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Abstract: Highly efficient fiber-reinforced composites find extensive application in diverse industries.
Yet, conventional fiber-reinforced composites have significant environmental impacts during both
manufacturing and disposal. Environmentally friendly fiber-reinforced composites have garnered sig-
nificant attention within the framework of sustainable development. Utilizing natural fibers in place
of synthetic fibers and progressively decreasing the use of synthetic fibers are the main approaches to
achieving a balance between economic progress and environmental quality. Attention is increasingly
being drawn to natural fiber-reinforced biocomposites that exhibit outstanding environmental perfor-
mance, exceptional physical and mechanical capabilities, and biological features. The lightweight
and high-strength characteristics of these biocomposites enable them to significantly decrease the
weight of structures, making them increasingly popular in many industries. The objective of this
review is to evaluate the effectiveness of hybrid fiber-reinforced biocomposites in marine applications,
specifically examining their mechanical characteristics, resistance to seawater, and ability to absorb
moisture, all while advocating for sustainable material methodologies. To achieve this objective, the
paper delineates the distinction between synthetic and natural fibers, examines the benefits of hybrid
fiber-reinforced biocomposite materials, and addresses the obstacles and effective approaches in their
production and application in seawater. Considering the review analysis, it can be inferred that the
use of fiber-reinforced biocomposites in maritime applications shows significant potential and has
abundant untapped growth prospects in the future years.

Keywords: natural fiber; synthetic fiber; marine application; hygroscopicity; water absorption;
nanoparticle; composite material

1. Introduction

Fiber-reinforced composites (FRCs) are sophisticated structural materials often com-
posed of two or more constituents, such as a matrix and reinforcements, which possess
distinct physical, chemical, and mechanical characteristics [1,2]. The many components
are combined into a novel intricate framework by highly sophisticated production meth-
ods [3,4]. The chemical composition of composite materials also influences their character-
istics, therefore addressing the constraints of homogenous materials [5]. The applications
of these technologies are extensive and include several sectors like as construction, automo-
biles, aviation, and watercraft [6].
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Synthetic fibers, such as glass, carbon, and aramid fiber, have historically served as
primary reinforcements to improve composites and achieve substantial benefits [7,8]. In
addition, FRC properties are improved by modifying manufacturing processes and optimiz-
ing treatments [9]. Nevertheless, the manufacturing and disposal of synthetic fibers have
substantial environmental consequences due to their dependence on finite resources, inten-
sive energy consumption, and exacerbation of the environmental load [10,11]. In response
to increasing consciousness of environmental preservation and sustainable development,
there is a strong need to substitute unsustainable materials in different industrial sectors
with sustainable alternatives [12]. Furthermore, the high cost of synthetic textiles, especially
carbon fibers, tends to stimulate the need for more cost-effective and environmentally
friendly substitutes [13].

Experimental investigations were carried out by researchers in the field of composite
fabrication [14]. Investigations revealed that plant fibers exhibited exceptional properties
in composites and substantial potential to enhance the thermostability and mechanical
properties of composites [15]. The use of natural fibers as reinforcements in polymer
composites presents numerous advantages as potential alternatives to synthetic fibers, par-
ticularly in enhancing the mechanical properties of the matrix [16]. Furthermore, natural
fiber-reinforced composites exhibit exceptional economic efficiency and environmental
friendliness, rendering them highly suitable for a wide range of applications [17]. By incor-
porating plant fibers as partial or complete substitutes for synthetic fibers, the production
of novel functional composite materials can effectively mitigate the environmental conse-
quences linked to synthetic fiber composites [18–21]. Compared with synthetic fibers, using
natural fibers can effectively reduce environmental pollution and conserve nonrenewable
resources. In addition, fiber-reinforced composites made from natural fibers have low
density and superior mechanical properties, which makes these green biomaterials safe
and environmentally friendly [22].

Plant fiber, sometimes referred to as cellulose fiber, can be obtained from a variety
of plants such as cotton, flax, coir, kenaf, sisal, pineapple, banana, hemp, oil palm, and
others. Fibers derived from cellulose plants can be categorized into several groups based
on the location of extraction, including seed, leaf, fruit, and bast fibers [23]. In their
capacity as renewable resources and sustainable materials, these fibers possess unique
properties that make them suitable alternatives to synthetic fibers like glass, carbon, and
aramid fibers [24,25]. One possible application of these cellulose fibers is the production of
biodegradable biocomposites. Incorporating synthetic and plant fibers can facilitate the
advancement of the composite material sector. In their study, Khalid et al. [26] delineate
the progression of composite materials into three clearly defined phases, as depicted in
Figure 1. The first stage of composite materials development is transitioning to the second
stage, characterized by advanced composite materials, then to the third stage, namely green
composite materials.
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Nevertheless, there are several challenges that must be resolved when using plant
fibers for synthesizing biocomposites. These challenges include the susceptibility of plant
fibers to moisture and the instability of fiber characteristics, together with the inherent
incompatibility between hydrophilic fibers and hydrophobic matrices [27]. Successful
resolution of these problems is crucial for the use of biocomposites in maritime applications.

Around 71 percent of the Earth’s surface is occupied by the world’s seas, which
are crucial and essential regions for human production and biodiversity. The prudent
harvesting and efficient use of marine resources are highly important for the survival of
humanity and the advancement of society [28]. Human activities encompass a wide range of
industrial sectors in the majority of oceans, such as navigation, fishing, resource exploitation,
and offshore wind operations [29]. Applications in the marine environment pose greater
challenges for all materials in comparison to those in the terrestrial environment. Marine
structures are exceptionally vulnerable to more intense physical, chemical, and biological
forces. Under marine conditions, materials are prone to corrosion and degradation caused
by splashing, flooding, and the pressured infiltration of seawater solutions [30]. Particularly,
the elevated salinity and humidity in the maritime environment expedite this process,
significantly diminishing the longevity and safety of marine structures [31,32]. The vital
solution to these problems is in the development of sophisticated functional materials
capable of withstanding the severe conditions of the maritime environment.

