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Abstract: Evaluating the mechanical response of fiber-reinforced composites can be extremely time-
consuming and expensive. Machine learning (ML) techniques offer a means for faster predictions via
models trained on existing input–output pairs and have exhibited success in composite research. This
paper explores a fully convolutional neural network modified from StressNet, which was originally
used for linear elastic materials, and extended here for a non-linear finite element (FE) simulation to
predict the stress field in 2D slices of segmented tomography images of a fiber-reinforced polymer
specimen. The network was trained and evaluated on data generated from the FE simulations of
the exact microstructure. The testing results show that the trained network accurately captures the
characteristics of the stress distribution, especially on fibers, solely from the segmented microstructure
images. The trained model can make predictions within seconds in a single forward pass on an
ordinary laptop, given the input microstructure, compared to 92.5 h to run the full FE simulation on a
high-performance computing cluster. These results show promise in using ML techniques to conduct
fast structural analysis for fiber-reinforced composites and suggest a corollary that the trained model
can be used to identify the location of potential damage sites in fiber-reinforced polymers.

Keywords: composite materials; stress field prediction; machine learning; deep learning; neural
networks; finite element

1. Introduction

Fiber-reinforced composites offer a transformative opportunity for the manufacturing
of lightweight structures. One imposing impediment to the widespread adoption of these
fiber-reinforced composites is the substantial time and cost necessary for certifying their
structural integrity in engineering applications. Specifically, uncertainties regarding how
the complex microstructures and defects within these materials influence the mechanical
response have impeded their usage in structural applications. Agyei et al. [1] used a data-
driven approach to provide a ranked order of the propensity of damage in fiber-reinforced
composites caused by pores in the matrix, fiber orientation, fiber length, pores at fiber
tips, resin-rich regions, and the resulting local stiffness variations, which provides a means
to quantify the microstructure and detect features’ role in damage. As discussed in the
Materials Genome Initiative, a primary goal is to reduce the time and cost needed to
bring new materials and structures to market by 50% [2]. To enable this goal, the NASA
2040 Vision discusses opportunities and needs for tool maturation, specifically articulating
the importance of the development, verification, and validation of multiscale modeling
approaches [3]. Towards this objective, this paper identifies rapid and efficient methods to
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predict the mechanical response of fiber-reinforced composite materials with an emphasis
on their microstructure, using machine learning techniques.

In composite materials, one approach that can offer reduced computational costs
for microstructure-informed modeling is typically based on homogenization schemes or
unit cell approaches. Broadly speaking, homogenization schemes rely on simulating the
micromechanical behavior of a representative volume of the material and use the resulting
material response to inform hierarchical modeling schemes at coarser length-scales [4–7].
In a similar fashion, the method of cells provides a periodically repeating unit of the
material’s microstructure and applies the continuity of the tractions and displacements
over these cells to construct a continuum response of the solid [8–11]. In such modeling
schemes, a reduction in the dimensionality of the modeling results in a loss of information,
and as a consequence, these approaches are not able to capture local and rare events of
damage. Furthermore, these schemes can be even more challenging for a thermoplastic
matrix, since the matrix experiences significant non-linear deformation, which can be
expensive to simulate. Therefore, these modeling events may not be appropriate to capture
incipient damage.

Based on advancements in high-resolution characterization techniques coupled with
microstructural sensitive modeling, a physics-based understanding and eventual prediction
of the events that result in local damage is possible [12]; two examples are given here,
which focus on damage initiating at an individual fiber, such as incipient damage or kink
formation. For the damage of individual fibers in continuous fiber-reinforced composites,
tomography has been used to study reorientation, breakage, and kink formation [13–16],
which has led to the development of models at the fiber level [17,18]. Additionally, the
formation and growth of incipient damage have been detected at the fiber tips of short
discontinuous fibers, as the primary failure mechanism [19–22]. Through detailed modeling,
Hanhan et al. individually meshed the microstructural features and determined that high
hydrostatic stress was responsible as the primary driver of damage. In their analysis, the
predictions of the site of damage through finite element (FE) simulations were in agreement
with the same sites observed via in situ experimental observations [22]. While segmenting
the fiber and void features identified through tomography and explicitly meshing these
features for use within a FE model has provided promising results, it required 44.5 million
elements to model a volume of 0.0096 mm3 [22], which makes this method computationally
impractical within an engineering workflow. For this reason, machine learning offers a
promising direction for the exploration of computationally efficient tools and approaches.

