
Citation: Amarasinghe, I.T.; Qian, Y.;

Gunawardena, T.; Mendis, P.;

Belleville, B. Composite Panels from

Wood Waste: A Detailed Review of

Processes, Standards, and

Applications. J. Compos. Sci. 2024, 8,

417. https://doi.org/10.3390/

jcs8100417

Academic Editors: Julfikar Haider

and Swadesh Kumar Singh

Received: 12 September 2024

Revised: 4 October 2024

Accepted: 9 October 2024

Published: 11 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Composite Panels from Wood Waste: A Detailed Review of
Processes, Standards, and Applications
Isuri Tamura Amarasinghe 1 , Yi Qian 1 , Tharaka Gunawardena 1 , Priyan Mendis 1,* and Benoit Belleville 2

1 Department of Infrastructure Engineering, The University of Melbourne, Parkville 3052, Australia;
iamarasinghe@student.unimelb.edu.au (I.T.A.); yqqian2@student.unimelb.edu.au (Y.Q.);
tgu@unimelb.edu.au (T.G.)

2 School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville 3052, Australia;
benoit.belleville@unimelb.edu.au

* Correspondence: pamendis@unimelb.edu.au

Abstract: The global demand for sustainable building materials has fuelled research into composite
panels from wood waste. Despite their potential, the widespread adoption of this practice is hindered
by the absence of quality standards, inconsistent material properties, and uncertainties about durabil-
ity and strength. This paper critically reviews existing standards, manufacturing processes, and the
suitability of panels from wood waste. A systematic review is conducted to identify the influencing
processes and parameters affecting panel performance, from waste collection to the finishing stages.
The findings indicate that incorporating 10–30% of wood waste can enhance the mechanical and
physical properties, with particularly improved hygroscopic properties and greater dimensional
stability. By establishing comprehensive standards and optimizing manufacturing processes, wood
waste-based panels can emerge as a viable and eco-friendly alternative. Furthermore, the potential
for repeated recycling in a closed-loop process offers promising environmental benefits, though it
necessitates balancing resource conservation with product quality. By addressing these challenges,
wood waste-based panels can significantly contribute to environmental conservation and resource
management.

Keywords: wood waste; recycling; wood panels; cascading wood; timber; engineered wood products

1. Introduction

With an increase in demand for wood-based products over the past few years, particu-
larly in the construction and furniture industries, wood-based composite panels have risen
in popularity due to their cost-effectiveness, consistency, and versatility [1]. The potential of
using logs and lumber more efficiently by incorporating lower-grade wood of various sizes
has catered to different applications and is considered to be a more sustainable alternative
to traditional timber panels. Due to the rising population, urbanization, and increasing
disposable income, the global wood-based panel industry is projected to increase in the
future, and, by 2030, their consumption is expected to reach over 500 million m3 [2].

Wood-based panels are defined as sheet-like products made by combining fibres,
veneers, and particles, bonded with adhesives and pressed under heat [3]. These can be
classified into several diverse types according to parameters such as particle size, density,
and manufacturing process type, as shown in Figure 1. Among these panels, plywood,
medium-density fibreboard (MDF), particleboard, and oriented strand board (OSB) are
most commonly used as building materials, due to their higher density, strength, and
durability [4].

In addition to wood particles, these composite panels also incorporate polymer matrix
resins, which play a crucial role in binding the wood reinforcements and enhancing the
overall mechanical and physical properties. The final panel’s characteristics vary signifi-
cantly depending on the type of wood particles and adhesives used. The polymer matrix
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ensures the wood particles are bound together effectively, contributing to the panel’s overall
mechanical and physical properties.
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The use of alternative biomass with high lignin and cellulose composition in the
production of these wood panels has become a popular area of interest due to its wide
availability and environmentally friendly nature. Agricultural biomass that can be used as
alternatives can be categorized into straw, stalk, bagasse, seed/fruit, leaf, grass, and palm.
A thorough review of the different kinds of materials under these categories can be found
in the study conducted by Lee et al. [6]. These lignocellulosic materials are found to be a
good wood replacement in producing composite wood panels suitable for interior use, but
further research is necessary in terms of their dimensional stability and water absorption
for more widespread applications [7–9].

Researchers have also explored the integration of various forms of waste materials
into the production of wood-based composite panels. Some of the waste incorporated
includes rubber chips from waste tyres [10], paper residue [11], recycled plastics [12], and
industrial waste such as textiles [13,14]. However, the most popular waste material that
has been considered in these studies is the use of “wood waste”. “Wood waste” can be
in various forms, shapes, and sizes, from large construction timber beams and planks to
small fine wood chips and sawdust particles. Some examples of wood waste forms are
illustrated in Figure 2. Even though they are termed “wood waste”, some of these “wood
waste” materials include by-products generated in forms such as sawdust and wood chips,
which are often used in the production of panels such as particleboard and fibreboard. For
this study, the term “wood waste” will be used hereafter as per the definition of the EU
Waste Framework Directive [15], which is “any substance or objective which the holder
discards, intends or is required to discard”. This can be any form of wood that emerges as
a result of in-between production processes or daily activities by individuals or society and
is in line with the definition used for similar studies [16–19].

The study by Jahan et al. [20] emphasises the growing seriousness of the wood waste
problem, revealing that around 10% of landfill waste comes from construction and de-
molition wood. Moreover, according to Höglmeier et al. [21], the production of wood in
Europe is predicated to be insufficient by 2030, and more clear indicators of the global wood
shortage can be seen in countries like Australia where the availability of traditional timber
has been severely affected by many recent bushfires and the import restrictions during the
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COVID-19 pandemic [22]. The inclusion of wood waste in wood panels promises to be a
sustainable solution, with a case study in Germany revealing that up to 45% of recovered
wood from building deconstruction is suitable as raw material for wood panel produc-
tion [23]. By incorporating wood waste in panel production, as the wood is reused multiple
times before being disposed of, the resource efficiency is significantly improved [24].
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However, the use of wood waste in panel production has several limitations, due to
the heterogeneity of the material. According to the type and origin of the wood waste used,
the eventual physical and mechanical properties of the wood panel would differ greatly.
Even wood waste from building demolitions will have a different suitability depending on
the use, with exterior wall panels tending to have higher wear and the attachment of other
materials, while independent parts such as roof trusses and claddings are more suitable
for recycling [25]. Treated wood waste introduces additional complications in using it
for panel production. The chemical treatments applied for various purposes, including
durability enhancement, resistance to decay, and protection against pests, can hinder the
panel production process, affect the final panel properties, and pose environmental and
health concerns [26–28].

Possibly due to this heterogeneity, there is a lack of adequate standards and guidelines
that can be adopted in a global context in terms of the physical and mechanical properties
of these wood waste panels. While the existing standards for wood panels can be sufficient
in determining the suitability of the final properties of the composite panels made from
wood waste, there is a need for proper standards to be established on the suitability of the
wood waste as a raw material for the fabrication of composite wood panels. These could
include but are not limited to the contaminant limits present in the recycled wood, the
dimensional stability, and the compatibility with finishes and coatings.

Therefore, this study presents an overview of the current state of knowledge on
the available standards, manufacturing processes, and viability of wood-based panels
derived from wood waste for various applications. The manufacturing methods discussed
here include the traditional processes of particleboard and fibreboard production from
wood waste, as well as emerging innovative technologies. The emphasis is placed on the
advancements made in reducing energy consumption, emissions, and enhancing product
quality.

Moreover, this study discusses the suitability of these wood waste panels and evaluates
their mechanical and physical properties in comparison to the relevant standards available.
The environmental impact of the cascading use of wood is also explored, highlighting
the immense potential of using wood waste as a sustainable raw material for engineered
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wood. It sheds light on the current challenges and opportunities faced in the industry,
emphasising the need for continued research and industrial technological advancements to
ensure the widespread adoption of this eco-friendly solution in the global market.

