing enhancement technique
is to incorporate certain second-phase particles with good tribological characteristics into
a UHMWPE matrix to create UHMWPE nanocomposites [16]. In our previous work [17],
highly oriented UHMWPE films filled with 2 wt.% graphene nanoplates/polyaniline
(GNP/PANI) were prepared (Figure 1a), and they presented outstanding mechanical and
tribological properties, such as a tensile strength of 836 MPa, Young’s modulus of 35.8 GPa,
COF of 0.122, and a linear wear intensity of 1.92 µm/m·m2, in comparison to isotropic
UHMWPE (yield strength of ≥17 MPa, Young’s modulus of 720 MPa, COF of 0.269, and a
linear wear intensity of 53.94 µm/m·m2).

On the other hand, the main method used to bond UHMWPE with metals in the
manufacture of a “polymer-metal” friction pair is thermal pressing, which leads to the
loss of the unique mechanical and tribological properties of the highly oriented UHMWPE
films due to applying high temperatures and pressures. Nevertheless, the best solution for
bonding the oriented UHMWPE films to metals while preserving their unique properties is
to glue them together. Bonding UHMWPE to each other or to metal materials is considered
a very difficult task since the absence of polar groups in UHMWPE makes their surfaces
very inert [18]. Therefore, to manufacture antifriction sliding surfaces based on oriented
UHMWPE films, it is necessary to develop a method for the pre-treatment of the surfaces
prior to the gluing phase. The main mechanism of surface modification is to increase its
roughness using chemical etching techniques; this leads to an increase in wettability and
an improvement in adhesion properties compared to unmodified UHMWPE [19,20].

Numerous significant qualities exist in cellulose, including abundance, light weight,
renewability, nontoxicity, biocompatibility, biodegradability, and high stability [21,22]. It
can be utilized in binders and water-soluble adhesives [23]. The cellulose carboxyl groups
are crucial to the mechanisms involved in grafting techniques. For instance, a covalent
grafting approach for the conjugation of benzophenone with cellulose has recently been
developed for the UV-crosslinking of nanocellulose [24].

A good opportunity to improve the UHMWPE’s adhesion properties exists thanks
to chemical surface modification [19,25,26]. UHMWPE surface’s characteristics have been
enhanced using a variety of techniques [27]. The primary method of surface modification
relies on chemical etching, which is used to oxidize and roughen the surface. Such treat-
ments produce superior wettability and increase adhesive properties more in comparison
to unmodified UHMWPE. The polar groups on the UHMWPE surface are substituted
for the hydrogen atoms in the polymer chains in this etching mechanism, increasing the
surface’s wettability and providing potential locations for chemical interactions with other
substances (Figure 1b) [28]. Ultraviolet (UV) irradiation, as a low-energy grafting technique
for polymeric surfaces, is considered to be a promising method [29,30]. This is related
to its low cost, effectiveness in functionalizing the substrate surface, quick reaction rate,
and relatively small influence on the bulk polymers. In this article, and based on our
previous work [31], the oriented UHMWPE films are exposed to UV radiation after being
placed in the initiator solution (benzophenone). To obtain the desired amount of dor-
mant semi-pinacol groups (Figure 1b), the initiator removes hydrogen from the UHMWPE
chains [30,32]. The UHMWPE films, which were grafted with benzophenone, are then
subjected to UV irradiation once more to cleave this bond again. The suggested reason for
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grafting cellulose chains onto the surface of the UHMWPE films is the reactivation of the
dormant semi-pinacol groups (Figure 1c) [33].
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Figure 1. (a) Preparation of oriented UHMWPE/GNP/PANI films; (b) surface treatment of
UHMWPE/GNP/PANI films by benzophenone; (c) surface treatment of UHMWPE/GNP/PANI
films by cellulose grafting.