Due to their extraordinary ability to learn non-linear mappings and their advances
in computer vision tasks, deep neural networks, and a class of deep neural networks,
convolutional neural networks (CNNs), have shown promising results in engineering
research. CNNs operate on the input data by stacking multiple discrete convolutions
with learnable kernels followed by nonlinear activations. This effectively captures the
spatial dependencies of the data and extracts higher-level representations. Compared
to other popular deep learning vision frameworks, such as Vision Transformers [23],
Neural Operators [24], and diffusion models [25], CNNs have the advantage of lower
memory and computation complexity while maintaining their efficacy in vision-related
tasks and scientific applications [23,26], which makes them easier to train, more scalable,
and faster during inference. CNNs have been widely used in solving engineering problems
since AlexNet first used a deep convolutional network to perform ImageNet classification
tasks [27]. Characteristics of CNNs, such as translation invariants and weight sharing,
allow them to perform well for computer vision tasks. Fully connected neural networks
were trained and evaluated on pairs between selected material treatment conditions or
design variables and outputs to predict the compressive strength of heat-treated woods
and concrete [28–30]. However, since the information of composite materials cannot be
naturally stored in vectors that are mutually independent, careful feature selection is
imperative to training a successful fully connected neural network. In recent studies,
to relax this requirement, because of their parameter-sharing and translation invariant
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characteristics, CNNs have been utilized for predicting material properties by looking
directly at material topology images. A range of neural networks have been used to predict
the homogenized properties from a composite’s representative volume element [31–36].
Gu et al. built a CNN to predict the toughness of composites based on the topology
of base materials [35]. Yang et al. adopted a 3D CNN to predict the stiffness of high-
contrast composites from generated microscale volume elements [36]. Hanakata et al. used
a traditional CNN structure to estimate the yield stress and strain based on graphene
containing their kirigami designs [37]. While these studies showed high accuracy in the
evaluation of the CNN models, they mainly focused on predicting a single value from
the microstructure data. In order to investigate incipient damage and kink formation,
it is of interest to utilize deep learning methods to quickly obtain the stress field of a
composite. Deep neural networks have been used to predict the stress fields originating
from a simulated microstructure [38,39], while the present paper uses an experimentally
determined 3D microstructure.

Khadilkar et al. developed a two-stream CNN to predict the stress field for a stere-
olithography 3D printing process, in which the network outputs a long vector of O(105)
dimension that was reshaped to match the size of 2D slices of the specimen [40]. Nie et al. de-
veloped a fully convolutional network, StressNet, with an encoder–decoder structure to
predict the stress field of linear elastic cantilevered structures in an end-to-end manner
with additional injected load information and displacement boundary conditions [41].
This network can preserve the structural information of the input while extracting higher
representations for accurate prediction.

In predicting the stress field of a materials given the microstructure, CNN-based deep
learning models are suitable candidates because of their ability to capture hierarchical or
structural information embedded in the microstructure. Based on its success with linear
elastic cantilevered structures, in this work, we adopted and simplified the structure of
StressNet, and extended it for a non-linear FE simulation to investigate its generalization
ability on fiber-reinforced polymers. We only took the 2D segmented microstructure images
as the network input without additional information such as load or boundary conditions.
More specifically, the convolutional layers were regarded as feature extractors that slide
through the input and perform the discrete convolution operations, generating feature
maps containing high-level representations. During this process, the same convolutional
filter was used for the entire input so that the trainable weights were shared throughout the
input. This limited the number of trainable parameters that can make the training process
more efficient. The downsampling operations in the pooling layers achieved translational
invariance, making the absolute location of a certain pattern less important. A dataset
containing 5321 2D microstructure slices sampled from segmented X-ray tomography
images of a composite specimen and its corresponding FE simulation was used to train
and validate the network. The trained model can make local stress predictions in a single
forward pass from the given microstructure images within seconds on a laptop, compared
to 92.5 h needed to run the full FE simulation on a high-performance computing cluster. Ac-
cording to the evaluation results, the trained network can output the stress distribution and
capture important characteristics, especially on fibers, from the corresponding segmented
microstructure 2D slices. The rest of the paper is organized as follow: Sections 2 and 3
describe the data generation process; Section 4 covers the workflow for training and eval-
uating the neural network; Section 5 shows the evaluation results and discussion; and
Section 6 summarizes this work.