2. Methodology
2.1. Network Visualisation of Previous Studies

To comprehensively assess the standards of wood waste, manufacturing processes,
and the suitability of wood panels made from wood waste, a systematic and rigorous
review of the literature was conducted. To initiate the process, a set of keywords and search
terms related to wood-based panels, wood waste, particleboards, and fibreboards were
identified. These keywords were used to formulate search queries from two major academic
databases—Scopus and Web of Science—ensuring the inclusion of studies published until
November 2023. Moreover, specific industrial information that is publicly available was
also considered, including data sheets and patents relating to wood panel production.

The primary focus was on articles that discussed the standards, manufacturing pro-
cesses, and suitability aspects of particleboards and fibreboards made from wood waste.
The initial search yielded 1498 publications. These were then screened for duplicates and
based on their relevance to the topic. For this study, as the focus was the all-wood composite
panels produced from wood waste, the research on composite wood panels that included
other biomaterials such as cotton, coconut coir, and bamboo, as well as other composite
materials such as concrete, polymers, and steel, was not considered. After screening, the
remaining 189 publications were subjected to a qualitative content analysis using a VOS
viewer to identify the similarities and current trends in the literature [29,30]. A network vi-
sualisation of the co-occurrences of the keywords is illustrated in Figure 3, which identifies
the clusters of relevant publications in this area.
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Four distinct clusters were identified, which are represented using the four different
colours: red, green, blue, and yellow. These clusters were determined based on the
relationships between the nodes, and the most prominent nodes in these clusters included
the keywords particleboard, wood, waste, recycling, and mechanical properties. Moreover,
clusters such as durability, microstructure, compatibility, impact, and circular economy
were identified as emerging areas.

2.2. Review Studies of Wood Waste Panels

Several review studies have been conducted over the years on the usability of wood
waste in wood panel manufacturing. These review studies focus particularly on the
characteristics of the wood waste, as well as the characteristics’ overall effect on the physical
and mechanical properties of the wood panels [6,31,32]. When manufacturing these wood
waste panels, the different methods available for each step of the process need to be
carefully considered to optimise the productivity and quality of the end products. Some of
these steps have been studied and reviewed [33,34]; however, an in-depth review of the
production process is lacking, which includes the effect of different wood waste treatment
methods, particle size distribution, and manufacturing processes, as well as the thermal,
acoustic, and environmental performance of the wood waste panels. A comprehensive
overview is needed in the abovementioned areas and on the emerging methods and trends
to reduce energy consumption, emissions, and overall carbon footprint.

Other research gaps identified include an overview of the standards of wood waste
and recycled wood-based panels and to what extent these manufactured panels are utilized.
To address these limitations, this study aims to find answers in the following areas.

• What are the available wood waste quality standards and requirements for these
materials to be used in wood waste panels for construction?

• How much of an effect do the parameters within the manufacturing process, including
pre-treatment methods, particle size and properties, wood waste percentage, pressing
conditions, etc., have on the improvement of the physical and mechanical strength of
the manufactured panels?

• How well do such manufactured boards commonly available in the construction
industry meet the performance requirements specified by the standards?

This study will be beneficial in planning future in-depth research on incorporating
wood waste in wood panel manufacturing, by identifying the best treatment method, wood
waste proportion, and manufacturing process. It will assist in identifying the available
standards and requirements in terms of structural performance and the suitability of these
panels.

One major finding in the study conducted by Nguyen et al. [32] is that there is a lack
of research on manufacturing plywood and oriented strand board (OSB) from wood waste.
The little research that has considered wood waste inclusion in the manufacturing of OSB
has been limited to small inclusions such as substitutes for the core layer [35,36]. The reason
for this is the difficulty in processing wood waste material into the veneers needed for
plywood manufacturing, which typically involves log peeling or slicing. This demands the
log to be straight and cylindrical, a requirement that poses difficulties when working with
wood waste and the elevated level of sorting required for OSB. Therefore, this study will
mainly focus on manufacturing fibreboards and particleboards using wood waste material.
While there are studies available that investigate the production of wood panels directly
by treating and laminating larger pieces of recovered wood [37], the focus here will be on
the wood panel production from wood waste as a raw material in forms such as chips,
strands, fibre, and sawdust. Wood chips are small pieces of wood obtained by chipping
or shredding larger pieces of wood, while strands are longer and thicker and created by
slicing or peeling. Wood fibres are long thin strands of wood that are much finer than the
wood chips generally made by pulping or mechanical refining. The smallest wood residue
type is sawdust, which is the fine particles of wood created by sawing, grinding, or sanding
wood [38].
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3. Manufacturing Process

It is observed that the manufacturing methods of wood panels from wood waste
follow a similar process, irrespective of the type of panel being produced [39]. This process
is illustrated in Figure 4 and is known as the “dry process”, which mixes dried wood
particles with small amounts of adhesive before laying out and steam-pressing.

Another manufacturing method available is the “wet process”, which is often used
for fibreboard production. In the wet process, the wood particles are mixed with water
and turned into a pulp before moulding and being steam-pressed. In this process, the
sugars in the wood dissolve and the lignin in the wood structure is softened, which acts as
a binder to hold the fibres together without the need for an additional binding material to
be added [40].
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However, studies conducted on wood panels from wood waste using the wet process
are limited, because most studies have investigated the dry process. This could be due to
the main advantage of the dry process being the ability to manufacture boards with higher
thicknesses, usually up to 200 mm, while being lighter compared to wet-processed boards,
making them ideal for roofing and wall applications [42].

This section will investigate the step-by-step details of the dry process manufacturing
of wood panels and how different parameters in each step affect the quality of the wood
panels produced from wood waste.

3.1. Wood Waste Classification

The initial step of the process is sourcing the wood waste. The main origins of
recovered wood used for wood panel production are offcuts, packaging, construction and
demolition waste, renovation, and furniture. For a comprehensive review of the origins
and constitution of these wood waste, readers can refer to [32,43,44].

In most European countries, wood waste is classified under either the German or
British classification (Table 1). Most other countries do not have separate classifications
for wood waste and follow a risk-based classification system for general solid waste [45].
For example, in Australia, both wood waste and any timber from building and demolition
waste are categorized as general solid waste, which is non-putrescible, and no further
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classification is available, which makes it difficult to consider the viability of recovering or
understanding the characteristics of the wood waste [46,47].

In contrast, the European classifications give a broader classification of wood waste
and denote that untreated and non-hazardous wood waste can be used as the material
for wood panel production. However, these classifications are broad and subjective and
lack proper guidance or standards on defining the required parameters of wood waste for
wood panel production. For particleboards, an alternative classification by the European
Panel Federation gives limiting values to certain elements, including metals, halogens,
and pentachlorophenol (PCP) in the wood waste [48]. However, other properties such as
particle properties and size, density measurements, fibre analysis, chemical and mechanical
testing, adhesive compatibility, and formaldehyde emission testing should be carried out
to properly identify the suitability of wood waste for wood panel production.

Table 1. European wood waste classifications.

