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Abstract: Polyetherimide (PEI) and polyarylethernitrile (PEN) are high–performance materials
for various applications. By optimizing their fiber morphology, their performance can be further
enhanced, leading to an expanded range of applications in carbon fiber composites. However,
developing processes for stable and efficient fiber production remains challenging. This research aims
to simulate the preparation of high–performance ultrafine PEI or PEN fibers using electrospinning. A
mesoscopic simulation model for centrifugal melt electrospinning was constructed to compare and
analyze the changes in molecular chain orientation, unfolding, fiber diameter, and fiber yield under
high-voltage electrostatic fields. The simulation results showed that temperature and electric field
force had a particular impact on the diameter and yield of PEI and PEN fibers. Changes in rotational
speed had negligible effects on both PEI and PEN fibers. Additionally, due to their different molecular
structures, PEI and PEN, which have different chain lengths, exhibit varied spinning trends. This
study established a mesoscopic dynamic foundation for producing high-performance ultrafine fibers
and provided theoretical guidance for future electrospinning experiments.

Keywords: carbon fiber composites; molecular chain orientation; rotational speed; fiber morphology;
interlayer toughening

1. Introduction

Polyetherimide (PEI) is a high-performance polymer characterized by flexible ether
bonds along its main chain [1,2], contributing to its recyclability. This material exhibits
a transparent appearance with an amber coloration. Incorporating an aromatic imine
structure in the molecular chain enhances PEI’s properties, including high rigidity, hard-
ness, creep resistance, and heat resistance [3–6]. Moreover, ether bonds impart excellent
processability and performance to PEI by making the molecular chain flexible [7–9]. The
composition of PEI, as depicted in Figure 1, is represented by its structural formula. No-
tably, PEI possesses a high glass transition temperature and inherent flame retardancy.
It shows exceptional mechanical properties, high temperature, and chemical corrosion
resistance [10–12]. These distinctive characteristics make PEI highly suitable for various
applications, especially in the interlayer toughening of carbon fiber/epoxy resin compos-
ite [13–15]. Due to its excellent thermal stability, mechanical strength, and processing
performance, the PEI has been applied to the interlaminar toughening of the carbon fiber
composites, the mode I initial fracture toughness (GIC) increased by about 28%, and the
mode I fracture toughness increased to approximately 3 kJ/m2 for mode II (GIIC) [16].

Both solution electrospinning and melt electrospinning are potential options for fab-
ricating PEI fibers. However, when exposed to solvents such as chloroform, dimethylfor-
mamide, dichloromethane, and N-methylpyrrolidone, PEI’s mechanical and thermal prop-
erties are significantly compromised. The primary drawback of PEI lies in its poor solvent
resistance, which limits its application range [17]. Compared to other high-performance
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polymers like polyimide and polyether ether ketone, which require processing tempera-
tures of 400 ◦C, PEI can be melted and processed at a lower temperature of 340 ◦C due to its
flexible ether and isopropenyl bonds [18,19], which reduces costs and polymer degradation.
Hence, the centrifugal melt electrospinning process is suitable for preparing PEI ultrafine
fibers. Melt electrospinning expands the application range by avoiding any negative effects
on PEI’s performance caused by solvents.
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Polyarylene ether nitrile (PEN) is a polymer that incorporates aryl, ether, and cyano
side chains. The structural formula of PEN is depicted in Figure 2, where Ar represents
diverse aromatic binary phenols, such as bisphenol A, resorcinol, and hexafluorobisphe-
nol A [20–22]. Benzene ring structures along the main chain of PEN molecules impart
exceptional heat resistance, mechanical stability, corrosion resistance, and other desirable
properties [23–25]. Including ether bonds on the main chain of polyarylene nitrile enhances
its flexibility, facilitating easy molding and processing characteristics. Furthermore, intro-
ducing functional cyano groups improves PEN’s heat resistance, solubility, and mechanical
properties. The cyano groups, serving as potential active sites, undergo reactions with other
functional groups under experimental conditions involving heating or metal ion catalysis,
enabling functional modifications of PEN [26–28]. The outstanding overall performance of
PEN has garnered significant attention in engineering applications, with expectations of its
utilization in many fields [29–31].