2. Materials and Methods
2.1. Materials

UHMWPE GUR 4120 with a molecular weight of 5 × 106 g/mol from “Ticona
GmbH” (Frankfurt, Germany) and polyethylene wax PLWN-3W with a molecular weight
of 4000 g/mol from “INHIMTEK LLC” (Novokuibyshevsk, Russia) were used. Graphene
nanoplates (GNPs) were obtained by oxidative intercalation of expanded graphite with
subsequent ultrasonic treatment and were purchased from Nanotechcenter Ltd. (Tambov,
Russia). GNP was functionalized by the deposition of polyaniline (PANI) on the GNP
surface because of the oxidative polymerization of aniline. All procedures and conditions
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were broadly explained and described in the references [17,34]. p-xylene was used as a
plasticizer for the UHMWPE composites at a ratio of 2.5 mL of a solvent per 1 g of the
polymer blend. Benzophenone 99% was purchased from Alfa Aesar—Shanghai, China.
Micro-cellulose was purchased from “Ruskhim Ltd.” (Moscow, Russia). Ethanol, acetone,
urea, and sodium hydroxide were used as solvents.

For adhesion mechanical tests (T-peel tests), two types of adhesive glue were used.
The first one was a black double-sided adhesive tape on a foam basis 19 mm × 2 m (Aviora).
Its composition is acrylic—solvent, IXPE (irradiated cross-linked polyethylene foam). The
second one was white cotton and synthetic rubber fabric double-sided tape 50 mm × 10 m
(Aviora). Its composition is synthetic rubber, acrylic 80%, and cotton 20%.

2.2. Processes for Producing Cellulose Nanoparticles (CNs)

Microcrystalline cellulose (MCC) was converted into nanocellulose (NC) using the
technique developed by M. Adsul et al. [35]. Next, a 100-mL solution comprising 5 g of
MCC, 7 g of NaOH, and 12 g of urea was prepared, stirred for 30 min at room temperature,
and then kept in a freezer at −20 ◦C for 16 hrs. Afterwards, using distilled water, nanocel-
lulose was regenerated, separated by centrifugation at 3000 rpm, and washed with distilled
water 8–10 times to remove residual urea and NaOH.

2.3. Fabrication of UHMWPE Films

According to the method outlined in the reference [17], mixing UHMWPE, PE-wax,
and GNP/PANI powders was carried out using a high-energy planetary ball mill (APF-3).
Using gel-spinning technology, UHMWPE films were prepared using 2.5 mL of p-xylene
for each gram of polymer powders. Then, UHMWPE/p-xylene gel was extruded at 150 ◦C
using a ram extruder (UE-MSL) with a die size of 10 × 2 mm and an extrusion rate
of 500 mm/min. Consequently, the extruded UHMWPE gels were allowed to dry for
48 h at room temperature. Using the drawing process, which was described in detail in
reference [17], highly oriented UHMWPE/1 wt.% PE-wax/2 wt.% GNP/PANI films were
prepared. These films had the following properties (Table 1).

Table 1. Mechanical and physical properties of highly oriented UHMWPE/1 wt.% PE-was/2 wt.%
GNP/PANI films (± the standard deviation) [17].

Material Draw
Ratio

Young’s
Modulus,

GPa

Tensile
Strength,

MPa
Elongation,

%

Work of
Fracture,
MJ/m3

Tm, ◦C Crystallinity,
% COF

Linear Wear
Intensity, IlW
µm/m·m2

Oriented
UHMWPE

films
47 35.8 ± 3.3 836 ± 88 6.6 ± 0.9 40.3 ± 11.6 143.6 87 ± 2 0.122 ± 0.002 1.92 ± 0.08

2.4. Treatment and Modification of UHMWPE Films’ Surface

After being treated with a mixture of H2SO4 and HNO3 (v/v: 3/1) mixed at 75 ◦C
for one hour, the UHMWPE films were grafted with cellulose using a 10% nanocellulose
and 90% ethanol (w/v) solution. The coupling agent was a 5% (w/v) solution of benzophe-
none in acetone. A device for UV cross-linking with a photon density of 900 mJ/cm2

was used. The exposure’s duration of the UV-induced reaction was 20 min. The refer-
ence [31] provided comprehensive explanation and description of all processes, techniques,
and conditions.