Country Wood Waste
Category Description Examples Applications Other Adopted

Countries

Germany
[49]

A I Untreated/
mechanically treated

Cuttings and shavings
from solid wood,

pallets, and cable reels
made from solid wood

Chips and shavings to
produce wood-based
materials, synthetic
gas, and activated
carbon products

Belgium, Denmark,
and Poland

A II

Glued or painted
wood (no halogen

organic compounds or
preservatives)

Pallets made from
derived timber
products and
particleboard

A III
Wood containing
halogen organic

compounds

Particleboards and
pallets with

halogenated organic
compounds

Used as material if
varnish and coatings

are removed

A IV Contaminated wood
Railway sleepers,

telephone masts, and
hop poles

Energy use by
combustion

UK
[50]

Grade A Visibly clean and
chemically untreated

Solid softwood and
hardwood, packaging
waste, scrap pallets,

and offcuts from sawn
timber

Manufacture
consumer products

such as animal
bedding, pellets, and

as fuel

Finland, France,
and the

Netherlands

Grade B
Chemically treated,

non-hazardous
business waste

Building demolition
materials and

domestic furniture
made from solid wood

Manufacture of panel
board products

Grade C
Chemically treated,

non-hazardous
municipal waste

Municipal wood
waste, furniture made
from board products

Manufacture for panel
board in controlled

volumes

Grade D Chemically treated
hazardous waste

Agricultural fencing,
telegraph poles, and

railway sleepers
Licenced disposal

For wood waste categorisation for particleboard production, the inclusion of any
type of fibreboard waste is automatically categorised as “low-quality” wood waste [51].
This is consistent with the study by Daian and Ozarska [18], where MDF offcuts are not
an accepted form of wood waste for particleboard manufacturing. One reason for this
exclusion is the higher degree of contaminant removal control necessary for the fibreboard
waste to be suitable as a raw material. Another is the final boards manufactured using this
material have significantly lower mechanical properties compared to other wood waste
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types. The inclusion of 50% MDF waste shows up to a 55% decrease in the Modulus of
Rupture of the manufactured particleboards, which is not desirable [52].

This classification is particularly vital for assessing the appropriateness of utilizing
wood waste in the production of wood panels, as the inherent species of the wood signif-
icantly influences the mechanical and physical characteristics of the final manufactured
panel. Although comprehensive analyses of various wood species and their properties are
documented in the existing literature [53,54], there is currently no established method for
pinpointing this parameter specifically for wood waste. This absence introduces uncertainty
regarding the strength and durability of the end product.

In order to develop and adopt a consistent global standard for wood waste classifica-
tion, it is necessary to understand the key properties that will affect the particular usage of
the waste wood and set limitations to these selected parameters using both chemical and
physical testing methods. Harmonizing standards could involve creating a framework that
consolidates best practices by conducting a comparative study of the available standards,
identifying the key parameters that need to be considered for each end use, and defining
the allowable limitations according to the adapting country or region. Developing a unified
classification could also include methods for identifying and accounting for the wood
species in wood waste streams to enhance quality control.

3.2. Pre-Treatment Methods

The contaminants from recovered wood can include different fastenings such as nails,
cement, gypsum, and the organic or inorganic binders that are used in the manufacturing
process, as well as the additives used for finishing and protection [55]. Apart from the
difficulty in predicting the properties of the manufactured boards due to the heterogeneity
of wood waste, the end products created from this waste can have profoundly serious
health and environmental impacts. In particular, the most common binders used for
wood, formaldehyde-based resins, release toxic emanations during their lifetime [56]. The
inclusion of these contaminants can severely affect the recyclability of wood waste, and
the proper treatment of the wood waste needs to be carried out before using it in the
manufacturing process of new wood panels. There are three main methods available to
prepare particles from agglomerated wood waste by way of pre-treatment. These are
mechanical, chemical, and hydrothermal treatments.

3.2.1. Mechanical Treatment

As an essential step for wood panel production, mechanical treatment includes grind-
ing, chipping, or hammermilling large wood pieces and breaking them down into chips
and fibres. By reducing the size of the wood waste, it is possible to improve the binding
properties of the wood particles. Often, wood waste is processed in grinders with an
electromagnet to remove any metals present [57]. Several mechanical treatment methods
have been developed over the years to treat wood waste and make it suitable for new
wood panel production, but most of these methods require large machinery and have been
observed as not being very energy efficient [1,58].

The mechanical treatment of wood waste is a dry process and is usually conducted un-
der elevated temperatures to facilitate the separation of wood particles from contaminants.
One such treatment includes a twin extruder machine, as used by Roffael et al. [59], where
a high shear action was used to defibrate the particleboards and fibreboards from discarded
furniture in a temperature range of 90–110 ◦C to produce fibres. Another study conducted
the treatment of wood waste from packaging boxes in a rotating cylindrical stove at a
higher temperature, ranging from 180 to 220 ◦C, for particleboard production [58]. It was
observed that the mass loss was significantly small up to a temperature of 220 ◦C, and the
particleboards produced from the heat-treated wood waste particles showed improved
dimensional stability and lower hygroscopicity. While the mechanical properties of the
panel are lower compared to the panels made from virgin fibre, the internal bond (IB),
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Modulus of Rupture (MOR), and Modulus of Elasticity (MOE) of the wood waste panels
were still able to meet the required standard values.

3.2.2. Chemical Treatment

The chemical treatment of wood waste involves the treatment of the wood with chem-
icals and altering the properties to remove contaminants. A common chemical treatment
method is impregnating or submerging the wood with a chemical mixture, often sodium
hydroxide or sulfuric acid. By doing this, delignification occurs, where the lignin and hemi-
cellulose components of the wood are broken down and the wood fibres can be extracted.
Once extracted, a neutralising agent such as sodium bisulphite is used to balance the pH of
the particles [60].

Often, these chemical treatment methods are used to disintegrate non-hydrolysable
resins in recovered wood. However, these conditions are often harsh and can lead to the
partial or complete disintegration of the wood, which reduces the mechanical properties
of the panels drastically, as well as increasing the pH of the manufactured panels [61].
Therefore, while this treatment method can be beneficial for other uses of wood waste, such
as for feedstock mixture [62], it is not recommended as a pre-treatment method for wood
particles for particleboard and fibreboard production.

3.2.3. Hydrothermal Treatment

The most common method used for wood waste pre-treatment is the hydrothermal
treatment, first introduced by Sandberg et al. [63]. Here, the wood waste is exposed to an
elevated temperature of steam, water, or buffer solutions, which help separate the resins
and other chemical contaminants. As water is used as the main treatment method, this
method is preferred, and widely used in the industry, over other treatment methods and
performs an 80% or more removal of resins from the fibres [64,65].

The temperature and treatment period play a direct role in determining the effective-
ness of the hydrothermal treatment. Traditionally, the temperature used for the hydrother-
mal treatment is between 180 and 240 ◦C [66]. However, using higher temperatures to treat
wood waste results in reduced water resistance and an undesirable formaldehyde emission
of the final panels. By increasing the treatment temperature from 40 ◦C to 150 ◦C for the
same reaction time, drastic increases in the pH value, formaldehyde release (Figure 5),
and formic release can be observed [67]. These results match those from the study by
Hüster [68].
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Figure 5. Formaldehyde release from pine chips and recycling chips under hydrothermal treatment
in (a) different temperatures for a 3 h treatment period, and (b) different treatment periods at 103 ◦C,
adapted from Roffael and Hüster [67].
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The type of resin remaining in the wood waste also affects the effectiveness of the
hydrothermal treatment. For example, while this method works well with treating wood
waste with urea–formaldehyde (UF) resin, which is prone to hydrolysis and offers mod-
erate to low resistance to temperatures above 50 ◦C, it has less effect in treating wood
waste bonded with phenol formaldehyde, which is less subjectable to hydrolysis and more
resistant to water, high temperatures, and chemical aging [38,66]. Detailed reviews on
the chemical reaction during the hydrolysis of cured UF resin can be found in the litera-
ture [69]. Even with the incorporation of acidic solutions of different concentrations into
the hydrolysis procedure, while the final panels satisfy the physical properties required by
the standards, the mechanical properties are often not reached, and the panels show low
bending strength and internal bonding [70].