Unlike the sulfone and ketone groups present in polyethersulfone and polyetherether-
ketone, the cyano groups in PEN do not appear on the main chain of the molecule but
function as side groups to enhance polarity instead. Thus, the flowability is minimally
affected, resulting in better melt-state processability. The dipole interactions between the
molecular chains are also enhanced, which improves the material’s mechanical strength
and leads to the enhancement of the bonding between the resin matrix and the filler [32].
Additionally, cyano groups can serve as potential crosslinking points, forming network
structures with excellent heat resistance.

The rigid structure and the regular molecular chain of PEN result in PEN’s poor solu-
bility [33,34]. It is challenging to dissolve PEN in common polar solvents like water, alcohol,
or ketones. Nevertheless, the highly customizable structure of PEN allows for diverse
structural variations, thereby providing excellent processing capabilities. The molding
and processing techniques commonly employed for PEN include traditional extrusion
molding, injection molding, compression molding, and electrospinning. Electrospinning, in
particular, offers the advantage of producing non-woven fibers with nanoscale diameters,
thereby significantly enhancing the material’s mechanical properties [10,35,36], specific
surface area, and volume ratio [37,38]. In our previous work, we achieved a 69% increase
in GIC by adding PEN membranes into the laminates [32], revealing its potential in the
interlayer reinforcing of the carbon fiber composites.
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Utilizing melt electrospinning to prepare PEI and PEN fibers circumvents the need
for solvents, thereby mitigating potential damage to the PEI and PEN materials while
concurrently broadening their scope of application. Compared to conventional melt electro-
spinning, centrifugal melt electrospinning offers advantages such as producing finer fibers,
higher production efficiency, solvent-free operation, and environmental friendliness [39–43].
This technique effectively harnesses the exceptional performance of PEI and PEN, thereby
enhancing their application value. Before the practical experimental preparation of PEI
and PEN fibers through centrifugal melt electrospinning, we hope to gain a better under-
standing of the differences between the two polymers during the spinning. So, this study
created a mesoscopic simulation model for centrifugal melt electrospinning of PEI and
PEN, taking into account their molecular structural characteristics. Four key variables that
significantly impact the electrospinning effect of polymer melt are considered: electric field
strength, rotational speed, temperature, and molecular chain length. Multiple simulations
are conducted under each set of variables, and the resulting data are summarized and
analyzed to provide theoretical guidance for spinning experiments.

2. Dissipative Particle Dynamics (DPD) Parameters and Model
2.1. DPD Simulation Method

The DPD simulation method, which emerged in the 1990s, is a mesoscale simulation
technique that combines molecular dynamics and lattice gas methods [44–46]. Leveraging
its strengths in simulating complex fluids, DPD simulation is well-suited for centrifu-
gal melt electrospinning (shown in Figure 3a). In the DPD simulation system, shown in
Figure 3b, the fluid particles can be treated as coarse-grained polymer molecules. Further-
more, if the influence of polymer chains is considered, the particles in the system can be
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viewed as aggregates of monomeric units, such as chain segments or crystallite. Compared
to molecular simulations, DPD provides a dynamic depiction of the spinning process from
a mesoscopic perspective while significantly enhancing computational efficiency.
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A detailed analysis of the centrifugal melt electrospinning process is required to
establish an appropriate model. During centrifugal melt electrospinning, polymer melts
like PEI and PEN are subjected to complex forces, including centrifugal force, electric field
force, gravitational force, air resistance, surface tension, and viscous force. These forces act
in different planes, and their directions are different. In the fiber stretching process, the
centrifugal and electric field forces are the most crucial forces affecting the fiber’s trajectory.

Among them, the centrifugal force (
→
Fc) is the driving force for the circular motion of the

jet and is related to the angular velocity (
→
Ω). The calculation formula is presented in the

Equation (1):
→
Fc= 2m

→
Ω ×→

v (1)

where m is the mass of the particle, in this research m = 1 is assumed, and
→
v represents the

absolute velocity of the melt drop.

The electric field force (
→
Fe) is the driving force for the radial motion of the jet and is

related to the field strength (
→
E ) and the charge (q), as shown in Equation (2).