The FRCs were specifically developed to address the issue of corrosion in conven-
tional materials and have been extensively employed in the shipbuilding sector since their
inception [33]. In 1942, Ray Greene constructed a ship using glass fiber-reinforced polyester,
hence initiating the integration of fiber composites into the marine sector. A few decades
later, carbon fiber and aramid fiber were introduced into the shipbuilding business [34].
The exceptional physical and chemical characteristics of these synthetic fiber-reinforced
composites have led to their rapid development in marine engineering [35]. Nevertheless,
concerns about the ecological consequences of synthetic fibers have motivated researchers
to investigate potential substitutes. By virtue of their renewability and biodegradability,
plant fibers serve as a significant substitute for synthetic fibers, therefore mitigating the envi-
ronmental consequences associated with the latter. Prior investigations have demonstrated
that composites reinforced with plant fibers have exceptional mechanical properties [36].
These biocomposites can be utilized in the construction of boat hulls and other water-related
equipment [12].

Advanced biocomposites possess exceptional characteristics and find extensive use in
all sectors [1,37]. The exceptional quality of biocomposites is driving the increasing market
demand. The projected market share of materials derived from renewable raw materials is
anticipated to increase to 25% by 2030, surpassing the 18% recorded in 2020 [25]. Further-
more, it is projected that two-thirds of the global industries will eventually be capable of
shifting to models based on renewable resources. Furthermore, the wood-plastic compos-
ites market is projected to have significant expansion with a substantial compound yearly
growth rate of 8.9% from 2021 to 2030. It is anticipated that the market valuation would
reach $12.6 billion by 2030 [38]. With the ongoing increase in market demand, biocom-
posites are anticipated to undergo a period of swift advancement. Expected development
focus will be on advanced biocomposites specifically designed for maritime applications.

The aim of this review is to assess the efficacy of hybrid fiber-reinforced biocomposites
in marine applications, particularly by analyzing their mechanical properties, resistance to
seawater, and moisture absorption capacity, while promoting sustainable material practices.
This study investigates different fiber reinforcements and evaluates the performance of
FRCs reinforced with them. Furthermore, this review also analyzes the effects of hygroscop-
icity and seawater aging on these composites and evaluates the enhancements obtained by
alkali treatments and nanoparticle incorporation. The present review offers readers a thor-
ough analysis of FRCs and their considerable potential for marine applications, therefore
making a valuable contribution to technical innovation and progress in this domain.
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2. Types and Properties of Fiber Reinforcements

Composite materials are formed by combining more than two separate materials that
have different properties. These components do not dissolve or blend together, but instead
interact in a unique way that gives composite materials their exclusive features [39]. The
FRC is a prevalent advanced composite material extensively used in several industries
such as aerospace, maritime, automotive, construction and infrastructure, medical devices,
and sporting event equipment. By incorporating high-strength, low-density fibers as the
primary components during the manufacturing process, FRCs exhibit superior strength,
stiffness, modulus, and reduced densities compared to traditional composites. Furthermore,
composites provide a greater range of combinations compared to metals, polymers, and
ceramics, and can be readily customized to achieve any desired characteristic [1]. The fiber
reinforcements usually utilized in FRC can be classified into the following two types based
on their intrinsic characteristics: synthetic fiber and natural fiber.

2.1. Synthetic Fibers in FRCs

Synthetic fibers provide exceptional reinforcements for the production of composite
materials, exhibiting robust stability and great mechanical properties [40,41]. Carbon fibers
consistently exhibit superior mechanical strength, chemical stability, and moisture and
temperature resistance compared to natural fibers, resulting in increased attention towards
them [14,42]. Carbon fiber not only has tensile strength, but also has high thermal and
electrical conductivity, respectively, 900–1100 W/mK and 106 S/m [43,44]. Carbon fiber has
a wide range of applications in the field of aviation [45]. By employing these dependable
synthetic fibers, FRC can be customized with diverse characteristics to correspond to the
needs of different situations. Furthermore, the utilization of sophisticated production
techniques, such as vacuum bagging, vacuum-infused resins, and extrusion technologies,
enhances the precision of composite manufacturing and raises the overall quality of the
products. Indeed, synthetic fibers, as their name suggests, are artificially produced and do
not arise from natural sources. Certain synthetic fibers are derived from petroleum and
necessitate a substantial amount of energy for their production. Industrial manufacturing
and recycling of synthetic fiber materials and their byproducts have a detrimental effect on
the environment [46].

The synthetic fiber production process generally encompasses a sequence of stages,
which include the preparation of raw materials, chemical polymerization, spinning, stretch-
ing, winding, and packaging. According to Rajak et al. [40], synthetic fibers can be classified
into the following three main groups: organic fibers, inorganic fibers, and others. These
categories are further expanded based on their origin, as illustrated in Figure 2. Nylon fiber
and aramid fiber are the predominant organic synthetic fibers now in use, whereas glass
fiber and carbon fiber are the most often used inorganic synthetic fibers.
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The properties of synthetic fibers are shown in Table 1. Owing to their distinctive
characteristics, these fibers find use in many domains of life and industry. Furthermore,
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nylon fibers exhibit exceptional toughness, flexibility, and lifespan. Nylon fibers also exhibit
a higher degree of softness in comparison to other synthetic fibers that are frequently
employed in the textile and home goods sectors. The broad fabrication of sutures, catheters,
dentures, and other medical equipment is attributed to the biocompatible nature, good
chemical stability, and changeable mechanical properties of nylon [47]. Aramid fiber is a
durable synthetic fiber that demonstrates great qualities such as high-temperature stability,
impact stability, lightweight, and other unique features, which contribute to its outstanding
energy absorption performance [48]. The density of aramid fibers is merely 55% of that of
glass fibers, although its strength is equivalent to that of carbon fibers, far more than that
of glass fibers, and exhibits a notable level of toughness. Aramid fibers have widespread
application in the aviation industry, military industries, and the manufacturing of protective
equipment [49].

Table 1. Physical and mechanical properties of common synthetic fibers.

Materials Density (g/cm3) Elongation at Break (%) Tensile Strength
(MPa)

Young’s Modulus
(GPa) Ref.

Nylon 6 1.13–1.15 16–19 600–1050 4–5 [47]
Nylon 66 1.06–1.08 41–59 36.1–45.1 0.939–1.17 [47]
Aramid 1.4 3.3–3.7 3000–3150 63–67 [17]
Aramid 1.44 - 3620 ± 68 131 ± 8 [50]
Carbon 1.4 1.4~1.8 4000 230–240 [17]
Carbon 1.65 - 3190 ± 56 228 [50]
E-glass 2.5 2.5 2000–3500 70 [17]
E-glass 2.55 2.7 1950 72 [51]

Fibers of synthetic origin have exceptional properties for the production of FRCs.
Nevertheless, the dependence on finite resources, excessive energy usage, and environ-
mental contamination during the whole lifespan of synthetic fibers have led individuals
to contemplate the use of environmentally renewable fiber materials as substitutes for
synthetic ones. Natural fiber is a prominent replacement with distinct inherent advantages.