Therefore, different wood waste has been subjected to different temperatures, treat-
ment types, and solutions to find the most optimum treatment method that is strong enough
to extract the resin content from the wood waste but preserves the properties of the wood
so as not to degrade the quality of the final panels. As per these studies, mild conditions
are recommended to be used for the hydrothermal treatment, as higher temperatures and
longer treatment times cause the hydrolysis of wood polymers, which, in turn, reduce the
strength properties of the wood waste-treated particles [61,71]. Further, numerical studies
found in the literature help identify the optimum hydrothermal treatment conditions more
efficiently. A mathematical model developed by Gibier et al. [72] models the behaviour of
the formaldehyde and ammonia emissions for varying treatment temperatures, pressures,
and time using a pressurised water steam treatment method, and the results show a close
match between the experimental and numerical values.

As an alternative to hydrothermal treatment, the use of cold water immersion has also
been tested, where the recovered boards are submerged in cold water for
disintegration [55,73]. However, the studies could not achieve the complete failure of
the bonds between the wood particles, and the samples did not show any signs of breaking
down until they were cooked in boiling water. Therefore, the use of cold water in treating
wood waste is suggested to be insufficient. Figure 6 shows some examples of wood waste
treated by these three main methods.
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A study by Wan et al. [61] compares these three treatment methods by means of
hammermilling (mechanical), steam explosion (hydrothermal), and chemical impregnation
(chemical). The most effective breakdown of the particles was observed from the hydrother-
mal treatment, and the particles showed high pH values and buffer capacities. While this
can be expected from the chemically treated wood waste, the reason for the increased
values of the particles from the hydrothermal treatment is due to the balance between the
hydrolysis of the wood components releasing acids and the hydrolysis of the UF resin
releasing a basic solution. This phenomenon is further proven in the study conducted by
Fu et al. [76].
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3.2.4. Combined Treatments

In most studies, several of these treatment methods are combined to treat the wood
waste particles more effectively. The most common combination uses both hydrothermal
and mechanical treatments, where the initial wood waste is broken down by hammering,
followed by a hot water or steam treatment [71,75]. A study carried out to treat recycled
particleboards, using water impregnation before hydrothermal treatment, reports the
optimum recovery parameters to be 45% water retention and a 150 ◦C temperature for
10 min [77]. Lower temperatures and higher water retention rates show undesirable
formaldehyde content values, as well as an adverse effect on the IB values. Similarly, some
studies that use combined treatment methods are shown in Table 2.

Table 2. Combined treatment types used for wood waste for wood panel manufacturing.

Treatment Name

Treatment Method

Description of
Treatment Method

Temperature Duration
(min)

Manufactured
Wood Panel

Reference(s)

M
ec

ha
ni

ca
l

C
he

m
ic

al

H
yd

ro
th

er
m

al

Thermohydrolytic
disintegration ✓ ✓

Steam-treated and
broken down using
centrifugal device

95 ◦C 20–30 MDF [71]

100–160 ◦C 20–100 - [76]

150–190 ◦C 10–20 MDF [75,78]

105–160 ◦C 150 MDF [79]

Hot water
treatment and
disintegration

✓ ✓
Particles cooked in hot

water and disintegrated
using a drum chipper

100 ◦C
30–180 Particleboard [55,80]

60 MDF [81]

Chemo-thermo-
mechanical

method
✓ ✓ ✓

Crushing and
impregnating waste

particles with aqueous
chemical solution and

heating

100–120 ◦C - - [82]

Apart from the three methods of wood waste treatment, new recycling processes
have been introduced in recent years that have focussed on retrieving the wood particles
more efficiently while retaining quality. Some of these methods include low-temperature
pyrolysis [83–85], an electric method [86], and hot-pressing wood particles as a treatment
process [87].

3.3. Chipping and Drying

Once the wood waste is treated, the particles are broken down into smaller sizes if
necessary, usually utilizing a defibrator [59,88]. The particles are then sieved, sorted, and
dried to reach a moisture content (MC) of 2–4%. A low MC of the particles is necessary to
ensure that the panels do not delaminate during the hot-pressing procedure. Considering
the effect of the different particle size distributions of the recovered wood particles, as well
as conducting microscopic and spectroscopic analyses, helps identify the effect of these
particles on the final properties of the particleboards and fibreboards manufactured [89].

3.3.1. Particle Size Distribution of Wood Waste

Particle size distribution is an important consideration in manufacturing wood panels
from wood waste. According to Niemz and Sandberg [90], particle geometry has a direct
influence on the mat density, where a longer length of particles tends to result in lower den-
sity mats, while thicker and wider particles create higher density mats. For particleboards,
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the particles can be divided into four groups, namely, large wood chips (4–10 mm), medium
particles (2–1.25 mm), fine particles (0.63–0.32 mm), and dust (less than 0.32 mm) [88].

Particle geometry is one of the main parameters that affect the properties of the final
board [91]. Particles that are thinner and longer, which have a higher aspect ratio (the ratio
between the particle length and width), have larger surface areas, giving better bonding but
requiring more adhesive per unit of particle surface area [91]. In particleboards made from
wood waste chips, the use of finer particles has shown an increase in some of the physical
and mechanical properties of the panels compared to the use of coarser particles [92]. It has
been observed that the panels with fine particles have lower thickness swelling (TS) and
higher Modulus of Rupture (MOR) and internal bond (IB) values, compared to those made
from coarse particles. In particular, for layered particleboards, the use of finer wood waste
particles, such as sawdust for the core and larger chips for the surface layers, can improve
the mechanical properties of the panel [93]. In this study, a higher sawdust percentage in
the core layer showed improved thickness swelling (TS) and higher Modulus of Rupture
(MOR) and internal bond (IB) values.

For the wood fibre classification by sieve analysis for fibreboard production, the
equivalent results are obtained and they confirm that virgin fibres are coarser than recycled
fibres [81,94]. The treated particles have shorter average lengths and widths, and the
quantity of finer particles will increase (Figure 7). As the particles of wood fibre are
comparatively finer than wood chips, a more complex method than sieve analysis is
required to precisely measure the lengths and determine the size distribution. Several
studies incorporate the use of a fibre classifier machine for this purpose [61].
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The percentage of this particle size reduction depends on the original condition of the
wood waste, as well as the treatment method used. For example, the wood fibres treated
by cooking in water and using a pulp beater show an average length reduction of 12%
compared to natural fibres, while using more impactful treatment methods, such as steam
explosion, can bring this value up to a 30% reduction [61,81]. Thus, due to this reduction
in fibre lengths, a decrease in the mechanical properties of the manufactured panels also
reflects the same percentage decrease.

3.3.2. Microscopic and Spectroscopic Analyses of Wood Waste Particles

Microscopic and spectroscopic analyses of wood particles are often conducted before
the formation of the panels to get a better understanding of their composition and character-
istics. While treatment methods can remove contaminants from the wood particles to some
extent, the remaining pollutants need to be identified and either removed or mitigated
through specialized processes or modifications to ensure the quality and performance of
the final wood-based panels [95]. Several methods, including X-ray Fluorescence Spec-
troscopy (XRF), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy
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(SEM-EDS), and Confocal Laser Scanning Microscopy (CLSM), can be used to identify the
remaining contaminates in the wood particles and as tools to sort these particles [44]. The
authors show that this can be an especially useful tool to determine the efficiency of the
treatment methods. The comparison of the resin (in red) remaining in the wood fibre before
and after a decontamination treatment using a CLSM analysis is shown in Figure 8.
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Fourier transform infrared spectroscopy (FTIR) is another analysis method that is often
used to detect the structural composition of the wood particles and the chemical changes
due to varied factors. By plotting the absorption spectrum of the wood particle sample, it
is possible to identify the different functional groups and chemical bonds present in the
sample. The wavenumber (υ) is expressed in reciprocal centimetres (cm−1) and the range
used for the analysis of the wood particles using FTIR is usually in the range of 400–4000
cm−1 with a resolution of 4 cm−1 [96]. The categorisation of the wavenumbers of the wood
to its corresponding compound is available in the literature [97,98] and often the major
changes in the wood spectra are observed in the “fingerprint region” (1800–850 cm−1).