→
Fe =

→
Eq (2)

→
Fr is the resistance encountered during the jet motion, including air resistance and inter-

nal viscous resistance within the melt. The calculation formula is shown in the Equation (3)

→
Fr = η

(
→
v −

→
Ω ×→

r
)

(3)

where η is the viscosity factor,
→
r represents the vector of the electric field

The Coriolis force (
→
Fd) is determined by the inertia formula of particle motion given in

Equation (4).
→
Fd = 2m

→
Ω × v (4)
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The four forces above follow Newton’s equations of motion, as is shown in Equation (5):

m
d
→
v

dt
=

→
Fe −

→
Fr +

→
Fc −

→
Fd (5)

2.2. DPD Parameters and Model

The foundation of DPD simulation lies in the establishment of the system model.
In this research, the simulated system comprises 24,000 particles, including 2525 red
particles (representing the melt), 2278 yellow particles (representing the turntable), and
19,197 blue particles (representing the air). The initial particle distribution in the system
is depicted in Figure 4. In the DPD model, the particles adhere to mass conservation and
momentum conservation principles. Within a three-dimensional simulated system, by
imposing specified force relationships and constraints on the target particles, the particles
undergo intricate force transformations and motion analysis. Position updates over discrete
time steps, continuously forming new structural arrangements [47–49]. The computer
calculates the force-induced motion of the designated particles. It establishes updated
positional coordinates at different time steps to investigate the motion variations in the jet
and polymer chains.
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In the set-up program, the red particles were designed to conform to Equations (1)–(5)
above. As the jet moves, the coordinates of the particles change, after which the changes in
the coordinates of the particles are organized according to the output result file, which in
turn analyzes how the jet is affected by different parameters.

The precise methodology for computing the interaction parameters between particles
was detailed in the previous work [50,51]. The interaction parameters are determined
using χ values, corresponding to the Flory–Huggins parameter for distinct particle types.
For particles of the same type, the interaction parameter is denoted as KBT, where KB
represents the Boltzmann constant, and T signifies the equilibrium temperature. All values
presented in Table 1 are given in KBT units. The calculated results are tabulated, with
particles A, B, C, and D representing air, turntable, PEI, and PEN, respectively.

Table 1. The Flory–Huggins parameters χij and interaction parameters aij between particles of PEI
and PEN.

Particle Pair χij aij

A-B 1.08 28.53
A-C 46.18 176.01
A-D 36.06 142.91
B-C 55.76 207.34
B-D 43.65 167.74



J. Compos. Sci. 2024, 8, 480 6 of 14

3. Results and Discussion
3.1. Comparative Analysis of the Impact of Rotational Speed

The centrifugal melting electrospinning yield is intricately linked to the centrifugal
force and represents a pivotal factor that significantly influences the performance of PEI
and PEN fiber [52,53]. Therefore, investigating the impact of rotational speed on the
characteristics of PEI and PEN is of utmost importance. In the DPD simulation, a program
is designed to set proportional parameters corresponding to different rotational speeds.
The visualization software is employed to observe the trajectory of PEI and PEN fibers as
they reach the boundary. The changes in PEI and PEN fibers were compared and analyzed.

Figure 5 illustrates the jet trajectories, revealing that the length of the PEI jet reaching
the boundary remains relatively constant as the rotational speed increases. In the initial
stage, the length of the PEN jet reaching the boundary slightly increases with the rotational
speed, but this change becomes insignificant later. Figure 6a demonstrates that the average
diameter of both PEI and PEN fibers decreases with the rotational speed increasing. As
the speed increases from 10 to 20, the average diameters of PEI and PEN fibers remain
within ranges of 11.9–14.6 and 9.8–12.0, respectively. Notably, the decrease in diameter is
more pronounced for PEI fibers, which can be attributed to flexible ether bonds in its main
chain. The decrease is related to the gradually amplified centrifugal force acting on a jet
with a higher rotational speed. Conversely, it can be seen from Figure 6b that as the set
speed coefficient increases, the overall trend of PEN fiber production remains relatively
stable (205.1–205.9, a 0.3% increase), whereas the yield of PEI fibers decreases from 206.1
to 203.8 (a 1.11% decrease). This can be attributed to the introduction of cyano (–CN) side
groups in the molecular chains of PEN, which enhances its mechanical properties and
renders it less sensitive to rotational speed. However, the yields of both PEI and PEN fibers
are minimally affected by adjustments in rotating speed, suggesting it is not a key factor
influencing fiber yield.
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3.2. Comparative Analysis of the Impact of Temperature

