Effects of Grapevine Fiber and Additives on the Properties of Polylactic Acid Green Bio-Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Grapevine Fiber (GVF)
2.3. Preparation of Maleic Anhydride-Grafted Polybutylene Succinate (PBS-MA)
2.4. Preparation of Maleic Anhydride-Grafted Polylactic Acid (PLA-MA)
2.5. Preparation of GVF/PLA Composites
2.6. Thermal Analysis
2.7. Mechanical Property Test
2.8. Melt Flow Index
2.9. Morphological Analysis
3. Results and Discussion
3.1. GVF/PLA Composites with Different Content of PBS Subsection
3.2. GVF/PLA Composites with Different Content of GVF
3.3. GVF/PLA Composites Modified with PBS-MA
3.4. GVF/PLA Composites Modified with PLA-MA
3.5. GVF/PLA Composites Modified with Lubrication Agent
3.6. Melt Flow Index (MFI) of GVF/PLA Composites
3.7. Morphology Analysis of GVF/PLA Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdollahi Saadatlu, E.; Barzinpour, F.; Yaghoubi, S. A Sustainable Model for Municipal Solid Waste System Considering Global Warming Potential Impact: A Case Study. Comput. Ind. Eng. 2022, 169, 108127. [Google Scholar] [CrossRef]
- Agapkin, A.M.; Makhotina, I.A.; Ibragimova1, N.A.; Goryunova, O.B.; Izembayeva, A.K.; Kalachev, S.L. The Problem of Agricultural Waste and Ways to Solve It. IOP Conf. Ser. Earth Environ. Sci. 2022, 981, 022009. [Google Scholar] [CrossRef]
- Zulkifli, A.A.; Mohd Yusoff, M.Z.; Abd Manaf, L.; Zakaria, M.R.; Roslan, A.M.; Ariffin, H.; Shirai, Y.; Hassan, M.A. Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production. Sustainability 2019, 11, 3909. [Google Scholar] [CrossRef]
- Peng, X.; Jiang, Y.; Chen, Z.; Osman, A.I.; Farghali, M.; Rooney, D.W.; Yap, P.-S. Recycling Municipal, Agricultural and Industrial Waste into Energy, Fertilizers, Food and Construction Materials, and Economic Feasibility: A Review. Environ. Chem. Lett. 2023, 21, 765–801. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses. Glob. Ecol. Conserv. 2020, 22, E00902. [Google Scholar] [CrossRef]
- Ramesh, P.; Singh, A.C. Chapter 1—Sources of Atmospheric Pollution in India. In Asian Atmospheric Pollution; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–37. [Google Scholar]
- Glasser, W.G. About Making Lignin Great Again-Some Lessons from the Past. Front. Chem. 2019, 7, 565. [Google Scholar] [CrossRef]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of Organic Wastes in the Spanish Wine Industry. Technical, Economic and Environmental Analyses of the Composting Process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef]
- Martínez Salgado, M.M.; Ortega Blu, R.; Janssens, M.; Fincheira, P. Grape Pomace Compost as a Source of Organic Matter: Evolution of Quality Parameters to Evaluate Maturity and Stability. J. Clean. Prod. 2019, 216, 56–63. [Google Scholar] [CrossRef]
- Turning Winery Waste into Compost, Composting of Grape Stalks, Lees and Sludges. Available online: https://compost-turner.net/composting-technologies/grape-stalks-and-pomace-composting-process.html (accessed on 15 December 2023).
- Available online: https://news.ltn.com.tw/news/life/breakingnews/3797880 (accessed on 11 January 2022).