When comparing virgin fibres and recycled fibres using the FTIR analysis, a study
by Lubis et al. [94] found that the recycled fibres show significant peaks in the range of
1500–1640 cm−1, which is attributed to the primary and secondary amides in the UF resins,
even after going through treatment processes. Another observation was that, compared to
virgin fibres, recycled fibres show broader peaks for inter-molecular bonds, particularly
C-O-C and O-H bonds from cellulose and hemicellulose, indicating that these bonds are
altered during the recycling process. Similar results were observed in other studies [79,99]
concluding that the changes to these bonds can cause differences in the mechanical and
physical properties of the manufactured boards. In particular, the chemical changes in
the recycled wood particles lead to reduced mechanical properties but better dimensional
stability and lower wettability [79].

3.4. Blending with Resin and Adhesives

In composite wood panel production, various polymer resins are used to achieve the
desired structural integrity and moisture resistance. The most common types of resins
used to bond these wood particles include urea–formaldehyde (UF), melamine–urea–
formaldehyde (MUF), phenol–formaldehyde (PF), and isocyanate. These resins fall under
the category of thermosetting resins, which form a rigid, three-dimensional network struc-
ture that is irreversible when cured. Thermoplastic adhesives, which, on the other hand, are
reversible when cured, are available, but the consumption of these are very limited due to
their lower adhesive strength and higher cost [100]. The most-used UF resins are often pre-
ferred due to their lower cost, lighter colour, and ability to produce dimensionally uniform
and smooth-surfaced panels [3]. MUF, on the other hand, is often used for exterior-grade
wood panels and laminates due to its water resistant properties. The chemical structures of
these resins are given in Figure 9. The resins consist of methylene bridges (-CH2-), which
create a strong, stable, and cross-linked polymer network, making the resins resistant to
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environmental factors. For a thorough review of the different types of polymer resins used
for wood-based composite panels, readers are recommended to refer to [100,101].
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Similar to the conventional manufacturing of composite wood panels, the most com-
monly used adhesive for waste wood panels is UF, where generally 8–12% of the resin is
added based on the dry weight of the wood particles, along with a small percentage of ad-
ditives, including ammonium sulphate hardener and paraffin emulsion [58,80]. However,
there have been several studies conducted that use PF, MUF, and isocyanate to create com-
posite wood panels from wood waste showing favourable outcomes. Notably, the study by
Czarnecki et al. [102] used PF resin to produce particleboards from recycled water-resistant
boards and concluded that adding recycled particles to the core in amounts as high as 60%
gives more favourable outcomes in terms of mechanical and physical properties compared
to using UF resin. However, there is a lack of detailed comparative studies in the literature
on the effect of different polymer resins on the performance of composite wood panels.

In most instances, the resin is applied to the wood particles using a rotating drum or
blender to distribute the resin uniformly. The resin acts as a binding agent, forming a matrix
that holds the wood particles together once cured. With the use of wood waste, several
other resin application methods have been explored, including spray coating, dipping,
and vacuum impregnation, to improve the resin penetration into irregularly shaped wood
particles or flakes [103]. One notable study by Yang et al. [104] studies the properties of
particleboard made from recycled wood chips immersed in a water-soluble PF resin. It
was noted in this study that, with the increase in the concentration of the PF solution, the
absorption of the chips increases linearly, and higher concentrations result in better physical
and mechanical properties of the boards. These results coincide with several other pieces of
research, where higher amounts of adhesives have led to better results in terms of thickness
swelling [92,105].

Furthermore, the choice of resin can greatly influence the thermal stability, water
resistance, and durability of the final composite, with thermosetting resins like PF and MUF
offering superior performance in load-bearing applications, while thermoplastics provide
more flexibility and recyclability. Additionally, the curing process—whether through heat,
pressure, or catalysis—also plays a critical role in determining the final properties of the
composite, ensuring that the resin fully hardens and forms a robust bond between the
wood particles.

When creating particleboards and fibreboards from wood waste, one main issue that
arises is the lower bonding between the recycled particles and the resin. Due to the changed
geometry and larger areas of the wood particles, there is a lower contact area between the
particles and the resin [106]. This causes a reduction in the mechanical properties of the
final wood panels.
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However, the presence of cured resin macromolecules in the wood waste helps prevent
moisture absorption by acting as a protective barrier, thus reducing the thickness swelling
and water absorption, while increasing the dimensional stability of the panels.

Most studies that tested different percentages of wood waste incorporated into the
material mixtures reported better hygroscopic properties of the panels [107]. This improve-
ment can be seen by examining the thickness swelling and water absorption after 2 h and
24 h immersion in water of the manufactured panels. Further, it was observed that by
completely replacing natural wood with wood waste particles, it is possible to improve
these properties by a significant amount [108]. The literature on the use of several types of
resin and adhesives for wood panel production is extensive, and several comprehensive
reviews have been conducted [33,109–111].

Isocyanate resins have also become a popular choice of synthetic adhesive for wood-
based panel production, generally used in the form of polymetric methylene diphenyl
diisocyanate (pMDI). The ability of pMDI to create a moisture-resistant, high-strength, and
low-swelling mechanical bond makes it an ideal binder in the wood panel manufacturing
industry [112]. A study conducted by Papadopoulos [113] comparing UF and pMDI shows
that the MDI resin has better bonding strength and higher dimensional stability when used
in particleboard. However, the biggest reason for the preference for isocyanate resins over
more traditional formaldehyde resins is the absence of formaldehyde emissions from the
manufactured panels, making them an eco-friendlier alternative [114].

As an alternative to synthetic adhesives, environmentally friendly bio-based wood
adhesives have also become a field of interest in recent years. These bio-based adhesives are
developed using materials from natural, non-mineral sources and include compounds such
as tannin, soy, lignin, and starch [115]. Lignin and tannins are both natural compounds
found in plant materials, and they can be utilised as natural adhesives in wood panel
production. By incorporating these natural components into the adhesive mixture, it is
possible to reduce the free formaldehyde present while maintaining a good IB strength
in the panels [116]. The general flow of the adhesive production process from lignin and
tannin is illustrated in Figure 10.
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The utilisation of lignin and tannin as natural adhesives in wood panel production
offers several advantages. These include a reduced reliance on the synthetic adhesives
derived from fossil fuels, a lower environmental impact, the improved recyclability of the
wood products, and potentially lower manufacturing costs [117]. However, while they are
available in large quantities for a lower cost, they have shown low reactivity and need to
be degraded and polymerized to be used as adhesives, adding an extra cost component to
the panel manufacturing process [118].

With the development of the use of wood waste particles for particleboard and fibre-
board manufacturing, the use of natural adhesives such as lignin and tannins, which can be
extracted from the wood waste itself instead of using synthetic resins, is an area of research
that has not been convincingly explored and can be developed into manufacturing more
environmentally friendly wood-based panels.

3.5. Mat Forming and Pressing

Once the particles are blended with the resin, they are laid out uniformly across the
specified length and width. The forming of these wood panels can be as a single layer or
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multiple layers. When comparing heterogenous (multi-layer) and homogenous (single-
layer) wood panels, heterogenous wood panels show a significant improvement in physical
and mechanical properties, compared to the latter [119].

Once the mat is formed, the next step is the pressing. Some studies have opted to
pre-press the mat before subjecting it to hot-pressing [99,107,108]. By initially cold-pressing
the mat under approximately 1 MPa of pressure, the board can be made more compact
and made to release the initial air in the mat, so that, during the hot-pressing stage, there
will not be any significant air rush that can damage the panel. Pre-pressing is also useful
in the production of batch-formed or continuous-formed mats to reduce the mat height
and help consolidate the mat before pressing [1]. Hot-pressing plays a critical part in the
wood panel manufacturing process. The heat and pressure during this process cause the
adhesive to cure and bond the wood particles together, creating a strong and dense panel.
The temperature, pressure, and pressing time for the hot press varies according to the panel
type, thickness, and heat transfer efficiency [120].