2.2. Natural Fibers in FRCs

The ecological issues resulting from waste and the significant benefits of renewable
and biodegradable natural fibers have motivated researchers to focus on the advancement
of ecologically sustainable composites reinforced with natural fibers [52]. Natural fibers can
enhance the mechanical characteristics of FRCs in comparison to synthetic fibers, thereby
making the composite biodegradable and environmentally benign [53,54].

Natural fibers are abundant and sustainable resources on Earth, fundamentally impor-
tant in many sectors such as textiles, paper, and packaging. Humans have accumulated
vast expertise in the extraction and utilization of natural fibers. The sources of natural
fibers encompass a wide range, including animals, plants, and minerals [55]. Within the
realm of natural fibers, plant fibers distinguish themselves by their remarkable benefits in
terms of cost-efficiency and ecological sustainability as compared to other types.

Plant fibers are commonly known as cellulose fibers due to their high cellulose content.
The application of these fibers has attracted considerable attention due to their eco-friendly
nature, physical properties, biodegradation characteristics, simple production process,
and low energy consumption [56]. The fibers can be extracted from different locations of
plants, such as straw, leaf, fruit, bast, seed, among others, to meet various demands using
advanced physical, chemical, and biological extraction technologies, such as the mechanical
extraction method, manual extraction, and retting process [55]. These particular fibers are
the most suitable candidates for replacement of their synthetic counterparts due to their
favorable environmental attributes and mechanical properties [6,57,58].

Cellulose fibers can be extracted from diverse locations on plant bodies. According to
the name of these areas, cellulose fibers can be further subdivided into seed fibers (cotton,
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luffa, and kapok), leaf fibers (sisal, pineapple, abaca, agave, and banana), bast fiber (jute,
flax, ramie, hemp, kenaf, and nettle), fruit fiber (oil palm, coir, and areca), and stem fiber
(wood, bamboo, grass, barley, straw, wheat straw, and bagasse) [59]. The major chemical
elements of cellulose fibers contain cellulose, hemicellulose, lignin, wax, pectin, and other
impurities [59–61]. However, the mechanical properties of cellulose fibers exhibit significant
variation based on their precise chemical composition and the type of plant from which
they are extracted, as shown in Table 2. Compared with synthetic fibers, we can find that
the density of cellulose fibers is lower than that of glass fibers and comparable to that of
aramid and carbon fibers; the elongation at break of cellulose fiber is higher than that of
carbon fiber and exceeds that of aramid and glass fiber. The characterization of cellulose
fibers with low density is crucial for the fabrication of lightweight composite materials.

Table 2. Physical and mechanical properties, and chemical composition of common plant fibers [17,59–63].

Materials Density
(g/cm3)

Elongation
at Break

(%)

Tensile
Strength

(MPa)

Young’s
Modulus

(GPa)

Cellulose
wt.%

Hemicellulose
wt.%

Lignin
wt.%

Wax
wt.%

Pectin
wt.%

bamboo 1.5 3 575 27 26–43 30 21–31 - -
coir 1.2 15~30 175~220 4~6 36–43 0.15–0.25 41–45 - 3–4

cotton 1.51 3–10 400 12 85–90 5.7 - 0.6 -
flax 1.4 1.6 1400 70 71 18.6–20.6 2.2 1.5 -

kenaf 1.2 1.6 930 53 72 20. 9 - -
jute 1.46 1.5~1.8 393–773 26.5 61–71 14–20 12–13 0.5

PALF 1.32 2.4 413~1627 60~82 55–68 15–20 8–12 - -
sisal 1.43~1.5 2~7 350~700 9~22 67–78 10–14.2 8–11 2 1

hemp 1.47 2.38 690 70 68 15 10 0.8 -

Cellulose fiber is a complex multilayer structure composed of a thin primary wall
and three secondary wall layers, as shown in Figure 3. The primary wall is the first layer
formed during cell growth and encases the internal secondary walls [56]. The mechanical
properties of the cellulose fiber are determined by the secondary wall (S2), which accounts
for approximately 80% of the total wall thickness [64].
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However, the mechanical properties and structure of cellulose fibers are subject to
several factors, including species, climate, geographical location of growth, degree of
maturity, and age of the plant, due to the intrinsic characteristics of their natural growth
processes. The quality of these fibers is also influenced by the methods employed in their
extraction and the technology utilized in their processing. To eliminate unfavorable effects
when using cellulose fibers, physical or chemical treatments are employed to remove
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surface impurities from fiber surfaces. Previous research results have shown that natural
fibers can be used to produce composite materials that wholly or partly replace synthetic
fibers, and these new composite materials have good mechanical properties and capabilities
to meet the requirements of utilization [62,65].

3. Performance of Hybrid Fiber-Reinforced Biocomposites

The growing emphasis on environmental protection and sustainable development
contributes to innovation in eco-friendly materials, prompting researchers to shift their
research and development focus to biocomposites [59]. To meet the requirements of func-
tional applications, materials must be biodegradable with sufficient mechanical properties.
Cellulose fibers are ideally suited for manufacturing biocomposites [65]. The reason is that
these fibers have a wide variety, high yield, low cost, excellent mechanical properties, and
minimal environmental impact. Although cellulose fibers demonstrate excellent mechan-
ical properties, they still fall short of providing the same level of stability and durability
as synthetic fibers, such as carbon, glass, and aramid fiber. Just using natural fibers as
reinforcements limits the performance of FRCs. In addition, the hydrophilic nature of
cellulose fibers also influences the properties of FRCs [66]. Combining plant and synthetic
fibers or using two kinds of plant fibers to create hybrid fiber-reinforced composites can
mitigate these adverse issues. In addition, rational hybridization techniques can be ap-
plied to produce green and sustainable biocomposites. Furthermore, the hybridization of
multiple reinforcements has synergistic effects on the dynamic mechanical properties [67].