2.5. Testing Procedures

The structure of the treated UHMWPE films was investigated using a JEOL JSM-
6610LV (JEOL Ltd., Tokyo, Japan) scanning electron microscope operating at a 20 kV
accelerating potential. The polymer surface was coated with a Pt layer that was 10–20 nm
thick (magnetron deposition equipment JFC-1600 (JEOL Ltd., Tokyo, Japan) was utilized)
in order to prevent a charge accumulation.
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Using a Nicolet 380 IR-Fourier spectrometer (Thermo Scientific, Waltham, MA, USA),
FT-IR spectroscopy was carried out in attenuated total reflection (ATR) mode: the spectral
range was 4000–450 cm−1 with a resolution of about 0.9 cm−1, and the accuracy of the
wave number was 0.01 cm−1. OMNIC Lite Software (version 1.7) was used to analyze the
results. For each sample, at least 5 measurements were carried out.

Sessile drops were used in the measurement of the contact angle to gauge changes
in the samples’ hydrophilicity, and the EasyDrop wetting angle measurement apparatus
was utilized. According to the scope of the camera lens, the sample was set down on a
table and a lifting mechanism was installed. The surface of the sample was wetted with
a 5 µL drop of distilled water using a standard dosing system (ASTM D724-99) [36]. The
formation of the drop on the surface was captured by the camera. The baseline and contact
angle calculations were performed using DSA3 software (version 1.7.3). For each sample,
at least 5 measurements were carried out.

Using Zwick/Roell Z020 universal testing machine (Zwick Roell Group, Ulm, Germany),
the tensile tests for the oriented UHMWPE/PE-wax/GNP/PANI films were carried out in
accordance with ASTM D882-10 [37] at a loading rate of 10 mm/min. At least five samples
were measured for each UHMWPE composite.

To evaluate the peel resistance of the adhesive bonds between flexible adherends,
T-peel testing configuration according to ASTM 1876-01 [38] was used. Also, at least
10 measurements were applied for each type of glue. For the T-peel testing of film–glue
samples, the UHMWPE sample dimensions were 100 × 3.5 × 0.2 mm3. The glue dimensions
were 100 × 3.5 × 0.25 mm3 for the white cotton and synthetic rubber fabric double-sided
tape, and were 100 × 3.5 × 0.7 mm3 for the black double-sided adhesive tape. For the T-peel
testing of film–film samples, the UHMWPE sample dimensions were 100 × 3.5 × 0.2 mm3.
The glue layer dimensions between the UHMWPE films were 50 × 3.5 × 0.25 mm3 for the
white cotton and synthetic rubber fabric double-sided tape, and were 50 × 3.5 × 0.7 mm3

for the black double-sided adhesive tape. The glued UHMWPE samples were stored at
room temperature for 1 day before mechanical testing. T-peel testing configuration for
glued samples was carried out by using Zwick/Roell Z020 universal testing machine at a
loading rate of 10 mm/min.

The tribological tests were performed using Tribometer—CETR—UMT—3 (Bruker
Corporation, Karlsruhe, Germany) in the dry friction mode in accordance with ASTM
G 99-95a [39]. Using a friction pair (pin on disk), a normal loading force of 30 N and a
linear speed of 1 m/s were applied. After traversing a path (L) of 21.6 km, the tribological
characteristics were determined. A 440C stainless steel counter-body with a diameter of
62 mm was used. The counter-body was polished before each test using diamond lapping
paste with grits of 40–60 microns. Film samples with dimensions of 20 mm in length and
2.5–4 mm in width were fixed to a metallic cylinder with a diameter of 20 mm (Figure 2).
Linear wear intensity (IlW) was calculated using Equation (1) as follows:

Ilw =
∆Z
L·S f

(1)

where ∆Z—change in sample height after the test, L—friction path, and Sf—initial sample
surface area.
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3. Results