By using wood waste in the wood panel manufacturing process, the energy used
for the hot-pressing is reduced compared to traditional manufacturing processes. This is
due to two reasons, with the first being the shorter pressing time required. Due to the
higher bulk density of the recovered particles, the mat structure is less compact, and steam
can be easily applied to achieve the final mat in a shorter duration [88,121]. The other
reason is the use of lower temperatures. It has been observed that by increasing the hot
press temperature, there is a considerable decrease in the flexural capacities of the wood
panels, due to the breakdown of the crystalline arrangement of the cellulosic chain [122].
One notable study by Iwakiri et al. [123] evaluates the effect of three different pressing
temperatures and pressing times to manufacture particleboards and concludes that, while
the increase in pressing time did not significantly affect the physical properties of the panels,
the mechanical properties were improved. In contrast, a decrease in the properties was
observed with the use of higher temperatures. The type of resin used can also affect the
pressing temperature.

The use of water-based resins tends to result in a better flow of key lignocellulosic
particles at lower temperatures, compared to pressing with waterless binders at higher
temperatures [124]. Therefore, this study recommends using a lower temperature closer to
180 ◦C, and this observation has been extended in recent studies for wood panels made
from wood waste, as summarised in Table 3.

Table 3. Hot press parameters adopted for wood panels produced from wood waste.

Pressing
Temperature (◦C) Max Pressure (MPa) Pressing Time (min) References

Board Type: Particleboard (12–19 mm thickness)
140–170 4 8–10 [87,125,126]

180 2.5–3 5–8 [58,88,102,104]

190–240 5.75 2.5–4 [108,127]

Board Type: MDF (12–19 mm thickness)
170–180 2–3 3–5 [80,81,128]

190–200 2.5–5 4–10 [71,129,130]

Once the panels are pressed, they are cured at a temperature of 20 ± 2 ◦C with a
relative humidity of 65 ± 3% for 7 days [71,81].

4. Standards and Suitability Assessment of Manufactured Panels
4.1. Standards and Specifications of Wood-Based Panels from Wood Waste

Currently, there are limited specific standards or guidelines available specifically for
wood panels made from wood waste. Most studies adopt conventional wood panel stan-
dards as testing methods to determine the required values for physical and mechanical
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properties. A list of available performance standards for wood panels in the USA is sum-
marised by the U.S. Department of Agriculture [131]. Apart from these standards, the
most common standard used for the performance measurement of wood panels is the
European Standards. Particleboard specifications are mainly given in EN 312: 2003 [132]
and fibreboard specifications in EN 622: 2009 and EN 316: 2009 [133,134]. Most countries
have adopted these standards, along with the standards issued by the International Organi-
zation for Standardization (ISO), which includes ISO 16895: 2016 for fibreboards and ISO
16893: 2016 for particleboards [135,136], developing country-specific standards to assess
the properties of manufactured panels. Some examples of these standards include AS/NZS
1859: 2014 and AS/NZS 4266: 2017 for Australia and New Zealand [137,138] and JIS A
5905: 2014 [139,140] for Japan.

This section will investigate how the properties of wood waste panels from different
studies perform in terms of the requirements given by the standards available for con-
ventional wood panels, focusing on particleboards and fibreboards. The testing methods
used to determine the physical and mechanical properties of wood-based panels from
wood waste are also adopted from those specified for fresh wood panels. According to
Niemz et al. [53], the main properties of wood and wood-based materials can be described
as biological, chemical, and physical–mechanical. In particular, physical and mechanical
properties are used to assess the suitability of the manufactured panels.

4.2. Physical Properties

The main physical properties considered are the density, water absorption, and thick-
ness swelling of the final manufactured boards. The water absorption and thickness
swelling are tested after both 2 h and 24 h. According to EN 317: 2002, the thickness
swelling of the board can be determined using Equation (1).

Gt =
t2 − t1

t1
× 100, (1)

where t1 is the thickness of the test piece before immersion (in mm) and t2 is the thickness
of the test piece after immersion (in mm).

Similarly, the density and the water absorption of the panel can be found according
to the specification given in EN 323: 1993 and EN322: 1993, respectively [141,142]. Addi-
tionally, the formaldehyde content of the produced board can be tested according to the
relevant standards, and this can be especially important in the case of wood waste panels,
as the formaldehyde emission is usually found to decrease drastically when using recycled
wood waste as a key ingredient in the manufacturing process [102,143].

4.3. Mechanical Properties

Concerning the mechanical properties of the manufactured wood panels, the main
properties tested are the Modulus of Elasticity (MOE), Modulus of Rupture (MOR) and
internal bond (IB). The MOE and MOR are often tested according to the specifications given
in EN310: 2002 and the IB as per EN 319: 1993 [144,145], which once again are designed for
the testing of general wood panels. In addition to the core mechanical properties, several
other factors play a pivotal role in determining the suitability of wood waste panels for
specific applications. While there are a few studies that have been conducted to assess
wood waste panels on screw withdrawal strength (also known as pullout strength) [94,125],
which is the resistance offered to the withdrawal or removal of a screw or fastener, and on
thermal and acoustic properties [104], there is very limited research concerning these.

Moreover, it is noted that there is very limited research that has been conducted
on the long-term durability of composite wood waste panels. A decay resistance test
of 16 weeks was conducted on particleboards fabricated with wood waste particles by
Iždinský et al. [108], which showed a slight improvement of decay resistance, which, it was
concluded, was due to the presence of some portion of cured UF resin on the surface of
the wood waste particles. However, apart from this study, no proper test has been carried
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out in terms of long-term durability. In order to understand the full potential of these
panels, it is necessary to evaluate the physical and mechanical properties under various
environmental and mechanical conditions over time. This includes tests such as cycling
loading tests and creep tests, as well as long-term thermal and chemical resistance tests,
which have been conducted for natural wood panels [146–148].

4.4. Incorporation of Different Percentages of Wood Waste

Having different percentages of wood waste in the material mix affects the physical
and mechanical properties of the final wood panels, and this has been tested by several
researchers over the years. By developing linear correlations between the percentage of
wood waste against different properties, Iždinský et al. [108] were able to identify that the
inclusion of wood waste improves the dimensional stability of the particleboards, with
better thickness swelling (TS) and water absorption (WA) values. The biggest improvement
in the physical properties was observed for the particleboards manufactured using a wood
waste percentage of 20%. This is consistent with other studies by Zamarian et al. [125],
Czarnecki et al. [102], and Laskowska and Mamiński [88], where the biggest improvements
in the TS and WA of the boards were seen when the wood waste percentage was in the
range of 10–30%. The reason for this improved dimensional stability is said to be due to
the presence of cured resin solids in the wood waste. The resin forms a barrier between
the wood particles and moisture, which reduces the moisture absorption capacity of the
particleboard, as per Roffael et al. [130].

However, while there is an improvement in the physical properties, particleboards
made from wood waste often result in weaker final products in terms of mechanical
properties. Figure 11 summarises the MOR, MOE, and IB values of particleboard made
from wood waste from six different studies and how these values compare against the
requirements given by EN 312: 2003 for the P2 type general purpose particleboards in dry
conditions [132]. The summary of the recycled wood material used and the production
parameters are summarized in Table 4. The first four studies have considered different
percentages of wood waste up to 100%, and the last two studies have completely replaced
fresh wood particles with recycled ones and compared the mechanical properties of the
particleboard with the original board.

The following have been observed from the abovementioned studies:

• The MOR and MOE of particleboards made using a small percentage of wood waste
have a slight improvement compared to the original boards, except for the study by
Iždinský et al. [99]. This deviation can be explained by the source of wood waste for
this study: recycled wood pallets, which the authors attribute to having a portion of
deteriorated and polluted wood.