The centrifugal melt electrospinning method uses heating equipment to melt polymers
at high temperatures. Under high pressure, the molten polymer is electrostatically stretched
to form a polymer jet, which is then collected and solidified to obtain ultrafine filaments.
In this context, the heating temperature is crucial as a process parameter affecting the
diameter and yield of polymer fibers [54,55]. However, centrifugal melt electrospinning
fibers typically exhibit coarser diameters than fibers produced via solution electrospin-
ning [56]. This disparity is primarily attributed to polymer melts’ higher viscosity than
polymer solutions. Additionally, the polymer is prone to solidify upon being sprayed from
the nozzle, which hampers the stretching of the polymer jet. Consequently, it becomes
imperative to investigate the influence of temperature on the spinning process.

Different system temperatures are set in the DPD simulation program to investigate
their effects. Figure 7 illustrates that the jet’s trajectory increases as the system temperature
rises, with a more pronounced impact observed for PEN. This behavior can be attributed
to numerous rigid benzene rings and flexible ether bond structures in the main chain of
PEN, which contribute to its high-temperature resistance and processability. Furthermore,
Figure 7 reveals that at a system temperature of 0.16, the PEI jet exhibits a bifurcated
structure at the tail. From a simulation perspective, as the system temperature increases,
the total kinetic energy of the system rises, indicating heightened activity of PEI particles
and increased molecular motion. The particles in the simulation system become disordered,
resulting in jet bifurcation. From an experimental perspective, the viscosity of PEI melt
decreases with the increase in system temperature, leading to an increase in the fluidity of
polymer melt. This phenomenon facilitates the stretching of PEI fibers. It is worth noting
that compared to other high-performance polymers, the processing temperature of PEI is
lower, usually around 340 ◦C in industry, which helps to reduce energy costs.

Based on Figure 8a, it is evident that the diameters of both PEN and PEI fibers exhibit
a decreasing trend with increasing system temperature, with a more significant reduction
observed for PEN in the initial stage. This behavior can be attributed to pendant cyano
groups on the molecular chain of PEN, which imparts unique characteristics compared
to other specialty polymers. These cyano groups have minimal impact on the flowability
during processing and enhance the processability of PEN. Figure 8b shows that the yield of
PEI and PEN fibers increases by 39.4% and 36.8%, respectively, with the system temperature
rising, demonstrating a significant contrast to the effects of rotational speed. Such a
phenomenon can be attributed to the decrease in melt viscosity as the temperature increases,
facilitating easier ejection. Within the same time frame, the amount of material expelled
from the spinneret gradually increases, offering the possibility of controlling the yield by
adjusting the temperature.
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3.3. Comparative Analysis of the Impact of Electric Field Force

The electric field and temperature are critical factors in fabricating fibers using centrifu-
gal melt electrospinning. The electric field primarily governs the behavior of polymer jets
within the rotating region, which plays a key role in reducing the fiber diameter. Applying
a high voltage is essential to achieve optimal extension of the electrospinning jet. However,
excessively high electric field forces can result in jet instability, excessive elongation, and
jet fracture [57–59]. In this study, various electric field force coefficients were employed to
observe the motion trajectory of the fiber jet and analyze the impact of different electric
field force magnitudes on fiber diameter and yield.

Figure 9 illustrates the trajectories of PEI and PEN fibers under varying electric field
forces (in the form of electric field force coefficient). The flight paths of PEI and PEN
fibers become longer with increasing electric field force, indicating the significant role of
electric field force in achieving complete fiber stretching. In Figure 10a, the diameters
of PEI and PEN fibers gradually decrease with the electric field force increasing. With
the force becoming stronger, fibers are stretched more intensively, resulting in a higher
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length–diameter ratio. The extent of stretching exhibited by PEI fibers (from 25.3 to 11.9,
a reduction of 53.0%) is more sensitive to the electric field force, which can be attributed
to the unique molecular structure of PEI. The presence of ether bonds in PEI molecular
chains imparts a certain degree of flexibility, contributing to its favorable processability.
Figure 10b demonstrates that the yield of both PEI and PEN fibers gradually increases with
higher electric field force, exceeding a 100% margin and showing a consistent trend. This
can be attributed to the fact that both the fibers are pulled toward a high electric field as the
electric field force increases.
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3.4. Comparative Analysis of the Impact of Molecular Chain Lengths

The length of their molecular chains typically influences polymers’ thermal and
mechanical properties [60–62]. A simulation model was employed to investigate the
effect of different molecular chain lengths on the challenges encountered in centrifugal melt
electrospinning experiments. In this model, the molecular weight or relative molecular mass
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change was represented by altering the number of bonds connecting the model particles,
corresponding to the chain length. The impact of different molecular chain lengths on fiber
diameter, yield, and molecular chain entanglement was analyzed by simulating PEI and
PEN with various chain lengths.