Table 2 presents the FT-IR spectrum peaks for all chemical groups, and Figure 3
shows the FT-IT measurements for the virgin UHMWPE films, oriented UHMWPE/PE-
wax/GNP/PANI films, and treated oriented UHMWPE/PE-wax/GNP/PANI by cellulose
grafting. As can be seen in Table 2 and Figure 3, the presence of GNP/PANI in the oriented
UHMWPE films is related to the peaks at 803, 1115, 1261, and 1295 cm−1. Peaks at 808 and
1629 cm−1 are related to the presence of benzophenone, whereas the peaks at 1031, 1099,
and 1261 cm−1 are related to the grafted cellulose. As can be noted in Figure 3, the -
OH groups of the cellulose, which have an intensity range between 3100 and 3600 cm−1,
disappeared in the treated UHMWPE/PE-wax/GNP/PANI films. This can be related
to the reactions that took place between the -OH groups of the cellulose and both of the
ketones groups of the benzophenone and C–H groups of the UHMWPE, which had led to
the formation of the C-O-C (ethers) (peaks in the range of 1150–1200 cm−1) [40].

Table 2. The FT-IR spectrum peaks for all components.

UHMWPE [41,42] GNP/PANI [43,44] Benzophenone [45] Cellulose [46,47]

Wave
Number,

cm−1
Functional Group

Wave
Number,

cm−1
Functional Group

Wave
Number,

cm−1

Functional
Group

Wave
Number,

cm−1
Functional Group

717
rocking vibration peak
due to the high degree
of polymerization and
long molecular chain of

UHMWPE

803

aromatic C–H
out-of-plane

bending vibration
(GNP)

808 C–CO–C sym.
str.

1031
C–O stretching

group of 3,6-
anhydrogalactose730 800–1115 C–H stretching

(PANI)

1261 N–Q–N–Q stretch
of the quinoid ring 1099

1460 in-plane bending
vibration peak of C–H

1295 C–N stretching
(GNP)

1471

1627 C=O stretch 1261 C–OH bending at
C6

2848 sym. stretching
vibration peak of C–H

2912 asym. stretching
vibration peak of C–H
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Figure 3. FT-IR spectra of the virgin UHMWPE film, oriented UHMWPE/GNP/PANI film, and
treated oriented UHMWPE/GNP/PANI film by cellulose grafting.

The presence of the cellulose on the treated UHMWPE/PE-wax/GNP/PANI films
was also demonstrated in the SEM images (Figures 4 and 5). As it can be seen in Figure 4,
the acid pre-treatment led to the formation of micro-pores and grooves on the surface
of the UHMWPE films, and to the increase in the surface roughness. These changes in
surface morphology can improve the effective contact area between the surface and the
adhesive materials that are in contact with it. Figure 5 illustrates the distribution of the
adhered cellulose on the treated surface of the UHMWPE/PE-wax/GNP/PANI films. The
distribution densities indicate the cellulose’s high adherence to the treated UHMWPE films.
Figure 6 demonstrates the changes in the surface morphology of the treated UHMWPE
films and how grafting cellulose improves the adhesion properties of the treated UHMWPE
films in comparison to the untreated ones.
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Figure 4. SEM images of the surface of the UHMWPE films before (a) and after (b) acid treatment.

Figure 5. SEM images of the surface of the UHMWPE films after benzophenone and cellulose grafting
with different magnifications (a) 20 µm; (b) 5 µm.

Figure 6. Proposed diagram that illustrates the gluing process for (a) untreated and (b) treated
UHMWPE/PE-wax/GNP/PANI films with metallic or plastic materials.
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The processes of the acid pre-treatment and cellulose grafting have led to an enhance-
ment in the UHMWPE’s hydrophilicity (Table 3 and Figure 7). However, the GNP/PANI
filler contains some functional groups, such as ethers, carboxyls, or hydroxyls. As can
be seen in Table 2 and Figure 3, the untreated UHMWPE/PE-wax/GNP/PANI film had
a lower water contact angle in comparison to the untreated virgin UHMWPE film The
water contact angle value of the treated UHMWPE/PE-wax/GNP/PANI film was de-
creased to 91◦ in comparison to the untreated virgin UHMWPE film’s value, which was
120◦. Since the water contact angle of 90◦ is considered the boarder value between the
hydrophilic and hydrophobic materials, the value of the water contact angle of the treated
UHMWPE/PE-wax/GNP/PANI film is also considered a boarder value [48–50]. This
increase in the hydrophilicity indicates an increase in the free energy of the UHMWPE
material’s surface [51], which led to an improvement of its adhesion properties.