• The internal bonding (IB) of the particleboards is reduced with the increase in the
wood waste % in the material mix, except for the study by Zamarian et al. [125], where
the inclusion of wood waste improved the IB.

• All particleboards that completely replaced the natural wood particles with recycled
wood have significantly lower mechanical properties than the boards without recycled
wood, some having values lower than the requirements set by EN 312.

• For the two studies that had not considered the use of a lower percentage of wood
waste in the particleboard mixtures [107,127] a significant jump in the mechanical
properties was apparent.

Therefore, based on these studies, completely replacing the fresh wood particles with
wood waste has an adverse effect on the mechanical properties of particleboards and cannot
be recommended. Using a lower percentage of wood waste (10–30%) is more suitable as
it has a lower impact on the performance of the panel and could even improve it. This is
consistent with the recommendations given by Nguyen et al. [32] and is also consistent
with the results for fibreboard made from wood waste [94,143].
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Figure 11. (a) MOR, (b) MOE, and (c) IB values of particleboard made from wood waste from six
different studies and how these values compare to the requirements given by EN 312 [88,99,107,108,
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Table 4. Summary of recycled material and production parameters used for the studies to produce
particleboard.
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NBR
14810-3

Laskowska
and

Mamiński
[88]

Plywood
waste Mechanical

Sieving
using 10, 14,
25, and 38

mm screens

-

UF/PF
resin—

2% face,
10% core,
and 1%
paraffin

emulsion

650 16
180 ◦C,

3 MPa, for
5 min

EN 323,
EN 317,
EN 310,
EN 319

Iždinský
et al. [99]

Recycled
spruce pallets Mechanical

Core
layer—0.25
to 4.0 mm,

surface
layers from

0.125 to
1.0 mm

2% for
core layer,

4% for
surface
layers

UF
11% for
surface

layer and
7% for

core layer

650 16

240 ◦C,
5.75 MPa,
8 s/mm
speed

EN 323,
EN 322,
EN 317,

STN
490164

Wronka
and

Kowaluk
[107]

Recycled
particleboard -

Sieving
using 8, 4, 2,
1, 0.5, and
0.25 mm

sieves

3%

UF resin
+1%

paraffin
emulsion

680 16

180 ◦C,
20 s/mm

speed,
2.5 MPa

EN 323,
EN 317,
EN 310,
EN 319

Lykidis
and

Grigoriou
[127]

Recovered
particleboard

Hydrothermal
treatment

Particle
fractions
<1.5 mm

were
removed

-

UF 7%
+2% am-
monium
chloride
hardener

650 12 85 ◦C for
240 s

EN 323,
EN 317,
EN 310,
EN 319

It can be concluded that, while the particleboards and fibreboards made from wood
waste show improved hygroscopic properties and higher dimensional stability, due to the
decrease in the mechanical properties, especially when manufactured using 100% wood
waste as raw material, these panels are less suitable for commercial use as structural panels.
It is recommended to carry out further studies in improving the mechanical properties and
developing proper standards and guidelines for the use of wood waste in manufacturing
structural panels. As the study by Mirski et al. [93] recommends, at this stage of study it
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is recommended to use these wood waste panel boards as non-structural elements in the
construction industry and as interior decorations.

However, it is important to note that this percentage of optimum wood waste for
wood-based panel production depends on a variety of factors. While the studies mentioned
in this section’s comparison are particleboard with a 12–20 mm thickness range using UF
and/or PF as an adhesive, the optimum percentage of waste wood to be incorporated will
vary according to the panel characteristics and the type of resin used. Several other factors
including the reliance and availability of wood waste and other environmental, economic,
and regulatory compliances affect the optimum wood waste suitability and availability to
produce wood-based panels. Even though there is a high consumption of wood in countries
in Europe and China [149,150], for the incorporation of wood waste to be maximized in a
global context, a comprehensive analysis must be carried out to determine the availability
and suitable wood waste percentage for wood-based panel production in different contexts
and regions.

5. Repeated Recycling of Wood Waste Panels

Another important consideration when using wood waste in wood panel production
is the suitability of repeatedly reusing wood waste for wood panels in a closed-loop circular
process. Besserer et al. [44] explain that this “cascading” use of wood waste ultimately
makes the carbon storage of the material last longer and is presented as a sustainable
solution. Cascading represents a fundamental concept aimed at enhancing the efficiency of
wood utilisation. This principle entails the sequential and hierarchical optimisation of bio-
resources, prioritising reuse, recycling, and energy recovery before the final disposal [151].
An exemplary cascading use of timber is depicted in Figure 12. The term ‘single-stage
cascade’ refers to the initial product use phase, wherein end-of-life products are directed
towards energy generation. On the other hand, ‘multi-stage cascade’ denotes a process
where, after the initial product phase, wood is further processed for additional material
utilization or for the creation of other bio-based products. The objective here is to maximize
the number of cascade stages.
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Across the globe, countries actively promote the cascading use of resources through
various policies, initiatives, and incentives. For instance, the European Union (EU) un-
veiled its Circular Economy Action Plan in 2020, which underscores the significance of
sustainable practices in forestry and wood utilisation [153]. Within this framework, Italy
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has made notable strides in wooden packaging recycling, achieving a recycling rate of 64%,
significantly surpassing the EU average target of 30% by 2030 [154]. Remarkably, as of 2020,
approximately 95% of wood was recycled to produce wood panels for furniture, facilitating
an impressive carbon emission reduction of 2 million tons and creating over 11,000 jobs
within the forestry and wood furniture supply chain [155].

5.1. Life Cycle Assessment (LCA) of Repeated Recycling

Life cycle assessment (LCA) stands as the prevailing method used to quantitatively
evaluate the environmental ramifications of various processes, providing valuable insights
into the potential environmental benefits associated with the cascading wood-based re-
source utilisation [156]. A summary of several LCA studies investigating the environmental
impacts of cascading wood utilisation practices is presented in Table 5. The results of these
studies demonstrate that implementing cascading strategies, such as recycling wood into
filler or reusing it for particleboard production, can yield considerable reductions in Global
Warming Potential (GWP) and carbon emissions [52,157–159]. Furthermore, investigations
concerning other environmental impact categories reveal that cascading wood products
leads to a substantial decrease in land occupation indicators, primarily due to reduced
primary resource extraction [156,160]. Additionally, Taskhiri et al. [161] reveal that the
reproduction of wood waste to produce particleboard and OSB can achieve a reduction of
up to 24% in life cycle costs.

Notwithstanding the considerable number of studies underscoring the carbon and
resource-saving benefits associated with cascading wood utilisation, it is crucial to ac-
knowledge that other environmental impacts have been overlooked [161]. For instance, the
recycling processes of wood necessitate the utilisation of chemicals and energy, leading to
a potential shift in the environmental burden towards fossil fuel consumption and ozone
depletion [162]. Moreover, the widespread promotion of cascading practices encounters
significant challenges in the absence of inducements and legislative regulations [163]. There-
fore, future research should encompass a broader assessment of other impact categories,
along with a comprehensive examination of the economic and social aspects within the life
cycle context.

Furthermore, although the concept of repeated recycling is an ideal scenario with no
end-of-life disposal, it is important to consider the impact of the end-of-life disposal of
these composite wood waste panels when conducting the LCA. Particularly due to the
polymer resins used in the production, these panels can pose significant challenges at
the end of their life cycle due to their complex composition. Effective disposal strategies
must consider recycling, incineration, and landfilling, each with distinct environmental
impacts [164].

Table 5. A summary of studies on the environmental impacts of cascading wood utilisation practices.

Authors Highlights Environmental Impacts

Kim et al. [157] Compared the carbon emission of recycling 1 ton
of wood pellets with landfill disposal.

• Recycling wood pellets can result in −163 kg
CO2-eq benefits than landfilling.