Ensuring that hybrid composites have the necessary physical and mechanical char-
acteristics requires suitable ratios to create high-strength, long-durable, and low-density
composite materials. The performance of the composites varies with different raw material
ratios, enabling better customization to meet specific design requirements. Khalid et al. [26]
used woven E-glass fiber and jute fiber to create 5-layer hybrid composite laminates, and
the tensile test result showed that the non-hybrid laminate GGGGG displayed the highest
tensile strength, reaching 87 MPa. The tensile strength decreased as glass fiber layers were
replaced with jute fiber layers, with the tensile strengths of GGJGG, GJGJG, and GJJJG
laminates measured at 83, 54, and 43, respectively (see Figure 4). The tensile strength
declined when jute layers were incorporated. The replacement of a single glass fiber layer
with jute fibers in the core location resulted in a reduction of only 4.6% in tensile strength.
However, the GJGJG laminate led to a significant decrease in tensile strength of 37.93%
compared to the GGGGG form. The main reason for this result is that the mechanical
properties of jute fiber are lower than glass fiber. Although the strength of FRCs was
reduced with the replacement of synthetic fibers by plant fibers compared to the pure
synthetic fiber-reinforced composite, the elongation of FRCs at break is improved, and the
ductility of FRCs increases as the percentage of plant fibers increases.

The stacking sequence of fiber fabric layers with different properties in the composites
affects the properties of the composites, especially in flexural strength, interlaminar shear
strength (ILSS), fatigue properties, and so on [68,69]. Apart from that, the number of
layers also influences the mechanical properties. Das et al. [70] used jute fiber and glass
fiber as reinforcement to fabricate unsaturated polyester resin composite laminates. After
tensile and flexural strength tests, they found that stacking sequence and number of layers
influence laminate strength, as shown in Table 3.

The number of accumulated layers has an obvious effect on the thickness of the
specimen. Incorporating synthetic fibers into the laminate positively impacts both tensile
strength and modulus, as demonstrated in Figure 5. The primary reasons for this result
are as follows: firstly, synthetic fibers exhibit superior strength to natural fibers; secondly,
the fiber-matrix adhesion in glass fiber/polyester composites is more effective than in
jute/polyester composites, so pulling glass fibers from polyester substrates and breaking
them requires greater force than natural fibers. The stacking sequence is a critical factor
in determining the flexural strength and modulus of laminates, with these properties
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being significantly enhanced when glass fibers are positioned on the outer layers, a result
consistent with previous findings by Sanjay and Yogesha [71].

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 8 of 25 
 

 

al. [26] used woven E-glass fiber and jute fiber to create 5-layer hybrid composite lami-
nates, and the tensile test result showed that the non-hybrid laminate GGGGG displayed 
the highest tensile strength, reaching 87 MPa. The tensile strength decreased as glass fiber 
layers were replaced with jute fiber layers, with the tensile strengths of GGJGG, GJGJG, 
and GJJJG laminates measured at 83, 54, and 43, respectively (see Figure 4). The tensile 
strength declined when jute layers were incorporated. The replacement of a single glass 
fiber layer with jute fibers in the core location resulted in a reduction of only 4.6% in tensile 
strength. However, the GJGJG laminate led to a significant decrease in tensile strength of 
37.93% compared to the GGGGG form. The main reason for this result is that the mechan-
ical properties of jute fiber are lower than glass fiber. Although the strength of FRCs was 
reduced with the replacement of synthetic fibers by plant fibers compared to the pure 
synthetic fiber-reinforced composite, the elongation of FRCs at break is improved, and the 
ductility of FRCs increases as the percentage of plant fibers increases. 

 
Figure 4. Tensile strength and fracture strain of E-glass fiber (G) and jute fiber (J) hybrid composite 
laminates. 

The stacking sequence of fiber fabric layers with different properties in the compo-
sites affects the properties of the composites, especially in flexural strength, interlaminar 
shear strength (ILSS), fatigue properties, and so on [68,69]. Apart from that, the number 
of layers also influences the mechanical properties. Das et al. [70] used jute fiber and glass 
fiber as reinforcement to fabricate unsaturated polyester resin composite laminates. After 
tensile and flexural strength tests, they found that stacking sequence and number of layers 
influence laminate strength, as shown in Error! Reference source not found.. 

Table 3. Tensile and flexural strength and modulus of various stacking sequences. 

Stacking 
Sequence 

Number of 
Layers Thickness (mm) 

Tensile 
Strength (MPa) 

Tensile 
Modulus (GPa) 

Flexural 
Strength (MPa) 

Flexural Modu-
lus (GPa) 

JJJJJ 5 1.95 ± 0.07 64.6 3.48 127.2 3.52 
JG 2 0.71 ± 0.02 91.3 4.89 166.6 5.54 
JGJ 3 1.66 ± 0.07 76.7 2.58 114.4 2.99 
GJG 3 1.43 ± 0.03 123.1 4.30 313.0 9.14 
JGJG 4 1.11 ± 0.08 132.8 5.42 173.6 6.71 
JGJGJ 5 1.62 ± 0.03 125.8 3.68 163.3 4.41 
GJGJG 5 1.80 ± 0.07 137.6 4.62 252.4 10.59 

GGGGG 5 2.17 ± 0.09 159.1 3.79 340.4 9.36 

Figure 4. Tensile strength and fracture strain of E-glass fiber (G) and jute fiber (J) hybrid composite
laminates.

Table 3. Tensile and flexural strength and modulus of various stacking sequences.

Stacking
Sequence

Number of
Layers

Thickness
(mm)

Tensile
Strength

(MPa)

Tensile
Modulus

(GPa)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

JJJJJ 5 1.95 ± 0.07 64.6 3.48 127.2 3.52
JG 2 0.71 ± 0.02 91.3 4.89 166.6 5.54
JGJ 3 1.66 ± 0.07 76.7 2.58 114.4 2.99
GJG 3 1.43 ± 0.03 123.1 4.30 313.0 9.14
JGJG 4 1.11 ± 0.08 132.8 5.42 173.6 6.71
JGJGJ 5 1.62 ± 0.03 125.8 3.68 163.3 4.41
GJGJG 5 1.80 ± 0.07 137.6 4.62 252.4 10.59