Table 3. Contact angle results for the untreated virgin UHMWPE as well as untreated and treated
UHMWPE/PE-wax/GNP/PANI films grafted by cellulose (± the standard deviation).

Type of Samples θwater, ◦

Untreated virgin UHMWPE film 120 ± 11
Untreated UHMWPE/PE-wax/GNP/PANI film 103 ± 5

Treated UHMWPE/PE-wax/GNP/PANI film 91 ± 3
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Table 4 shows the tensile mechanical properties of the treated UHMWPE/PE-wax/
GNP/PANI film after acid pre-treatment and cellulose grafting. As can be seen in Table 4,
its tensile strength was decreased a little by about 6% as a result of the acid pre-treatment
process. Moreover, the values of Young’s modulus, elongation, and work of fracture
were almost the same after the treatment by cellulose grafting. This small decrease in
the mechanical tensile properties in the UHMWPE/PE-wax/GNP/PANI film is related to
the semi-crystalline structure of the UHMWPE. In other words, in the acid pre-treatment
process, the mixed acids attack the polymer macromolecules in the amorphous regions
(weak zones), leading to an etching process in the UHMWPE structure that led to a small
decrease in the mechanical properties of the oriented films [52].

Table 4. Mechanical tensile properties of the UHMWPE/PE-wax/GNP/PANI films before and after
acid treatment (± the standard deviation).

Material Young’s
Modulus, GPa

Tensile Strength,
MPa Elongation, % Work of Fracture,

MJ/m3

Untreated oriented film 35.8 ± 3.3 836 ± 88 6.6 ± 0.9 40.3 ± 11.6
Treated oriented film 34.7 ± 2.8 788 ± 64 6.7 ± 0.8 39.4 ± 9.7
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Table 5 and Figure 8 show the tribological properties of the untreated and treated
UHMWPE/PE-wax/GNP/PANI films in comparison to the isotropic UHMWPE films. As
can be seen, the cellulose grafting processes led to an increase in the COF of the treated
UHMWPE films up to 0.172 in comparison to the untreated UHMWPE films with a COF of
0.122. Moreover, the linear wear intensity increased from 1.92 µm/m·m2 for the untreated
UHMWPE films and up to 15.43 µm/m·m2 for the treated UHMWPE films. Here, it can be
noted that the applied tribological conditions are considered very harsh (a load of 30 N
“about 4 MPa”, and dry friction), and the decrease in the tribological properties is related to
the presence of the cellulose on the UHWMPE surface of the treated films causing a change
in surface morphology. Under the tribological tests and due to high surface roughness, the
presence of the cellulose led to an increase in the deformation component of the friction
coefficient (increasing the penetration of the counter-body into the surface of the material),
and the friction between the counter-body and treated UHMWPE films caused cellulose
erosion in the beginning of this process [53,54]. Afterwards, the COF stabilized at a value
of 0.172.

Table 5. Tribological properties of the UHMWPE/PE-wax/GNP/PANI films before and after cellulose
grafting processes (±the standard deviation).