- Ngaowthong, C.; Boruvka, M.; Behalek, L.; Lenfeld, P.; Svec, M.; Dangtungee, R.; Siengchin, S.; Rangappa, S.M.; Parameswaranpillai, J. Recycling of Sisal Fiber Reinforced Polypropylene and Polylactic Acid Composites: Thermo-Mechanical Properties, Morphology, and Water Absorption Behavior. Waste Manag. 2019, 97, 71–81. [Google Scholar] [CrossRef]
- Battegazzore, D.; Noori, A.; Frache, A. Natural Wastes as Particle Filler for Poly(Lactic Acid)-Based Composites. J. Compos. Mater. 2018, 53, 783–797. [Google Scholar] [CrossRef]
- Komal, U.K.; Lila, M.K.; Singh, I. Pla/Banana Fiber Based Sustainable Biocomposites: A Manufacturing Perspective. Compos. Part B Eng. 2020, 180, 107535. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chang, C.-W.; Chen, C.; Shih, Y.-F. Developing Carbon-Storing Materials through Grapevine Char/Polybutylene Succinate Green Bio-Composites. Compos. Part C Open Access 2024, 13, 100442. [Google Scholar] [CrossRef]
- Oliver-Ortega, H.; Reixach, R.; Espinach, F.X.; Mendez, J.A. Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance. Materials 2022, 15, 1161. [Google Scholar] [CrossRef]
- Almeida, V.H.M.; Jesus, R.M.; Santana, G.M.; Pereira, T.B. Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3d Printing Filaments: A Review. J. Compos. Sci. 2024, 8, 67. [Google Scholar] [CrossRef]
- Hassan, E.; Wei, Y.; Jiao, H.; Huo, Y. Plant Fibers Reinforced Poly (Lactic Acid) (Pla) as a Green Composites: Review. Int. J. Eng. Sci. Technol. 2012, 4, 4429–4439. [Google Scholar]
- Bumbudsanpharoke, N.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Harnkarnsujarit, N. Morphology and Permeability of Bio-Based Poly(Butylene Adipate-Co-Terephthalate) (Pbat), Poly(Butylene Succinate) (Pbs) and Linear Low-Density Polyethylene (Lldpe) Blend Films Control Shelf-Life of Packaged Bread. Food Control 2022, 132, 108541. [Google Scholar] [CrossRef]
- Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A Brief Review of Poly (Butylene Succinate) (Pbs) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers 2022, 14, 844. [Google Scholar] [CrossRef]
- Su, S.; Kopitzky, R.; Tolga, S.; Kabasci, S. Polylactide (Pla) and Its Blends with Poly(Butylene Succinate) (Pbs): A Brief Review. Polymers 2019, 11, 1193. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, C.; Wu, Q.; Zhang, G.; Liang, F.; Yang, Z. Poly(Lactic Acid)/Poly(Butylene Succinate) (Pla/Pbs) Layered Composite Gas Barrier Membranes by Anisotropic Janus Nanosheets Compartibilizers. ACS Macro Lett. 2022, 11, 657–662. [Google Scholar] [CrossRef]
- Shih, Y.F.; Xu, J.Y.; Wu, N.Y.; Chiu, Y.T.; Yu, H.M.; Tsai, M.L. Eco-Friendly Composites Based on Bitter Tea Oil Meal and Polylactic Acid. Key Eng. Mater. 2021, 889, 21–26. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A Review on Natural Fibers for Development of Eco-Friendly Bio-Composite: Characteristics, and Utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, X.; Xu, M.; Rodrigue, D. Properties of Poplar Fiber/Pla Composites: Comparison on the Effect of Maleic Anhydride and Kh550 Modification of Poplar Fiber. Polymers 2020, 12, 729. [Google Scholar] [CrossRef] [PubMed]