2. Experimental Methods

In order to provide a dataset for sampling that can be used for both neural network
training and testing, the exact microstructure of a fiber-reinforced thermoplastic composite
was analyzed. Specifically, the material studied through FE modeling was an injection-
molded composite where the polymer matrix was polypropylene, and the fiber fillers were
E-glass fibers. The E-glass fibers were approximately 10 µm in diameter, and had varying
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lengths and orientations in the final composite specimen, due to the injection molding
process [42]. The injection-molded part was a cylindrical rod with a diameter of 1.27 cm
and a length of 45.72 cm, where the injection-molding direction was in the length direction
of the cylinder (Z-axis in Figure 1). The cylindrical rod was then machined into a smaller
dog-bone-shaped specimen with a gauge section diameter of 2.5 mm and a gauge section
length of 5 mm.

In order to extract the 3D properties of the microstructure, as well as create a 3D FE
model that can compute the local stresses within the microstructure, X-ray micro-computed
tomography was conducted. The data acquisition was conducted at the Advanced Photon
Source in Argonne National Laboratory at beam-line 2-BM using synchrotron X-rays.
X-ray projections were acquired using X-ray energy of 25 keV and a detector exposure
time of 100 ms. The detector used for capturing the X-ray projections was placed 75 mm
downstream from the specimen. The specimen was rotated at 0.5°/s through a range of
180°, where an X-ray projection was acquired every 0.12°. The total 1500 X-ray projections
were reconstructed using TomoPy [43] into a 3D image volume with dimensions of 3.33 by
3.33 by 1.61 mm (with a pixel size of 1.3 µm).

The set-up for the X-ray micro-computed tomography is shown in Figure 1, which is
reprinted with permission from [44]. The segmentation and feature-identification steps are
described by Agyei and Sangid [45], which also shows the fiber length distribution, fiber
orientation distribution, and porosity distribution. The X-ray micro-computed tomography
technique does have limitations (namely the characterization of a small region of interest
that may divide fibers on the border of the characterized region, as well as restrictions
on feature resolution resulting from a pixel size of 1.3 µm). The X-ray micro-computed
tomography results have been directly compared to destructive optical characterization [46].
The discrepancies between the two methods have been quantified and the resulting uncer-
tainties in the stiffness resulting from differences in the segmented microstructure and pore
defects have been reported [46].

Figure 1. An overview of the X-ray micro-computed tomography: (A) set-up, (B) reconstructed
tomography volume, (C) region of interest, and (D) segmented fibers in the volume. This figure is
reprinted from Ref. [44], with permission from Elsevier.
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3. Finite Element Simulation

The 3D image volume required several image-processing steps in order to extract
the microstructural features of interest for the FE simulation. Specifically, a total of four
feature types needed to be detected and extracted: the exterior edge of the specimen, the
glass fibers, the porosity, and the polymer matrix. The exterior edge of the specimen was
detected using an in-house MATLAB 2020b algorithm that uses an initial guess of the center
and radius of the specimen. This is followed by automated image processing, which maps
the image intensity values from a range of [0, 1] to a range of [0.4, 0.9], converts the image
into a binary image using a threshold of 0.655 of the median intensity of the image, dilates
the binarized image using a disk structural element with a radius of four pixels, and finally
adjusts the binarized image by filling any holes [22]. The specimen edge detection was
verified using ModLayer [47].

The glass fibers were detected using an iterative and supervised 2D and 3D combined
algorithm [45]. Next, the porosity was detected using a combination of Weka machine
learning segmentation [48] and manual correction using ModLayer [47]. Lastly, voxels
within the interior of the specimen that were not classified as fibers or pores were labeled
as the polymer matrix. The final detection of all the microstructural features was verified
using ModLayer [47]. A region of interest was virtually down-selected and can be seen in
Figure 2A. This region was chosen because it was determined to be a critical region that
exhibited significant experimental damage within the microstructure [22].