The spinning process of PEI and PEN with varying molecular chain lengths was
simulated, and the diameter of the fibers collected on the receiving plate was calculated.
The average diameter was determined by conducting multiple simulations with different
lengths for each molecular chain. The results are presented in Figures 11 and 12a. Figure 12a
illustrates that the average diameter of both PEI and PEN fibers decreases in the initial
stages of molecular chain length variation, with a more pronounced decrease observed
in PEI fibers. When the chain length is 2, the molecule is insufficient for producing fibers
with a significant relative molecular weight. However, the simulation cannot capture
some limitations because the droplet-like fibers may exhibit larger diameters than typical
fibers, resulting in diameter fluctuations within the 2–3 chain length range. As the chain
length further increases, the average diameter of PEN fibers steadily grows. Attributed to
the augmentation of the chain length, more entangled nodes form, resulting from more
unfolding, releasing, and sliding of the molecular chains. Consequently, the internal
structure becomes more stable, leading to thicker individual fiber diameters.
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For PEI fibers, the diameter initially increases and then decreases as the chain length
ranges from 3 to 6, which is associated with the molecular structure of PEI. Flexible ether
bonds on PEI’s main chain effectively reduce intermolecular forces and steric hindrance,
enhancing flowability and processability. In Figure 12b, the yield of PEI fibers does not
exhibit significant changes with increasing molecular chain length, consistently within the
range of 202–204, showing only a slight variation in fiber yield as the relative molecular
weight of PEI increases. The time and energy required for melt flow increase, leading to
decreased fiber orientation and increased spinning difficulty. Alternatively, the fiber yield
increases as the molecular chain length of PEN fibers increases. This may be attributed to
the interaction between side cyano groups of PEN, which enhances interchain interactions,
improving mechanical properties and material bonding ability. Consequently, polymer
chains tend to aggregate into larger structures over a given time, leading to increased
diameter and yield.

4. Conclusions

This article employs the DPD method to establish a centrifugal melt electrospinning
model for PEI and PEN, considering their distinct molecular structures and setting various
parameters for simulation analysis. Among the factors influencing the spinning process of
PEI and PEN, temperature is closely associated with the polymer’s melting state and serves
as a prerequisite for centrifugal melt electrospinning. The electric field force significantly
impacts the electrospinning process, while the rotational speed influences the centrifugal
force, thereby also affecting the process. Moreover, the molecular chain lengths of PEI and
PEN play a crucial role in fiber performance, exhibiting distinct patterns of variation. A
comparative analysis was conducted on the parameters affecting the melt electrospinning
process, including the diameter, productivity, and jet trajectory simulation of PEI and PEN
fibers. The simulation results indicate that increasing the temperature and electric field
force within a specific range can refine PEI and PEN fibers and improve fiber yield. It is
worth noting that changes in rotational speed have minimal effects on PEI and PEN fibers
in the present simulation system. Due to their different molecular structures, PEI and PEN
with varying chain lengths show different change trends. In the initial stage, the average
diameter of both PEI and PEN fibers decreases, with PEI experiencing a more significant
reduction. However, in the later stage, the average diameter of PEN fibers continues to
increase, while the diameter of PEI fibers first increases and then decreases. The yield of
PEN fibers tends to increase with an increase in molecular chains, whereas the yield of PEI
fibers does not show significant changes with the rise in molecular chains.

This study conducted a comparative analysis of the centrifugal melt electrospinning
process of PEI and PEN, thereby providing essential theoretical guidance for the develop-
ment of more reliable techniques to produce future high-quality and functional fibers of
PEI and PEN. Through the investigation conducted in this study, researchers can broaden
their research horizons and explore novel methodologies within this field.
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