GGGGG 5 2.17 ± 0.09 159.1 3.79 340.4 9.36
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Researchers also employed two types of natural fiber materials to fabricate hybrid
biocomposites to increase mechanical properties and reduce moisture absorption [72]. Baigh
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et al. [73] created hybrid biocomposites reinforced with pineapple leaf fiber (PALF) and
jute fiber, as illustrated in Figure 6a. The moisture absorption results revealed that the mass
of all composites increased daily. The weight gain was most significant during the first few
days, but, after six days, the water absorption capacity declined, reaching a plateau stage.
The weight gain peaked on the 20th day, as shown in Figure 6b. The researchers found
that the hybrid composites, particularly 4P5J-2, 4P5J-3, and 4P5J-4, significantly reduced
moisture absorption by 16.70%, 14.84%, and 29.50%, respectively, compared to 12.44% JFRP
water absorption after 21 days. However, the moisture absorption test results for 4P5J-1
were contrary to those of other hybrid composites. Although hybridization increases water
absorption, optimizing the hybridization sequence and improving the interface between the
fiber layers and the substrate can help mitigate the issue of hygroscopicity. Praveena [72]
also demonstrated that reasonably hybridized plant fibers can increase the mechanical
properties of composites and reduce moisture absorption.
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4. Hygroscopic Behavior of Plant Fibers in Biocomposites

The hygroscopic behavior of plant fibers is related to fiber structure and its chemistry;
cellulose, hemicellulose, and lignin are all extremely hygroscopic [74]. The inherent chem-
ical composition of cellulose fibers leads to moisture absorption from the environment.
Additionally, the rate of moisture absorption of materials is affected by environmental
conditions, and high temperatures can accelerate the process of moisture absorption [75].
The hygroscopic behavior of fiber composite biomaterials is positively related to the per-
centage of plant fibers in the material [76]. The hydrophilic nature of these fibers can
significantly impact the mechanical performance of biocomposites [77,78]. The moisture
can weaken or disrupt the effectiveness of the fiber-matrix interface [79]. Addressing the
issue of interfacial bonding between the fibers and the matrix is paramount when keeping
the mechanical properties of biocomposites in wet environments. Numerous elements
influence hygroscopic qualities, such as the kind of matrix and fiber, the surrounding
temperature, and the period of exposition [72,80].

Traditionally, natural fibers have more sensitive hygroscopicity than synthetic fibers
in composites due to the difference in chemical composition. Hygroscopic behavior is
one of the important indexes affecting all kinds of composite materials [81–84], especially
in water absorption tendency composites [85]. The water absorption of biocomposite
materials typically exhibits an initial rapid uptake, which gradually slows down over
time [73]. Generally, when water molecules penetrate the biocomposite, the natural fibers
absorb moisture and expand. Fiber expansion generates micro-stress at the fiber-matrix
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interface, forming cracks in the biocomposite, further affecting the integrity of the mate-
rials. As a result, the strength and modulus of the composite diminish, along with the
material’s durability and other properties; this process is shown in Figure 7. As the soaking
time increases, water-soluble substances will separate from the material, and fungus will
grow, further accelerating degradation [86]. However, some experiments showed that the
properties of the material are enhanced after absorbing water; for example, Muñoz and
García-Manrique [87] made flax/epoxy composite samples to test the tensile strength in
wet (with 768 h water immersed) and dry conditions. After testing, they found that the
wet samples displayed higher tensile strength than the dry ones. For samples reinforced
with 40 wt% flax, the tensile strain increases by 51%, while for samples with 55 wt% flax,
the strain increases by 27%. The expanded fiber can fill the gaps between the fiber and
the matrix material caused by shrinkage and deformation, thereby enhancing the binding
ability [88], as shown in Figure 7a,b.
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After absorbing moisture, biocomposites can have adverse effects, such as extraction
of soluble components, degradation of mechanical properties and material structure, and
alteration of dimension and quality [89]. The water absorption of composites can be affected
by various factors, including the type of fiber, the matrix material, their respective volume
proportions, and the preparation method [90,91]. Effectively limiting and managing water
absorption is crucial throughout the manufacturing process and service life of biocompos-
ites. Pre-fabrication thermal treatment is necessary to remove moisture from natural fibers,
enhancing surface adhesion between the fibers and polymers [4,92].

5. Seawater Aging of Biocomposites

The seawater aging test refers to the experimental method of exposing composite
materials to seawater for a long period of time and analyzing the changes in material
characteristics [93,94]. Seawater is a solution of complex composition with high salinity
values [95]. The hygroscopic nature of plant fibers can lead to challenges for their compos-
ites in marine applications. Seawater contains various ions, such as Na+, Cl−, Mg2+, SO4

2−,
Ca2+, K+, CO3

2+, etc. [96]. The chemical interactions between seawater and composite
materials reduce material stability, promote the dissolution of water-soluble components,
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and negatively impact durability [97]. The constant moisture and harsh seawater envi-
ronmental conditions significantly accelerate material corrosion and degradation, posing
serious challenges to the safety and durability of marine engineering structures [98]. In
addition, seawater engineering also suffers from physical effects, such as wave impact
and solid floating objects impact [99]. Seawater aging cycles can promote the imperfectly
crystalline components of the structure to dissolve, allowing the cellulose fibril to rearrange
and improving the hygroscopic properties of the composite [100]. The deterioration of
FRCs can be attributed to several factors, including the expansion and plasticization of
the material, the disparity in expansion coefficients between components, and the reduc-
tion in cross-linking density during the aging process [101]. The bonding between the
fiber and matrix may break down, further degrading structural integrity [102]. In addi-
tion, the breaking threshold of FRCs decreases with increasing exposure temperature and
time [95,103]. With increasing interest in extending the application of cellulose FRCs in this
field, researchers have devoted greater attention to this study area [104,105]. Therefore, af-
ter prolonged exposed to seawater, FRCs will suffer dimensional changes and deterioration
of mechanical properties, such as fiber swelling, material volume expansion, deterioration
of the fiber-matrix interface, intrusion of harmful ions in seawater, and degradation of
natural fibers.