- Birnin-Yauri, A.U.; Ibrahim, N.A.; Zainuddin, N.; Abdan, K.; Then, Y.Y.; Chieng, B.W. Effect of Maleic Anhydride-Modified Poly(Lactic Acid) on the Properties of Its Hybrid Fiber Biocomposites. Polymers 2017, 9, 165. [Google Scholar] [CrossRef]
- González-López, M.E.; Robledo-Ortíz, J.R.; Manríquez-González, R.; Silva-Guzmán, J.A.; Pérez-Fonseca, A.A. Polylactic Acid Functionalization with Maleic Anhydride and Its Use as Coupling Agent in Natural Fiber Biocomposites: A Review. Compos. Interfaces 2018, 25, 515–538. [Google Scholar] [CrossRef]
- Rojas-Lema, S.; Arevalo, J.; Gomez-Caturla, J.; Garcia-Garcia, D.; Torres-Giner, S. Peroxide-Induced Synthesis of Maleic Anhydride-Grafted Poly(Butylene Succinate) and Its Compatibilizing Effect on Poly(Butylene Succinate)/Pistachio Shell Flour Composites. Molecules 2021, 26, 5927. [Google Scholar] [CrossRef]
- Hamdiani, S.; Shih, Y.F. Development of Polylactic Acid-Polybutylene Succinate-Silver Nanoparticle-Diatomite (Plapbs-Agnps-D) Composite in Different Compatibilizer as Potential Pollutants Storage Container for Methylene Blue Self-Degradation. J. Polym. Res. 2022, 29, 232. [Google Scholar] [CrossRef]
- AL-Oqla, F.M.; Alaaeddin, M.H. Chemical Modifications of Natural Fiber Surface and Their Effects. In Bast Fibers and Their Composites; Rajeshkumar, G., Devnani, G., Sinha, S., Sanjay, M., Siengchin, S., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Thamarai Selvi, S.; Sunitha, R.; Ammayappan, L.; Prakash, C. Impact of Chemical Treatment on Surface Modification of Agave Americana Fibres for Composite Application—A Futuristic Approach. J. Nat. Fibers 2023, 20, 2142726. [Google Scholar] [CrossRef]
- Dai, L.; Wang, X.; Zhang, J.; Wang, F.; Ou, R.; Song, Y. Effects of Lubricants on the Rheological and Mechanical Properties of Wood Flour/Polypropylene Composites. J. Appl. Polym. Sci. 2019, 136, 47667. [Google Scholar] [CrossRef]
- Hosseini, S.; Venkatesh, A.; Boldizar, A.; Westman, G. Molybdenum Disulphide—A Traditional External Lubricant That Shows Interesting Interphase Properties in Pulp-Based Composites. Polym. Compos. 2021, 42, 4884–4896. [Google Scholar] [CrossRef]
- Beta Analytic. Available online: https://www.betalabservices.com/biobased/biomasspla.html (accessed on 25 August 2024).
- Hwang, S.W.; Lee, S.B.; Lee, C.K.; Lee, J.Y.; Shim, J.K.; Selke, S.E.M.; Soto-Valdez, H.; Matuana, L.; Rubino, M.; Auras, R. Grafting of Maleic Anhydride on Poly(L-Lactic Acid). Effects on Physical and Mechanical Properties. Polym. Test. 2012, 31, 333–344. [Google Scholar] [CrossRef]
- Available online: https://www.astm.org/products-services/standards-and-publications/standards/plastics-standards.html (accessed on 10 December 2022).
- Babu, S.; Singh Rathore, S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.K.; Yadav, V.; Raj, R.; Yadav, D.; Shekhawat, K.; et al. Exploring Agricultural Waste Biomass for Energy, Food and Feed Production and Pollution Mitigation: A Review. Bioresour. Technol. 2022, 360, 127566. [Google Scholar] [CrossRef] [PubMed]