• Compared to production pellets from
primary wood, using recycled wood pellets
can reduce GWP by 4.8 kg CO2-eq.

Kim and Song [158]
Compared the carbon emission from 1 ton of

particleboard production and energy production
between fresh wood and recycled wood.

• Particleboard from recycled wood has 428 kg
less CO2-eq than from fresh wood.

• Energy production from wood waste
generates 154 kg CO2-eq less than the
combined heat and power process.
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Table 5. Cont.

Authors Highlights Environmental Impacts

Wang et al. [159]

• Compared the environment impacts of
recycling timber into filler and incineration
for heat production.

• Calculated emissions from replacing tubular
particleboard and LVL of a 2007 × 850 × 45
mm wood door with recycled residues.

• Processing a recycled wood panel as filler has
a higher environmental impact than
incineration.

• Recycling wood residues can save
approximately 7.46 kg CO2 eq GWP and
143.77 MJ of primary energy deletion for a
wooden door life cycle.

Risse et al. [165]

• LCA on recycling 1 ton of solid wood from
construction into glued laminated timber.

• Compared the environmental and economic
performance of reusing recovered solid wood
and incineration.

• Recycling reduces 29% of entire
environmental impact and 32% of life cycle
cost, compared to incineration for energy.

• The wood cascading operational process has
minor relevance with the environmental and
economic performance of the system, while
technologies are key drivers.

Niu et al. [166] Case study of reusing wood from a timber hall in
Finland.

• GWP100 reduces about 30% by applying
recovered timber.

• Reduction in all impact categories, such as
marine eutrophication and ozone depletion.

Liang et al. [160]

LCA on a wooden building in the northwestern
U.S. and evaluation of the recycling and reuse

scenario of mass timber and CLT panels in
buildings.

• Recycling mass timber can generate a 364 kg
CO2 eq/m2 carbon credit.

• Reusing 52.5% CLT panels can further reduce
GHG emissions by 12% compared to concrete
building.

Höglmeier et al. [156]

Estimated the overall environmental impact of
wood cascade in Germany by combining the

material flow model of current wood application
and LCA.

• Cascading contributes a little to the overall
system, namely, wood panel production.

• Cascading can save up to 14% of annual
wood supply in the study area.

Höglmeier et al. [21] Conducted full LCA of 1 metric ton of cascading
wood waste panel and primary wood panel.

• Cascading use of wood waste has a lower
environmental burden in all categories than
the use of primary wood.

• Cascading leads to a 10% lower GWP and
near 100% lower land occupation than using
primary wood.

5.2. Impact on Physical and Mechanical Properties

It can be reasonably expected that the physical and mechanical properties of the wood
panels would reduce with every recycling cycle. However, it was found that, although the
repeated recycling process degrades the wood waste particle sizes and results in panels
with low flexural capacity, it can increase the internal bond strength of the panel having
higher WA and TS values with each cycle [71]. The authors explain that this can be due to
the larger surface area helping with greater adhesion, as well as the increasing amount of
adhesive remaining after each cycle. It was also observed that, with each recycling cycle,
the formaldehyde emission is significantly lower compared to the initial panel. Similar
studies show similar results where repeated recycling increases the physical properties of
the panel boards [107].
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A 20.7% increase was seen in the MOE in the second-generation particleboard, due to
the higher elasticity of the chips after the hydrothermal treatment [80]. Further, the fibres
from the second-generation particleboards used in this study have been used to produce
MDF and have produced satisfactory results but only marginally above the required values
for general purpose use. Therefore, it was recommended to use 10–30% of wood waste
fibres for the manufacturing process rather than using 100% of recycled wood fibres. This
is further supported by the study of Roffael et al. [130], which recommends the use of 30%
of wood waste fibres for MDF manufacturing.

6. Conclusions

In conclusion, this paper sheds light on the promising potential of wood-based panels
derived from wood waste in contributing to sustainable and eco-friendly building materials.
By following established standards for wood waste as a raw material and optimizing the
manufacturing processes, these panels can offer a viable alternative to traditional wood
panels, thus playing a crucial role in environmental conservation and resource management.

This paper highlights several key findings that underscore the significance of this
research:

• Lack of global standardization for wood waste: One prominent challenge in this field
is the absence of a universally accepted global standard for defining the parameters
that determine the suitability of wood waste for panel production. While European
countries often refer to German or British guidelines for wood waste classification,
there is a clear need for harmonizing global standards to ensure consistency and
facilitate international trade and collaboration. In order to do so, it is necessary to
consolidate the best practices of existing standards, identify the key parameters to be
considered for each wood waste use, and define allowable limitations.

• Optimal wood waste percentage: The research suggests that incorporating a small
percentage of wood waste in particleboard fabrication with conventional adhesives,
typically within the range of 10–30%, can enhance the performance of the panels. This
is a crucial finding for manufacturers seeking to balance sustainability with product
quality. However, using 100% wood waste as the raw material results in a significant
decline in physical and mechanical properties, rendering them unsuitable for structural
applications.

• Hydroscopic and dimensional stability: Fibreboards and particleboards made from
wood waste display improved hydroscopic properties and greater dimensional sta-
bility. These characteristics make them attractive for specific applications, especially
when combined with controlled proportions of wood waste. Nonetheless, it is essen-
tial to acknowledge the trade-off with mechanical properties when considering these
panels for commercial use.

• Repeated recycling potential: This study also underscores the potential for the re-
peated recycling of wood panels in a closed-loop process. The “cascading” approach
of repeated recycling in wood panel production from wood waste offers promising
environmental benefits, as highlighted by various life cycle assessment (LCA) studies,
which reveal reductions in carbon emissions and resource use. However, the com-
plex nature of recycling processes also entails challenges, such as increased chemical
and energy usage. It is imperative that future research considers a broader range
of environmental impacts and integrates economic and social aspects within the life
cycle context. While repeated recycling enhances certain panel properties and lowers
formaldehyde emissions, the recommendation is to maintain a controlled percentage
of wood waste in the manufacturing process rather than relying on 100% recycled
content to achieve superior results while adhering to quality standards. Balancing
eco-friendliness with material performance remains a key driver for a more sustainable
and resource-efficient future in the wood panel industry.

In summary, the research presented in this paper demonstrates the potential possi-
bilities and challenges associated with wood-based composite panels manufactured from
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wood waste. While the standardization of wood waste as a raw material to produce com-
posite panels remains a crucial area of concern, the benefits of incorporating wood waste in
a controlled manner are evident. The lack of established quality standards for wood waste
for panel production, as well as the inconsistent material properties and uncertainty about
the durability, strength, and other properties of the panels, deter manufacturers from the
widespread adoption of this practice.

These panels hold great promise for eco-friendly construction materials and sustain-
ability initiatives. However, manufacturers and researchers must strike a balance between
resource conservation and product quality to realize their full potential in the construction
industry. This balance, along with continued research and international collaboration, will
be instrumental in driving the sustainable evolution of composite panels from wood waste.
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24. Suominen, T.; Kunttu, J.; Jasinevičius, G.; Tuomasjukka, D.; Lindner, M. Trade-offs in sustainability impacts of introducing cascade
use of wood. Scand. J. For. Res. 2017, 32, 588–597. [CrossRef]

25. Sakaguchi, D.; Takano, A.; Hughes, M. The potential for cascading wood from demolished buildings: The condition of recovered
wood through a case study in Finland. Int. Wood Prod. J. 2016, 7, 137–143. [CrossRef]

26. Adhikari, S.; Ozarska, B. Minimizing environmental impacts of timber products through the production process “From Sawmill
to Final Products”. Environ. Syst. Res. 2018, 7, 6. [CrossRef]

27. Hossain, M.U.; Poon, C.S. Comparative LCA of wood waste management strategies generated from building construction
activities. J. Clean. Prod. 2018, 177, 387–397. [CrossRef]
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