Figure 2. The segmented specimen microstructure is shown in (A), where the blue state represents the
polymer and the yellow state represents fibers, and the FE simulation result is shown in (B), where
the Von Mises stress is plotted.

The meshing of this down-selected region was conducted in ParaView. First, vox-
els that were characterized as porosity were removed from the 3D volume, effectively
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creating gaps within the polymer matrix. The remaining voxels (which corresponded
to the fibers and the matrix) were meshed using tetrahedral elements directly from the
voxelated microstructure, which resulted in ideal and geometrically identical tetrahedral
elements [22]. In total, the down-selected region of interest shown in Figure 2 contained
44.5 million elements.

The meshed fiber elements were assigned linear elastic mechanical properties with an
elastic modulus of 72.4 GPa and a Poisson’s ratio of 0.2 [49,50]. The meshed matrix elements
were assigned non-linear mechanical behavior properties using a multi-linear isotropic
hardening model [51]. The positive X, negative Y, and negative Z surfaces (Figure 2) were
assigned roller boundary conditions. The positive Z surface was displaced positively by
7.8 µm [22]. The free surface of the specimen was allowed to remain a free surface with no
boundary condition. The FE simulation was solved in Abaqus using 300 parallel processors
with 1.92 TB of memory in 92.5 h. A sample of the result of the simulation is shown in
Figure 2B, where the Von Misses stress is plotted. The result of the simulation has been
validated by Hanhan et al., who showed that locations of high stress spatially matched with
locations of local experimental damage initiation (in the form of micro-void nucleation) [22].
For the machine learning application in this work, the segmented microstructure and the
FE stress in the loading direction, σzz, was used for data sampling, training, and testing.

4. Methodology: Deep Learning Framework
4.1. Data Sampling

Since the segmented microstructure shown in Figure 2A was represented by unit-
less square voxels (with a voxel size of 1.3 by 1.3 by 1.3 µm), and the FE simulation was
represented by tetrahedral mesh elements measured in µm, the stress field data were
resized using the scipy.ndimage.zoom method via order 3 spline interpolation to match
the segmented data. Data points were selected from the segmented microstructure and the
corresponding stress field, with a sampling window size of 32 × 32 pixels. This particular
sampling window size was chosen in order to (i) contain, on average, the entire fiber’s
cross-section, (ii) generate as many samples as possible, and (iii) serve the downsampling
purpose in the network training process. A sampled data point was stored in a rank 3 array
of the shape (32, 32, 2), with the first two axes indicating the spatial location of a voxel
within the data point and the third axis representing the voxel microstructure type and
stress value. During the sampling process, there was no overlapping between the sampling
windows, which ensured that each data point was unique in the dataset. To investigate the
importance of the sampling plane to the model performance, data points of equal size were
sampled from three planes, namely the xy-plane, xz-plane, and yz-plane, and the data from
different planes were used to train and evaluate the networks.

4.2. Preprocessing

In order to evaluate the model performance on unseen data, the sampled data points
were randomly split into a training set and a testing set with no overlapping in between.
The training set contained 80% of the entire dataset and the testing set contained 20%. In
addition, since the standardization or normalization of the input data can accelerate the
training process, the input of the model was standardized. In this work, all microstructure
images from the sampled data points were standardized using the sample mean and
standard deviation with the same shape as the input in the training set. Specifically, the
input data, X, for both the training set and the testing set were standardized as shown in
Equation (1),

Xnorm =
X − µtrain

σtrain
(1)

where µtrain and σtrain are the sample mean and standard deviation from the data points in
the training set, respectively. It is important to note that if the trained model is used for
new predictions, the new input data would need to be standardized in the same manner.
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4.3. Network Architecture

A CNN-based network, shown in Figure 3, was adopted from StressNet [41] for
predicting the stress field given the microstructure. StressNet was originally developed to
identify the stress field of linear elastic materials. In this study, StressNet was adopted and
modified to extend to the non-linear mechanical behavior of fiber-reinforced polymers. The
network is comprised of an input layer, an output layer, and 11 hidden layers in between.
The input is the segmented microstructure array of size 32 × 32, denoted by X. A typical
convolutional block consists of one or more convolutional layers and a pooling layer. In
this section, we describe the convolution operations and pooling operations, which are
accompanied by the details of the network architecture in Table 1.