Exposure to the seawater environment reduces the mechanical properties of FRCs and
increases elongation at fracture, reflecting a decrease in brittleness and an enhancement
in ductility [106,107]. Velasco-Parra et al. use the vacuum infusion method to fabricate
jute/epoxy composites. After the aging test, the results indicated that the tensile strength
and modulus decreased by 1.49% and 4.11%, and the elongation increased by 6.67% at the
break [108]. In addition, Haramina et al. [109] conducted aging tests on flax/epoxy and
hemp/epoxy biocomposites, finding that flax/epoxy’s elongation at break increased from
4% to 8% and hemp/epoxy’s elongation from 2.5% to 3.5%, corresponding to increases of
100% and 40%, respectively. Furthermore, they also found that different fibers with the
same weight fraction in composites can exhibit varying seawater uptake performances.
Water absorption tests showed that flax/epoxy composites demonstrated lower water
uptake compared to hemp/epoxy composites, with a maximum water absorption rate of
7.5% for flax/epoxy and 9.8% for hemp/epoxy, and the mechanical properties (Figure 8).
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However, the short period of seawater aging positively affects the strength of FRCs.
Antunes et al. [110] evaluated the strength of glass fiber/epoxy composite cylinders exposed
to seawater at 80 ◦C for 7 to 28 days, and the results indicated that the strength of cylinders
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aged for 7 days exceeded that of unaged samples, and the strength decreased with time
after 7 days. This finding suggested that limited seawater aging time may enhance the
cross-linking density of the matrix, further increasing the resistance strength of FRCs.

Hybridizing synthetic fiber in natural FRCs and altering the stacking sequence are key
methods for enhancing the physical and chemical properties of biocomposites [111,112].
Calabrese et al. assessed the durability and mechanical stability of the flax/epoxy laminate
and the hybrid glass and flax/epoxy laminate for application in the marine environment.
The results indicated that adding glass fibers to flax laminate increased flexural strength by
90% and modulus by 128%, and external glass fiber can protect the internal flax fiber to
enhance the durability of flax/epoxy laminate in marine environments [113].

Fiber-reinforced biocomposites show a tendency to decrease mechanical properties
after long-term seawater aging [111,114]. To adapt to the requirements of seawater envi-
ronments, the primary objective is to address how to maintain or improve the original
mechanical properties of composites in such environments. Applying biocomposites in
seawater environments requires reducing the diffusion coefficient of seawater molecules
in composites and increasing the durability of materials [115]. Furthermore, improving
resistance to microbial degradation, salt fog aging, and UV aging is crucial when using
these biocomposites in the marine environment [105,116]. Various methods, including the
use of corrosion-resistant reinforcements, optimization of matrix materials, chemical and
physical pre-treatment of fibers, and the incorporation of appropriate nanoparticles, have
been explored and applied to enhance the mechanical properties and resistance of bio-
composites [20,117–119]. These measures can significantly enhance the interfacial bonding
between reinforcing fibers and the matrix, improving the overall material performance.

6. Effect of NaOH Treatment and Nanoparticles on Biocomposites
6.1. Effect of NaOH Treatment on Biocomposites

Sodium hydroxide (NaOH) treatment, also known as alkali treatment or mercerizing,
is an effective chemical method of cleaning fiber fabrics and can remove impurities from
the surface of natural fibers, such as waxes and lignin, thereby increasing the roughness of
the fiber surface and improving adhesion with polymer. The structure of cellulose fibers
is complex and multi-component, containing not only cellulose but also impurities that
will affect the bonding with polymers [120]. Before using natural fibers, it is important to
remove the detrimental impurities [121]. Although various physical and chemical methods
can achieve this result [122,123], treating with a sodium hydroxide solution is one of the
preferred modification methods because of its effectiveness, simplicity of operation, and low
cost [15,55,124]. Alkali treatment can modify the surface of the cellulose fibers and remove
the impurities on the surface of fibers [125]. The fiber surface becomes clean and rough
after treatment, so the interface bonding between fiber and matrix can be strengthened
through the interlock formed after the alkalization process [126]. In addition, mercerization
can improve the crystallinity and stability of cellulose fibers [127]. After alkali treatment,
Bernardes et al. [128] reported that pineapple crown fibers’ cellulose content increased from
18.93 to 57.00%, fiber diameter decreased from 6.1 to 4.3 µm, and the fiber’s crystallinity
index rose from 53 to 62%. Furthermore, hydroxyl on the natural fibers can be eliminated
by NaOH treatment, which reduces moisture absorption when exposed to wet conditions,
and the reaction occurs as shown in the below function [66]:

Fiber − OH + NaOH → Fiber − O − Na+ + H2O (1)

The alkali treatment enhances the affinity between the fibers and the polymer, increas-
ing biocomposite’s mechanical properties and water resistance [36]. Treating kenaf fibers
with an 8% NaOH solution for 4 h effectively removes hemicellulose and lignin, improves
the adhesion between the fibers and the epoxy matrix, increases the flexural strength of the
biocomposites by 52%, and enhances the flexural modulus by 46% [124]. Furthermore, sim-
ilar results were confirmed by Ganesan et al., who tested jute/epoxy composites fabricated
with jute fibers treated with 5% NaOH and untreated ones. They found that the mechanical
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properties of the alkali-treated fiber-reinforced composites increased significantly, with ten-
sile strength, flexural strength, and impact strength improving by 68.9%, 79.1%, and 4.4%,
respectively [129]. In the study [130] of the water absorption of sisal and epoxy composites,
researchers found that the water absorption of biocomposites made from fibers treated with
5% NaOH was greatly reduced. The treated fiber-reinforced composites absorbed 41% less
water than the untreated composites after 600 h of immersion in water at 50 ◦C. To treat
natural fibers with NaOH solution, the relationship between alkali solution concentration
and soaking time must be well-controlled to obtain the best treatment results [131], as
shown in Table 4. Excessive alkali treatment can cause the fiber texture to become thin and
fragile, deteriorating the composite material’s mechanical properties [132].

Table 4. Effect of NaOH treatment on biocomposites.

Type of
Fiber/Matrix

Treatment
Time

NaOH
Concentration

Tensile
Strength
Change

Flexural
Strength
Change

Water
Absorption

Change
Ref.

kenaf and glass/epoxy 4 h 8% - ↑ 52% - [124]
jute/epoxy 45 min 5% ↑ 68.9% ↑ 79.1% - [129]
jute/epoxy 90 min 6% ↑ 37.47% ↑ 71.46% - [127]
jute/epoxy 24 h 5% ↑ 36% ↑ 14.63% ↓ 48.45 [133]
sisal/epoxy 2 h 5% ↑ 39.7% - ↓ 41% [131]

bamboo/epoxy 30 min 5% ↑ 50% ↑ 7.36% ↓ 23.81% [134]
flax/epoxy 30 min 5% ↑ 20.74% ↑ 13.86% ↓ 15.38% [134]

flax/polypropylene 2 h 5% ↑ 22.8% - ↓ 22.48% [135]
PALF/phenolic 3 h 5% ↑ 79.32% ↑ 82.27% - [136]

PALF/polypropylene 4 h 5% ↑ 12.01% ↑ 7.98% - [137]
kenaf/polypropylene 4 h 5% ↑ 15.35% ↑ 12.82% - [137]

kenaf/epoxy 24 h 6% ↓ 34.7% - - [132]

In the table: ↑ indicates an increase in the respective property; ↓ indicates a decrease in the respective property.