- Barezewski, M.; Mysiukiewicz, O. Rheological and Processing Properties of Poly(Lactic Acid) Composites Filled with Ground Chestnut Shell. Polym. Korea 2018, 42, 267–274. [Google Scholar] [CrossRef]
- Lee, C.H.; Sapuan, S.M.; Lee, J.H.; Hassan, M.R. Melt Volume Flow Rate and Melt Flow Rate of Kenaf Fibre Reinforced Floreon/Magnesium Hydroxide Biocomposites. Springerplus 2016, 5, 1680. [Google Scholar] [CrossRef] [PubMed]
Sample | PLA | PBS | GVF | PBS-MA | PLA-MA | Lubrication Agent |
---|---|---|---|---|---|---|
Pure PLA | 100 | -- | -- | -- | -- | -- |
GP-10-PBS-5 | 85 | 5 | 10 | -- | -- | -- |
GP-20-PBS-5 | 75 | 5 | 20 | -- | -- | -- |
GP-30-PBS-5 | 65 | 5 | 30 | -- | -- | -- |
GP-40-PBS-5 | 55 | 5 | 40 | -- | -- | -- |
GP-40-PBS-3 | 57 | 3 | 40 | -- | -- | -- |
GP-50-PBS-5 | 45 | 5 | 50 | -- | -- | -- |
GP-30-PBS-5-PBS-MA-1 | 64 | 5 | 30 | 1 | -- | -- |
GP-30-PBS-5-PBS-MA-3 | 62 | 5 | 30 | 3 | -- | -- |
MPG-30-5 | 62 | 5 | 30 | -- | 3 | -- |
AMPG-30-5 | 61.997 | 5 | 30 | -- | 3 | 0.003 |
Sample | Impact Strength (J/m) | Tensile Strength (MPa) | HDT (°C) | Melt Flow Index (g/10 min) |
---|---|---|---|---|
Pure PLA | 17.47 ± 0.37 | 49.74 ± 0.57 | 57.75 ± 0.20 | 6.50 ± 0.005 |
GP-10-PBS-5 | 29.70 ± 0.51 | 54.46 ± 0.98 | 61.37 ± 1.01 | 16.17 ± 0.003 |
GP-20-PBS-5 | 18.67 ± 0.59 | 40.72 ± 3.04 | 61.40 ± 1.37 | 20.37 ± 0.001 |
GP-30-PBS-5 | 17.54 ± 0.25 | 36.24 ± 4.59 | 62.80 ± 0.30 | 22.44 ± 0.004 |
GP-40-PBS-5 | 14.61 ± 0.16 | 24.99 ± 2.43 | 126.35 ± 2.52 | 8.33 ± 0.005 |
GP-40-PBS-3 | 14.19 ± 0.92 | 9.85 ± 1.83 | 124.13 ± 0.74 | 11.76 ± 0.005 |
GP-50-PBS-5 | 14.13 ± 0.37 | 7.16 ± 1.41 | 121.64 ± 4.68 | 7.62 ± 0.005 |
GP-30-PBS-5-PBS-MA-1 | 17.07 ± 1.89 | 30.66 ± 3.39 | 57.78 ± 2.87 | 22.85 ± 0.004 |
GP-30-PBS-5-PBS-MA-3 | 15.40 ± 1.63 | 25.03 ± 3.73 | 57.49 ± 1.61 | 23.09 ± 0.002 |
MPG-30-5 | 24.48 ± 5.49 | 36.00 ± 3.92 | 64.60 ± 0.40 | 8.94 ± 0.004 |
AMPG-30-5 | 25.52 ± 1.09 | 45.30 ± 3.57 | 60.13 ± 1.52 | 19.73 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-W.; Huang, C.-C.; Jiang, Y.-J.; Wang, P.-H.; Shih, Y.-F. Effects of Grapevine Fiber and Additives on the Properties of Polylactic Acid Green Bio-Composites. J. Compos. Sci. 2024, 8, 422. https://doi.org/10.3390/jcs8100422
Chang C-W, Huang C-C, Jiang Y-J, Wang P-H, Shih Y-F. Effects of Grapevine Fiber and Additives on the Properties of Polylactic Acid Green Bio-Composites. Journal of Composites Science. 2024; 8(10):422. https://doi.org/10.3390/jcs8100422
Chicago/Turabian StyleChang, Chun-Wei, Chien-Chung Huang, Yi-Jing Jiang, Po-Hsiang Wang, and Yeng-Fong Shih. 2024. "Effects of Grapevine Fiber and Additives on the Properties of Polylactic Acid Green Bio-Composites" Journal of Composites Science 8, no. 10: 422. https://doi.org/10.3390/jcs8100422
APA StyleChang, C. -W., Huang, C. -C., Jiang, Y. -J., Wang, P. -H., & Shih, Y. -F. (2024). Effects of Grapevine Fiber and Additives on the Properties of Polylactic Acid Green Bio-Composites. Journal of Composites Science, 8(10), 422. https://doi.org/10.3390/jcs8100422