Table 1. Network architecture description.

Operation Layers Number of Filters Kernel Size Stride Padding Output Size

Input Segmented Microstructure - - - - 32 × 32 × 1

Convolution Layer ReLU 32 3 × 3 1 × 1 SAME 32 × 32 × 32

Pooling Max pooling - 2 × 2 2 × 2 SAME 16 × 16 × 16

Convolution Layer ReLU 64 3 × 3 1 × 1 SAME 16 × 16 × 64

Pooling Max pooling - 2 × 2 2 × 2 SAME 8 × 8 × 64

SE ResNet Layer ReLU 64 3 × 3 1 × 1 SAME 8 × 8 × 64

SE ResNet Layer ReLU 64 3 × 3 1 × 1 SAME 8 × 8 × 64

SE ResNet Layer ReLU 64 3 × 3 1 × 1 SAME 8 × 8 × 64

SE ResNet Layer ReLU 64 3 × 3 1 × 1 SAME 8 × 8 × 64

SE ResNet Layer ReLU 64 3 × 3 1 × 1 SAME 8 × 8 × 64

Transposed Convolution ReLU 64 3 × 3 2 × 2 SAME 16 × 16 × 64

Transposed Convolution ReLU 32 3 × 3 2 × 2 SAME 32 × 32 × 32

Convolution Layer - 1 3 × 3 1 × 1 SAME 32 × 32 × 1

Output Stress Field - - - - 32 × 32 × 1

Convolution Global pooling

Dense Dense Sigmoid

Scale

ReLU

Flatten channels

+

Figure 3. Convolutional neural network architecture with an encoder–decoder structure. This
network takes microstructure images of the size 32 × 32 as input and outputs the corresponding
stress field of the same size. The red highlighted blocks are squeeze-excitation residual blocks [52]
and the rest are plain 2D convolution layers with MaxPooling.

Feature maps are obtained after convolving the input array with filters. This can be
expressed as follows:

Si = Wi ⋆ X + bi (2)
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where i denotes the filter number in a layer, Si is the ith feature map generated, Wi is the
weight matrix associated with the ith filter, bi is the bias matrix for the ith filter, and ⋆ is
the convolution operator. At the end of each convolutional layer, an activation function
was applied to the feature maps. Activation functions introduce non-linearity into the
network, enabling the approximation of non-linear underlying functions. A rectified linear
unit (ReLU) was placed as the activation function for each feature map due to its simplicity
in calculating gradients and its ability to prevent gradient vanishing problems [53]. The
formulation of the ReLU is

ReLU(s) =

{
s, if s > 0
0, Otherwise

(3)

where s is the entry of the feature map matrix Si. The corresponding derivative with respect
to s is

dReLU
ds

=

{
1, if s > 0
0, Otherwise

(4)

The final output of each convolutional layer is

O = ReLU(Si) = ReLU(Wi ⋆ X + bi) (5)

Pooling layers in convolutional blocks was performed as a means to down-sample
the feature maps. Depending on the pooling kernel size, stride, and padding options, the
original feature maps were transformed into an array with a smaller size according to a
certain criterion, such as maximum, minimum, average, or global average. The pooling
operations were all max-pooling in our network, in which the maximum value in each
pooling window was preserved, except for the layers involving ResNet and SE blocks.

Among the hidden layers, some layers were made of residual blocks [54] and squeeze-
excitation blocks [52]. These layers increased the network’s representation power by
capturing identical mapping and leveraging the importance of different channels.