6.2. Effects of Nanofillers on Biocomposites

Several factors, including voids within the material, weak matrix-reinforcement bond-
ing, and manufacturing defects, undermine the integrity and comprehensive properties of
FRCs [138]. Improving the quality of product processing and incorporating new active in-
gredients are effective ways to enhance the durability of materials, and adding nanoparticles
or nanocomponents to composites is considered an effective strategy [139,140]. Nanoparti-
cles are ultra-fine particles with diameters ranging from 1 to 100 nanometers, and judicious
use of them in composites can bring positive effects [141,142]. The specific surface area
of nanofillers plays a crucial role in influencing the properties of nanocomposites [143].
Uniform dispersion of nanoparticles in composites can significantly improve the mechani-
cal properties of FRCs [144]. Fine nanoparticles can reach the interfacial sites of fiber and
matrix and enhance linking, which improves binding properties. At the same time, the
fracture toughness and other mechanical strength of nanocomposites are improved [145].
In addition, nanofillers can fill out the micro holes in the matrix and reinforce the bond
between fibers and matrix, playing a positive function on the area between polymers and
fibers, whether natural or synthetic [146,147]. Moreover, nanoparticles in composites form
chemical bonds and physical interactions with the matrix, reducing the formation and
propagation of cracks in the matrix [148]. Using them can significantly improve compos-
ites’ seawater resistance and flame retardancy [149–151]. Nanoparticle-reinforced fiber
composites are the subject of considerable attention due to their remarkable stability, supe-
rior mechanical properties, and exceptional capacity to withstand various environmental
conditions [152]. Furthermore, different nano-additives can bring different functional
properties, modifying the resistance of composites to fit for various environments; for ex-
ample, proper selection and amounts of nanoparticle fillers can enhance the biocomposite’s
UV resistance, making it suitable for outdoor applications [153]. The property effects of
some synthetic/natural fiber-reinforced composites modified by nanofillers from previous
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literature are listed in Table 5. Obviously, the addition of nanoparticles in the range of
0.1–2.0% can play a greater role in improving the properties of the composites. There are
vast differences in the results when using the same nanoparticle with different ratios to
modify fiber-reinforced composites. Furthermore, using the same type and proportion
of nanofiller to treat biocomposites, which are made of different materials, produces sig-
nificantly different results. Additionally, fine and well-dispersed nanoparticles are more
favorable for the modification of biocomposite properties [154,155].

Table 5. Effects of nanofillers on biocomposites.

Fiber/Matrix Filler/Amount Changes in Properties Ref.

flax/epoxy TiO2/0.7%

↑ 10.95% tensile strength
↑ 20.05% flexural strength
↑ 10.45% impact strength

↑ 18.81% interlaminar shear strength
↓ 31.66% water diffusion coefficients

[156]

flax/epoxy TiO2/0.6%

↑ 16.03% tensile strength
↑ 24.66% flexural strength

↑ 16.45% interlaminar shear strength
↓ 43.06% water diffusion coefficients

[157]

PLAF/epoxy Nano clay/1.5% ↑ 33.33% tensile strength
↑ 14.74% flexural strength [158]

palm leaf stalk and
glass/unsaturated polyester Nano clay/1.5%

↑ 12.56% tensile strength
↓ 36.92% water absorption (24 h)

↓ 17.72% water absorption (21 days)
[21]

kenaf/epoxy SiO2/2%
↑ 20.61% tensile strength

↑ 23.71% compressive strength
↑ 22.88% impact strength

[159]

flax/polypropylene SiO2/10% ↓ 23.63% water absorption [160]

glass/epoxy Al2O3/0.1%
↑ 12% flexural strength

↑ 17% interlaminar shear strength
↓ 17% water diffusion coefficients

[117]

In the table: ↑ indicates an increase in the respective property; ↓ indicates a decrease in the respective property.

7. Marine Application

One of the primary motivations behind the development of FRCs is to modify the
seawater corrosion of traditional metal materials. The FRCs, as advanced materials, are
ubiquitous in the marine industry, such as boats, competitive sports equipment, and
waterpark installations, owing to their lightweight nature and exceptional mechanical prop-
erties [161]. Their applications extend to underwater facilities, underwater investigation,
military sectors, and numerous other fields [99,162], as shown in Figure 9. Biocomposites
have important uses in the fields of water purification and wastewater treatment [163,164],
and researchers found that a chitosan-based biocomposite performs well in this field [165].
However, most of the FRCs used in the marine industry rely on synthetic fibers as reinforce-
ment materials, which are not environmentally friendly. Most synthetic fibers are derived
from non-renewable resources, such as petroleum. In addition, these synthetic fibers are re-
sistant to degradation in natural environments. Once dispersed in the natural environment,
these fine materials are challenging to collect and persist for extended durations, causing
long-term environmental pollution [10]. Employing renewable and biodegradable materi-
als can reduce or mitigate the adverse effects of synthetic fibers from the source. Moreover,
compared to synthetic fibers, natural fibers have a lower carbon footprint, benefiting from
lower energy use in the production process [166]. Natural fiber-reinforced biocomposites
are naturally degradable and less toxic, reducing adverse impacts on marine life as well as
human health [167].
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Despite the rapid adoption and development of FRCs across several marine industries,
their usage remains relatively recent compared to the long history of wood and metal
materials in this field. For example, in the ship hull construction field, wood dominated as
the primary material for thousands of years [168]; metal materials began to be employed
in the 19th century for building larger vessels [12]; and by the mid-20th century, FRCs
reinforced with glass and carbon fiber were successfully applied in this field, leading to
widespread acceptance and rapid development [34]. The FRC components can be factory
fabricated and assembled together in a bolted structure [169–171]. Further research is
needed to explore and enhance the marine applications of FRCs, particularly in improving
durability and water repellency, resistance to seawater environmental conditions, and
developing more sustainable alternatives.