Material GNP/PANI Content, wt.% COF Linear Wear Intensity, Ilw,
µm/m·m2

Isotropic virgin UHMWPE 0 0.269 ± 0.015 53.94 ± 0.27
Untreated UHMWPE/PE-

wax/GNP/PANI film 2.0 0.122 ± 0.002 1.92 ± 0.08

Treated UHMWPE/PE-
wax/GNP/PANI film 2.0 0.172 ± 0.004 15.43 ± 0.32
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Tables 6 and 7 show the results of the T-peel tests for the treated UHMWPE/PE-
wax/GNP/PANI films. In order to investigate the adhesion strength for the treated
UHMWPE films, two T-peel tests were carried out using two different types of adhe-
sive tapes. The first T-peel test was carried out for the adhesion strength between the
treated UHMWPE films and adhesive tapes, whereas the second one was carried out be-
tween two treated films bonded by two adhesive tapes (Tables 6 and 7). As can be seen
in Table 6, by using the acrylic foam-based tape, the peel strength between the UHMWPE
films and adhesive tape was increased from 0.9 kg/cm up to 1.8 kg/cm (100%) for the
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untreated films. Oppositely, when using the synthetic rubber fabric double-sided tape, the
peel strength between the UHMWPE films and adhesive tape increased from 0.6 kg/cm up
to 1.9 kg/cm (217%) for the untreated films. Table 7 shows the adhesion strength between
two treated UHMWPE films using two adhesive tapes. As can be seen, the peel strength
was increased from 0.8 kg/cm up to 2.8 kg/cm (250%) for the untreated films, whereas the
peel strength between the UHMWPE films and adhesive tape increased from 0.4 kg/cm, for
the untreated films, up to 1.5 kg/cm (275%) using synthetic rubber fabric double-sided tape.

Table 6. The mechanical properties of the film–glue specimens (± standard deviation).

Type of Glue Type of Film Peel Strength, kg/cm

Black double-sided adhesive tape Without treatment 0.9 ± 0.2
Treated UHMWPE films 1.8 ± 0.16

White cotton and synthetic rubber
fabric double-sided tape

Without treatment 0.6 ± 0.1
Treated UHMWPE films 1.9 ± 0.4

Table 7. The mechanical properties of the film–film specimens (± standard deviation).

Type of Glue Type of Film Peel Strength, kg/cm

Black double-sided adhesive tape Without treatment 0.8 ± 0.2
Treated UHMWPE films 2.8 ± 0.4

White cotton and synthetic rubber
fabric double-sided tape

Without treatment 0.4 ± 0.1
Treated UHMWPE films 1.5 ± 0.5

It should be noted that T-peel tests were also carried out to investigate the adhesion
strength between the treated UHMEPE films and metals (stainless steel 316L), and the
occurrence of the bonding separation between the UHMWPE films and the adhesive
tapes was observed, which meant that the adhesion strength between the metals and
adhesive tapes was higher than the one that between the treated UHMWPE films and the
adhesive tapes.

The main aim of this work was to develop a product in the form of a high-strength
adhesive tape based on UHMWPE films, which has a low coefficient of friction, high wear
resistance, and high strength (Figure 9). These adhesive tapes are considered promising
materials for creating plain bearings, various guides, etc.
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4. Conclusions

UHMWPE is recognized worldwide as the polymer of the future, as a result of the pos-
sibility of creating various composite materials with unique mechanical, tribological, and
functional properties. In this work, using ultraviolet initiation after a pre-treatment process
with mixed acids, the surface of the oriented UHMWPE films was grafted by cellulose. Us-
ing Fourier transform infrared spectroscopy (FT-IR), the presence of GNP/PANI, cellulose,
and benzophenone on the treated UHMWPE films was demonstrated. Using scanning
electron microscopy (SEM), the presence of cellulose on the treated UHMWPE films was
also demonstrated. The contact angle measurements showed that its value decreased from
120◦ to 91◦ after the treatment procedure. Mechanical T-peel tests showed that the peel
strength for the treated UHMWPE films increased from 0.6 up to 1.8 kg/cm in comparison
to the untreated films. However, it was found that the treatment procedure led to a slight
decrease in the tensile strength of the treated UHMWPE films by about 6% to 788 MPa.
Tribological tests showed that the values of both the friction coefficient and wear intensity
were insignificantly increased up to 0.172 and 15.43 µm/m·m2, respectively, for the treated
UHMWPE films. The use of high-strength-oriented UHMWPE films instead of isotropic
thermally pressed UHMWPE films could significantly increase the performance and service
life of various anti-friction sliding surfaces for industrial and medical slide bearing appli-
cations, such as bearings, rollers, various guides, and as a lining. The proposed method
for modifying the surface of UHMWPE films allows us to increase the adhesion properties
of these films by more than 200%, while the mechanical and tribological properties can
only be insignificantly reduced. It should be noted that because of carrying out chemical
modifications on both UHMWPE surfaces, a reduction in the coefficient of friction and wear
was recognized. Therefore, to preserve tribological properties, it is better to apply chemical
modifications on one polymer surface that will be adhered to the metals being used.
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