4.4. Network Training

The implementation of the network was carried out in Tensorflow v1.15, a differ-
ential programming deep learning framework where the gradient-based optimization
techniques, such as stochastic gradient descent (SGD) and Adam, can be easily achieved
through auto-differentiation and back-propagation. The loss function was chosen as the
mean squared loss (MSE) due to the nature of the regression problem. The optimizer for
the network was Adam [55], which is a gradient-based, adaptive optimization method.
Adam generally performs better than plain SGD due to its usage of momentum, leading
to faster convergence and the ability to adaptively select a separate learning rate for each
parameter as the training goes. A Tesla P100 GPU was utilized to train the network.

4.5. Evaluation Metrics

Due to the regression nature of the problem, we chose the coefficient of determination
(R2) as the metric for the model performance of the testing data. It is defined as

R2 = 1 − SSres

SStot
(6)

where SSres = ∑( f − y)2 and SStot = ∑(y − ȳ)2. Here, f represents the predicted values
from the CNN model, y represents the true values in the FE dataset, and ȳ is the sample
mean of y. Since R2 measures the fraction of the variance in the data that can be explained
by the model, a perfect model is expected to have an R2 of 1.
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5. Results and Discussion

In order to create a model that effectively uses the segmented microstructure as an
input and generates σzz as the output, models with the same network architecture were
trained on sampled data points from different planes. Data points sampled from the
xy-plane, yz-plane, and xz-plane were used to train the models, and the models were
evaluated on the designated testing set. The sampled datasets from the aforementioned
three orthogonal planes were of the same size. They contained 5321 data points each, in
which 20% were reserved for testing. All the networks were trained with 5000 epochs
(the number of times that the network goes through the entire training set) with batch-
normalization [56].

Figure 4A,B show the model training process on the 2D slices sampled from the
xy-plane. As the number of epochs increased, the MSE values from both the training
and testing decreased, and became stable after around 400 epochs, with a final testing
error that was slightly higher than the training error. The opposite trend can be observed
in the training process measured in R2, where the scores on training and testing sets
increased with the number of epochs. The curves also became flat after around 400 epochs,
corresponding to a higher R2 score for the training set compared to the testing set.

Figure 4. Mean squared error of training and testing losses (top) and curves of the coefficient of
determination of model prediction on the training and testing sets (bottom) for each of the three
orthogonal planes: (A,B) xy−plane, (C,D) xz−plane, and (E,F) yz−plane.

Figure 4C,D show the model training curves on the 2D slices sampled from the xz-
plane. Similarly, the MSE values decreased as the number of epochs increased, while
the gap between the training error and testing error was larger (after reaching stability)
compared to the training process on the xy-plane data. In terms of the R2 scores, although
the score on the training set was comparable to that for the xy-plane shown in Figure 4B,
the score on the testing set was much lower, making the data sampled from the xz-plane
less reliable in predicting σzz.

The curves of the training process on slices sampled from the yz-plane are shown
in Figure 4E,F. They generally follow the trend presented in the models trained on slices
from the xy-plane and xz-plane. However, the model performance on the testing set was
evidently worse than the previous models, although the training loss and R2 score on the
training set were close.

Table 2 shows the model’s highest training and testing results using input data sampled
from different planes throughout the training process to predict σzz. All models showed
overfitting to some degree; however, the model that was trained on data sampled from the
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xy-plane had the best performance, with an R2 score on the testing set of 0.69, indicating
that data sampled from the xy-plane contained the most relevant information for predicting
the corresponding values of σzz.

Although the testing R2 of the best performing model (using input microstructural
data sampled from the xy-plane) was not 1, it was able to capture the overall σzz distribution.
Figure 5 shows the visualization of the σzz fields (predicted and true) on select slices in the
xy-plane. The overall predicted σzz on the testing data follows the corresponding stress
fields, which were computed from the FE simulation, especially on areas with extreme
values. The high-stress values consistently occurred within the fibers, and the trained
model was able to accurately pinpoint the location where high stress was experienced
within the fibers. Figure 6 shows the reconstructed composite block and 3D fibers from
the stacked slices used in the network training and testing. Compared to the stress fields
obtained from the FE simulation, the network-learned stress fields had less sharp edges
and lost some details. Nonetheless, the locations and magnitudes of extreme stress values
were consistent between the network prediction and FE simulation, especially relative to
the fibers.