Ships are the primary application of FRCs in the marine environment, and they must
be able to overcome harsh environments during their service life. After Ray Greene created
a fiberglass sailing boat, the FRCs entered a rapid development period in marine appli-
cations. By 1957, Ray Greene had manufactured 175 of the 25-foot Sparkman & Stephens
design [34]. In addition, HMS Wilton, a mine-countermeasures vessel measuring 60 m, was
applied in naval in 1973. This boat was the first to be made using a glass fiber-reinforced
composite for naval shipbuilding [33]. More and more ships were made using these materi-
als. However, with the increasing abandonment of synthetic fiber-reinforced vessels and the
associated environmental risks stemming from these composites, the disposal of such hulls
has emerged as a critical and pressing issue [172]. Using biocomposites in hull structures
offer a sustainable solution, effectively mitigating environmental challenges while ensuring
reliable operational performance. A previous article aimed to provide biocomposite relia-
bility in marine environments and useful information to boat designers [173]. They made
a racing sailboat using flax/epoxy and balsa wood materials by vacuum resin infusion
method, and the boat structure displayed excellent mechanical properties and durability.
Other biocomposite boats were created, as shown in Table 6. Furthermore, biocomposites
have many advantages, including simple fabrication, easy-obtained material, low carbon
emission, nontoxicity, and recyclability. Using new biocomposite materials has a positive
impact on the maritime industry.
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Table 6. The applications of fiber-reinforced biocomposites on boat hull.

Year Fiber/Matrix Marks Ref.

2009 Bamboo/epoxy A 6 m boat hull was built using the vacuum bagging method. [174]

2010 Glass and sugar palm/
unsaturated polyester

The sugar palm fiber was used to replace glass fiber to create a
hybrid fiber-reinforced biocomposite boat, and 50% glass usage

was reduced in this work.
[175]

2010 Carbon and Flax/polyester A 6.5 m racing yacht, Araldite, was built with 50% flax and carbon
fibers and launched in 2010. [167]

2011 Flax/PLA Manufacturing a canoe with 4.4 m length by vacuum forming then
autoclave. [176]

2013 Flax/polyester A 7 m trimaran, Gwalaz, was created with flax fiber without
synthetic fibers, and the boat was launched in 2013. [167]

2013 Jute/polyester
Tara Tari built a boat, Gold of Bengal, made entirely of natural

fiber-reinforced composite, and is the first boat created by jute fiber
without any synthetic fibers.

[12]

2021 Bamboo/Bio Resins
A yacht, named FLOKI 6.5, was designed. The boat was made of
bio-based and recyclable raw materials and displayed a uniquely

sustainable capability.
[12,177]

Aside from maritime vessels, fiber-reinforced biocomposites hold significant potential
for various applications in future marine exploration. The sea is a vital resource repository
upon which humanity depends for survival, providing food, energy, and minerals. Hu-
man efforts to exploit and utilize the ocean’s resources have been continuous throughout
history [178,179]. Autonomous underwater vehicles (AUVs) are crucial equipment for sur-
veying marine environments, with applications spanning scientific research and military
operations [180,181]. Employing biocomposites in AUVs presents potential advantages,
including environmental protection demands and a lightweight structure that enhances
underwater endurance and maneuverability. These factors make AUVs more suitable
for exploring marine resources and conducting marine environmental research [182,183].
However, reports on using ecological composite materials in this field remain limited.
Further fundamental research is needed to develop biocomposites, focusing on areas, such
as selecting and processing raw materials, advancing composite fabrication techniques, and
enhancing mechanical properties and durability. Overcoming these challenges to modify
the environmental problem remains a key objective.

8. Conclusions

The FRCs are a sophisticated composite material characterized by lightweight qualities
and superior mechanical attributes, extensively utilized across multiple domains in terms
of transport, engineering, sport, etc. Nevertheless, conventional reinforcements in FRCs
consist of synthetic fibers, including carbon, glass, and aramid, which negatively impact
the environment. Plant fibers possess a distinct advantage as a substitute for manufactured
fibers. Nonetheless, numerous issues must be addressed when utilizing plant fibers, includ-
ing the reduction of water absorbency and the enhancement of binding capacity between
the fibers and the matrix to improve the environmental durability of biocomposites.

This review addresses the challenges encountered and prevalent countermeasures for
the implementation of plant fiber-reinforced biocomposites in marine environments. The
hygroscopic characteristics of plant fibers cause volumetric expansion upon contact with
water, influencing the mechanical properties of the composites. Consequently, mitigating
the detrimental impacts of water in marine environments is the foremost challenge for
material applications in this domain, and mitigating water absorption in plant fibers and
augmenting fiber-matrix adhesion are the primary methods to enhance mechanical charac-
teristics. The alkaline treatment process is an effective method for modifying plant fibers
and improving fiber-matrix bonding. Similarly, oxide nanoparticles have a positive effect on
the performance enhancement of biocomposites by improving the mechanical properties of
the composites and reducing the water absorption, etc. Moreover, a hybrid fiber-reinforced
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biocomposite is an appropriate material for maritime applications, combining the benefits
of both synthetic and natural fibers. These technologies enhance biocomposites, enabling
materials to maximize performance to meet the requirements of more demanding and
intricate application environments. Additionally, these improvements in fabrication tech-
niques have significantly enhanced the performance and water resistance of biocomposites,
offering promising prospects for their application in marine environments.

Current research indicates that plant fibers possess significant potential for maritime
applications owing to their inherent characteristics and superior mechanical qualities.
Nevertheless, studies on bio-based fiber-reinforced composites in maritime applications
remain limited. Therefore, to promote the utilization and implementation of plant fiber-
reinforced composites in marine environments, the following research areas need to be
explored to:

1. Enhance the mechanical properties and durability of biocomposites in the dry and
wet states;

2. Increase the proportion of renewable plant fibers in biocomposites and reduce the
ratio of synthetic fibers used;

3. Improve biocomposites’ environmental resistance, including against UV and under-
water biopollution;

4. Optimize manufacturing processes to reduce costs and facilitate industrial applications.

In short, following the continuous development of manufacturing technology, bio-
based fiber-reinforced composites will have a wider prospect in the marine field.
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