Figure 5. Visualization of the predicted stress fields from the CNN and the true stress fields from the
FE simulation on 9 data points randomly selected from the testing set. The first column shows the
input microstructure; the second column shows the corresponding predicted stress fields; the third
column shows the true stress field obtained from FE simulation; and the fourth and fifth columns
show the predicted and true stress within the fibers, respectively. All stress metrics correspond to the
normal stress relative to the loading direction, σzz.
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(a)

(b)

Figure 6. (First column) 3D phase reconstruction of the microstructure. Reconstructed stress fields
(normal stress along the loading axis) from (second column) the predicted by the CNN model and
(third column) the FE simulation dataset representing the training and testing sets. (a) The stress
field over the entire sample volume of the composite. (b) The stress field within the discontinuous
glass fibers.

The present study is based on the 3D microstructure that is directly determined
from X-ray micro-computed tomography. The non-destructive X-ray micro-computed
tomography imaging of the microstructure can take minutes on a synchrotron source and
hours on a lab-source to acquire. Afterwards, image processing is necessary, which includes
thresholding and segmentation, which can be time-consuming, while machine learning
approaches for segmentation can greatly aid in this process. Afterwards, the FE simulation
of the stress fields is reported to take 92.5 h to run on a supercomputer. The power of
this method is that once trained, the CNN method takes seconds to run on an ordinary
laptop, thus enabling the industrial use of process modeling for injection molding to be
used [57,58] in combination with the stress fields produced by this CNN method to enable
process parameter changes, design modifications, or aid in the model-based certification of
the component.

Table 2. The coefficient of determination (R2) of model performance of predicting the z-stress field on
data sampled from different planes.

Stages xy-Plane xz-Plane yz-Plane

Training 0.88 0.82 0.80

Testing 0.69 0.51 0.33

Some limitations exist in this study. First, due to the high computational cost of the FE
simulation, there was only one fiber-reinforced composite specimen available for network
training and testing. This not only poses difficulties in training a network that has a strong
generalization ability, but it also creates challenges in validating the trained network on
other composites. Second, no-load, displacement conditions or boundary conditions were
taken into account as part of the network input (as the CNN input was restricted to the
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stress field results from the FE simulation, which did not include the model set-up or
evolution of the stress fields during loading), which might have prevented the network
from learning a highly precise mapping to the stress field. It also limits the applicable
scenarios of the trained network, since it is only expected to work when predicting the stress
field of a composite that is under the same conditions as the one used in training. Lastly,
the slices were only sampled in two dimensions and from orthogonal planes, resulting in a
possible loss of information. These limitations are to be addressed in future studies.

6. Conclusions

In this work, a fully convolutional neural network with an encoder–decoder structure
was used to predict the stress field from the 2D microstructure slices of a fiber-reinforced
polymer specimen. The CNN model was trained on FE simulations of an exact 3D mi-
crostructure, which demonstrated that the areas of highest stress corresponded to damage
initiation via in situ X-ray micro-computed tomography [22]. Hence, it is postulated as a
corollary that the CNN model could identify regions of incipient damage relative to the
microstructural features of a composite. Furthermore, the model was able to make fast
predictions from the given 2D microstructure images via a single forward pass. The training
and testing results show that the network performed best on segmented microstructural
images sampled from the xy-plane to predict the normal stress field in the z-direction,
σzz. Despite the suboptimal testing metric scores on the complete stress field, the network
was able to capture the important characteristics of the stress distribution, especially on
fibers, based on the visualized results. This network has proven to be useful in learning
microstructure stress mapping for non-linear fiber-reinforced polymers. It can help accel-
erate the evaluation of the structural integrity and potentially assist in the identification
of the locations where incipient damage formation could occur. Nevertheless, the trained
network is only expected to work on fiber-reinforced composites under the same settings
as the specimen used in this study. To expand the generalization ability of a trained net-
work, some future work can involve (1) adding load and various boundary conditions
into the training process using the same network; (2) adopting the Conditional Generative
Adversarial Network (CGAN) [59] to learn stress fields conditioned on different boundary
conditions so that new stress fields can be generated based on other boundary conditions;
and (3) sampling 3D blocks and utilizing a 3D convolution operation to extract features,
which is expected to preserve more spatial information of the data points.
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